tuner_fc0013: use new cleaned-up driver

The driver was taken from http://git.linuxtv.org/ and adapted
for librtlsdr. Also, fc0013_set_gain() was added.

Signed-off-by: Steve Markgraf <steve@steve-m.de>
This commit is contained in:
Steve Markgraf 2012-05-25 17:25:13 +02:00
parent c4c48a69ea
commit 6d34b04b42
3 changed files with 492 additions and 575 deletions

View File

@ -1,159 +1,36 @@
#ifndef __TUNER_FC0013_H /*
#define __TUNER_FC0013_H * Fitipower FC0013 tuner driver
*
* Copyright (C) 2012 Hans-Frieder Vogt <hfvogt@gmx.net>
*
* modified for use in librtlsdr
* Copyright (C) 2012 Steve Markgraf <steve@steve-m.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
*/
/** #ifndef _FC0013_H_
#define _FC0013_H_
@file
@brief FC0013 tuner module declaration
One can manipulate FC0013 tuner through FC0013 module.
FC0013 module is derived from tuner module.
// The following context is implemented for FC0013 source code.
**/
#define FC0013_I2C_ADDR 0xc6 #define FC0013_I2C_ADDR 0xc6
#define FC0013_CHECK_ADDR 0x00 #define FC0013_CHECK_ADDR 0x00
#define FC0013_CHECK_VAL 0xa3 #define FC0013_CHECK_VAL 0xa3
// Definitions int fc0013_init(void *dev);
enum FC0013_TRUE_FALSE_STATUS int fc0013_set_params(void *dev, uint32_t frequency, uint32_t bw);
{ int fc0013_set_gain(void *dev, int gain);
FC0013_FALSE,
FC0013_TRUE,
};
enum FC0013_I2C_STATUS
{
FC0013_I2C_SUCCESS,
FC0013_I2C_ERROR,
};
enum FC0013_FUNCTION_STATUS
{
FC0013_FUNCTION_SUCCESS,
FC0013_FUNCTION_ERROR,
};
// Functions
int FC0013_Read(void *pTuner, unsigned char RegAddr, unsigned char *pByte);
int FC0013_Write(void *pTuner, unsigned char RegAddr, unsigned char Byte);
int
fc0013_SetRegMaskBits(
void *pTuner,
unsigned char RegAddr,
unsigned char Msb,
unsigned char Lsb,
const unsigned char WritingValue
);
int
fc0013_GetRegMaskBits(
void *pTuner,
unsigned char RegAddr,
unsigned char Msb,
unsigned char Lsb,
unsigned char *pReadingValue
);
int FC0013_Open(void *pTuner);
int FC0013_SetFrequency(void *pTuner, unsigned long Frequency, unsigned short Bandwidth);
// Set VHF Track depends on input frequency
int FC0013_SetVhfTrack(void *pTuner, unsigned long Frequency);
// The following context is FC0013 tuner API source code
// Definitions
// Bandwidth mode
enum FC0013_BANDWIDTH_MODE
{
FC0013_BANDWIDTH_6000000HZ = 6,
FC0013_BANDWIDTH_7000000HZ = 7,
FC0013_BANDWIDTH_8000000HZ = 8,
};
// Default for initialing
#define FC0013_RF_FREQ_HZ_DEFAULT 50000000
#define FC0013_BANDWIDTH_MODE_DEFAULT FC0013_BANDWIDTH_8000000HZ
// Tuner LNA
enum FC0013_LNA_GAIN_VALUE
{
FC0013_LNA_GAIN_LOW = 0x00, // -6.3dB
FC0013_LNA_GAIN_MIDDLE = 0x08, // 7.1dB
FC0013_LNA_GAIN_HIGH_17 = 0x11, // 19.1dB
FC0013_LNA_GAIN_HIGH_19 = 0x10, // 19.7dB
};
// Manipulaing functions
void
fc0013_GetTunerType(
void *pTuner,
int *pTunerType
);
void
fc0013_GetDeviceAddr(
void *pTuner,
unsigned char *pDeviceAddr
);
int
fc0013_Initialize(
void *pTuner
);
int
fc0013_SetRfFreqHz(
void *pTuner,
unsigned long RfFreqHz
);
int
fc0013_GetRfFreqHz(
void *pTuner,
unsigned long *pRfFreqHz
);
// Extra manipulaing functions
int
fc0013_SetBandwidthMode(
void *pTuner,
int BandwidthMode
);
int
fc0013_GetBandwidthMode(
void *pTuner,
int *pBandwidthMode
);
int
fc0013_RcCalReset(
void *pTuner
);
int
fc0013_RcCalAdd(
void *pTuner,
int RcValue
);
#endif #endif

View File

@ -136,15 +136,17 @@ int fc0012_set_bw(void *dev, int bw) {
int fc0012_set_gain(void *dev, int gain) { return 0; } int fc0012_set_gain(void *dev, int gain) { return 0; }
int fc0012_set_gain_mode(void *dev, int manual) { return 0; } int fc0012_set_gain_mode(void *dev, int manual) { return 0; }
int fc0013_init(void *dev) { return FC0013_Open(dev); } int _fc0013_init(void *dev) { return fc0013_init(dev); }
int fc0013_exit(void *dev) { return 0; } int fc0013_exit(void *dev) { return 0; }
int fc0013_set_freq(void *dev, uint32_t freq) { int fc0013_set_freq(void *dev, uint32_t freq) {
return FC0013_SetFrequency(dev, freq/1000, 6); /* select V-band/U-band filter */
rtlsdr_set_gpio_bit(dev, 6, (freq > 300000000) ? 1 : 0);
return fc0013_set_params(dev, freq, 6000000);
} }
int fc0013_set_bw(void *dev, int bw) { int fc0013_set_bw(void *dev, int bw) { return 0; }
return FC0013_SetFrequency(dev, ((rtlsdr_dev_t *) dev)->freq/1000, 6); int _fc0013_set_gain(void *dev, int gain) {
return fc0013_set_gain(dev, gain);
} }
int fc0013_set_gain(void *dev, int gain) { return 0; }
int fc0013_set_gain_mode(void *dev, int manual) { return 0; } int fc0013_set_gain_mode(void *dev, int manual) { return 0; }
int fc2580_init(void *dev) { return fc2580_Initialize(dev); } int fc2580_init(void *dev) { return fc2580_Initialize(dev); }
@ -177,8 +179,8 @@ static rtlsdr_tuner_t tuners[] = {
fc0012_set_gain_mode fc0012_set_gain_mode
}, },
{ {
fc0013_init, fc0013_exit, _fc0013_init, fc0013_exit,
fc0013_set_freq, fc0013_set_bw, fc0013_set_gain, fc0013_set_freq, fc0013_set_bw, _fc0013_set_gain,
fc0013_set_gain_mode fc0013_set_gain_mode
}, },
{ {
@ -977,6 +979,7 @@ int rtlsdr_open(rtlsdr_dev_t **out_dev, uint32_t index)
reg = rtlsdr_i2c_read_reg(dev, FC0013_I2C_ADDR, FC0013_CHECK_ADDR); reg = rtlsdr_i2c_read_reg(dev, FC0013_I2C_ADDR, FC0013_CHECK_ADDR);
if (reg == FC0013_CHECK_VAL) { if (reg == FC0013_CHECK_VAL) {
fprintf(stderr, "Found Fitipower FC0013 tuner\n"); fprintf(stderr, "Found Fitipower FC0013 tuner\n");
rtlsdr_set_gpio_output(dev, 6);
dev->tuner = &tuners[RTLSDR_TUNER_FC0013]; dev->tuner = &tuners[RTLSDR_TUNER_FC0013];
goto found; goto found;
} }

View File

@ -1,8 +1,26 @@
/* /*
* Fitipower FC0013 tuner driver, taken from the kernel driver that can be found * Fitipower FC0013 tuner driver
* on http://linux.terratec.de/tv_en.html
* *
* This driver is a mess, and should be cleaned up/rewritten. * Copyright (C) 2012 Hans-Frieder Vogt <hfvogt@gmx.net>
* partially based on driver code from Fitipower
* Copyright (C) 2010 Fitipower Integrated Technology Inc
*
* modified for use in librtlsdr
* Copyright (C) 2012 Steve Markgraf <steve@steve-m.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
* *
*/ */
@ -11,424 +29,443 @@
#include "rtlsdr_i2c.h" #include "rtlsdr_i2c.h"
#include "tuner_fc0013.h" #include "tuner_fc0013.h"
#define CRYSTAL_FREQ 28800000 static int fc0013_writereg(void *dev, uint8_t reg, uint8_t val)
/* glue functions to rtl-sdr code */
int FC0013_Write(void *pTuner, unsigned char RegAddr, unsigned char Byte)
{ {
uint8_t data[2]; uint8_t data[2];
data[0] = reg;
data[1] = val;
data[0] = RegAddr; if (rtlsdr_i2c_write_fn(dev, FC0013_I2C_ADDR, data, 2) < 0)
data[1] = Byte; return -1;
if (rtlsdr_i2c_write_fn(pTuner, FC0013_I2C_ADDR, data, 2) < 0)
return FC0013_I2C_ERROR;
return FC0013_I2C_SUCCESS;
}
int FC0013_Read(void *pTuner, unsigned char RegAddr, unsigned char *pByte)
{
uint8_t data = RegAddr;
if (rtlsdr_i2c_write_fn(pTuner, FC0013_I2C_ADDR, &data, 1) < 0)
return FC0013_I2C_ERROR;
if (rtlsdr_i2c_read_fn(pTuner, FC0013_I2C_ADDR, &data, 1) < 0)
return FC0013_I2C_ERROR;
*pByte = data;
return FC0013_I2C_SUCCESS;
}
int FC0013_SetVhfTrack(void *pTuner, unsigned long FrequencyKHz)
{
unsigned char read_byte;
if (FrequencyKHz <= 177500) // VHF Track: 7
{
if(FC0013_Read(pTuner, 0x1D, &read_byte) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x1D, (read_byte & 0xE3) | 0x1C) != FC0013_I2C_SUCCESS) goto error_status;
}
else if (FrequencyKHz <= 184500) // VHF Track: 6
{
if(FC0013_Read(pTuner, 0x1D, &read_byte) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x1D, (read_byte & 0xE3) | 0x18) != FC0013_I2C_SUCCESS) goto error_status;
}
else if (FrequencyKHz <= 191500) // VHF Track: 5
{
if(FC0013_Read(pTuner, 0x1D, &read_byte) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x1D, (read_byte & 0xE3) | 0x14) != FC0013_I2C_SUCCESS) goto error_status;
}
else if (FrequencyKHz <= 198500) // VHF Track: 4
{
if(FC0013_Read(pTuner, 0x1D, &read_byte) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x1D, (read_byte & 0xE3) | 0x10) != FC0013_I2C_SUCCESS) goto error_status;
}
else if (FrequencyKHz <= 205500) // VHF Track: 3
{
if(FC0013_Read(pTuner, 0x1D, &read_byte) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x1D, (read_byte & 0xE3) | 0x0C) != FC0013_I2C_SUCCESS) goto error_status;
}
else if (FrequencyKHz <= 212500) // VHF Track: 2
{
if(FC0013_Read(pTuner, 0x1D, &read_byte) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x1D, (read_byte & 0xE3) | 0x08) != FC0013_I2C_SUCCESS) goto error_status;
}
else if (FrequencyKHz <= 219500) // VHF Track: 2
{
if(FC0013_Read(pTuner, 0x1D, &read_byte) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x1D, (read_byte & 0xE3) | 0x08) != FC0013_I2C_SUCCESS) goto error_status;
}
else if (FrequencyKHz <= 226500) // VHF Track: 1
{
if(FC0013_Read(pTuner, 0x1D, &read_byte) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x1D, (read_byte & 0xE3) | 0x04) != FC0013_I2C_SUCCESS) goto error_status;
}
else // VHF Track: 1
{
if(FC0013_Read(pTuner, 0x1D, &read_byte) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x1D, (read_byte & 0xE3) | 0x04) != FC0013_I2C_SUCCESS) goto error_status;
}
//------------------------------------------------ arios modify 2010-12-24
// " | 0x10" ==> " | 0x30" (make sure reg[0x07] bit5 = 1)
// Enable VHF filter.
if(FC0013_Read(pTuner, 0x07, &read_byte) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x07, read_byte | 0x10) != FC0013_I2C_SUCCESS) goto error_status;
// Disable UHF & GPS.
if(FC0013_Read(pTuner, 0x14, &read_byte) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x14, read_byte & 0x1F) != FC0013_I2C_SUCCESS) goto error_status;
return FC0013_FUNCTION_SUCCESS;
error_status:
return FC0013_FUNCTION_ERROR;
}
// FC0013 Open Function, includes enable/reset pin control and registers initialization.
//void FC0013_Open()
int FC0013_Open(void *pTuner)
{
// Enable FC0013 Power
// (...)
// FC0013 Enable = High
// (...)
// FC0013 Reset = High -> Low
// (...)
/* FIXME added to fix replug-bug with rtl-sdr */
if(FC0013_Write(pTuner, 0x0C, 0x00) != FC0013_I2C_SUCCESS) goto error_status;
//================================ update base on new FC0013 register bank
if(FC0013_Write(pTuner, 0x01, 0x09) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x02, 0x16) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x03, 0x00) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x04, 0x00) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x05, 0x17) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x06, 0x02) != FC0013_I2C_SUCCESS) goto error_status;
// if(FC0013_Write(pTuner, 0x07, 0x27) != FC0013_I2C_SUCCESS) goto error_status; // 28.8MHz, GainShift: 15
if(FC0013_Write(pTuner, 0x07, 0x2A) != FC0013_I2C_SUCCESS) goto error_status; // 28.8MHz, modified by Realtek
if(FC0013_Write(pTuner, 0x08, 0xFF) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x09, 0x6F) != FC0013_I2C_SUCCESS) goto error_status; // Enable Loop Through
if(FC0013_Write(pTuner, 0x0A, 0xB8) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x0B, 0x82) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x0C, 0xFE) != FC0013_I2C_SUCCESS) goto error_status; // Modified for up-dowm AGC by Realtek(for master, and for 2836BU dongle).
// if(FC0013_Write(pTuner, 0x0C, 0xFC) != FC0013_I2C_SUCCESS) goto error_status; // Modified for up-dowm AGC by Realtek(for slave, and for 2832 mini dongle).
// if(FC0013_Write(pTuner, 0x0D, 0x09) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x0D, 0x01) != FC0013_I2C_SUCCESS) goto error_status; // Modified for AGC non-forcing by Realtek.
if(FC0013_Write(pTuner, 0x0E, 0x00) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x0F, 0x00) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x10, 0x00) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x11, 0x00) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x12, 0x00) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x13, 0x00) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x14, 0x50) != FC0013_I2C_SUCCESS) goto error_status; // DVB-T, High Gain
// if(FC0013_Write(pTuner, 0x14, 0x48) != FC0013_I2C_SUCCESS) goto error_status; // DVB-T, Middle Gain
// if(FC0013_Write(pTuner, 0x14, 0x40) != FC0013_I2C_SUCCESS) goto error_status; // DVB-T, Low Gain
if(FC0013_Write(pTuner, 0x15, 0x01) != FC0013_I2C_SUCCESS) goto error_status;
return FC0013_FUNCTION_SUCCESS;
error_status:
return FC0013_FUNCTION_ERROR;
}
int FC0013_SetFrequency(void *pTuner, unsigned long Frequency, unsigned short Bandwidth)
{
// bool VCO1 = false;
// unsigned int doubleVCO;
// unsigned short xin, xdiv;
// unsigned char reg[21], am, pm, multi;
int VCO1 = FC0013_FALSE;
unsigned long doubleVCO;
unsigned short xin, xdiv;
unsigned char reg[21], am, pm, multi;
unsigned char read_byte;
unsigned long CrystalFreqKhz;
int CrystalFreqHz = rtlsdr_get_tuner_clock(pTuner);
// Get tuner crystal frequency in KHz.
// Note: CrystalFreqKhz = round(CrystalFreqHz / 1000)
CrystalFreqKhz = (CrystalFreqHz + 500) / 1000;
// modified 2011-02-09: for D-Book test
// set VHF_Track = 7
if(FC0013_Read(pTuner, 0x1D, &read_byte) != FC0013_I2C_SUCCESS) goto error_status;
// VHF Track: 7
if(FC0013_Write(pTuner, 0x1D, (read_byte & 0xE3) | 0x1C) != FC0013_I2C_SUCCESS) goto error_status;
if( Frequency < 300000 )
{
// Set VHF Track.
if(FC0013_SetVhfTrack(pTuner, Frequency) != FC0013_I2C_SUCCESS) goto error_status;
// Enable VHF filter.
if(FC0013_Read(pTuner, 0x07, &read_byte) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x07, read_byte | 0x10) != FC0013_I2C_SUCCESS) goto error_status;
// Disable UHF & disable GPS.
if(FC0013_Read(pTuner, 0x14, &read_byte) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x14, read_byte & 0x1F) != FC0013_I2C_SUCCESS) goto error_status;
}
else if ( (Frequency >= 300000) && (Frequency <= 862000) )
{
// Disable VHF filter.
if(FC0013_Read(pTuner, 0x07, &read_byte) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x07, read_byte & 0xEF) != FC0013_I2C_SUCCESS) goto error_status;
// enable UHF & disable GPS.
if(FC0013_Read(pTuner, 0x14, &read_byte) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x14, (read_byte & 0x1F) | 0x40) != FC0013_I2C_SUCCESS) goto error_status;
}
else if (Frequency > 862000)
{
// Disable VHF filter
if(FC0013_Read(pTuner, 0x07, &read_byte) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x07, read_byte & 0xEF) != FC0013_I2C_SUCCESS) goto error_status;
// Disable UHF & enable GPS
if(FC0013_Read(pTuner, 0x14, &read_byte) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x14, (read_byte & 0x1F) | 0x20) != FC0013_I2C_SUCCESS) goto error_status;
}
if (Frequency * 96 < 3560000)
{
multi = 96;
reg[5] = 0x82;
reg[6] = 0x00;
}
else if (Frequency * 64 < 3560000)
{
multi = 64;
reg[5] = 0x02;
reg[6] = 0x02;
}
else if (Frequency * 48 < 3560000)
{
multi = 48;
reg[5] = 0x42;
reg[6] = 0x00;
}
else if (Frequency * 32 < 3560000)
{
multi = 32;
reg[5] = 0x82;
reg[6] = 0x02;
}
else if (Frequency * 24 < 3560000)
{
multi = 24;
reg[5] = 0x22;
reg[6] = 0x00;
}
else if (Frequency * 16 < 3560000)
{
multi = 16;
reg[5] = 0x42;
reg[6] = 0x02;
}
else if (Frequency * 12 < 3560000)
{
multi = 12;
reg[5] = 0x12;
reg[6] = 0x00;
}
else if (Frequency * 8 < 3560000)
{
multi = 8;
reg[5] = 0x22;
reg[6] = 0x02;
}
else if (Frequency * 6 < 3560000)
{
multi = 6;
reg[5] = 0x0A;
reg[6] = 0x00;
}
else if (Frequency * 4 < 3800000)
{
multi = 4;
reg[5] = 0x12;
reg[6] = 0x02;
}
else
{
Frequency = Frequency / 2;
multi = 4;
reg[5] = 0x0A;
reg[6] = 0x02;
}
doubleVCO = Frequency * multi;
reg[6] = reg[6] | 0x08;
// VCO1 = true;
VCO1 = FC0013_TRUE;
// Calculate VCO parameters: ap & pm & xin.
// xdiv = (unsigned short)(doubleVCO / (Crystal_Frequency/2));
xdiv = (unsigned short)(doubleVCO / (CrystalFreqKhz/2));
// if( (doubleVCO - xdiv * (Crystal_Frequency/2)) >= (Crystal_Frequency/4) )
if( (doubleVCO - xdiv * (CrystalFreqKhz/2)) >= (CrystalFreqKhz/4) )
{
xdiv = xdiv + 1;
}
pm = (unsigned char)( xdiv / 8 );
am = (unsigned char)( xdiv - (8 * pm));
if (am < 2)
{
reg[1] = am + 8;
reg[2] = pm - 1;
}
else
{
reg[1] = am;
reg[2] = pm;
}
// xin = (unsigned short)(doubleVCO - ((unsigned short)(doubleVCO / (Crystal_Frequency/2))) * (Crystal_Frequency/2));
xin = (unsigned short)(doubleVCO - ((unsigned short)(doubleVCO / (CrystalFreqKhz/2))) * (CrystalFreqKhz/2));
// xin = ((xin << 15)/(Crystal_Frequency/2));
xin = (unsigned short)((xin << 15)/(CrystalFreqKhz/2));
// if( xin >= (unsigned short) pow( (double)2, (double)14) )
// {
// xin = xin + (unsigned short) pow( (double)2, (double)15);
// }
if( xin >= (unsigned short) 16384 )
xin = xin + (unsigned short) 32768;
reg[3] = (unsigned char)(xin >> 8);
reg[4] = (unsigned char)(xin & 0x00FF);
//===================================== Only for testing
// printf("Frequency: %d, Fa: %d, Fp: %d, Xin:%d \n", Frequency, am, pm, xin);
// Set Low-Pass Filter Bandwidth.
switch(Bandwidth)
{
case 6:
reg[6] = 0x80 | reg[6];
break;
case 7:
reg[6] = ~0x80 & reg[6];
reg[6] = 0x40 | reg[6];
break;
case 8:
default:
reg[6] = ~0xC0 & reg[6];
break;
}
reg[5] = reg[5] | 0x07;
if(FC0013_Write(pTuner, 0x01, reg[1]) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x02, reg[2]) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x03, reg[3]) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x04, reg[4]) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x05, reg[5]) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x06, reg[6]) != FC0013_I2C_SUCCESS) goto error_status;
if (multi == 64)
{
// FC0013_Write(0x11, FC0013_Read(0x11) | 0x04);
if(FC0013_Read(pTuner, 0x11, &read_byte) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x11, read_byte | 0x04) != FC0013_I2C_SUCCESS) goto error_status;
}
else
{
// FC0013_Write(0x11, FC0013_Read(0x11) & 0xFB);
if(FC0013_Read(pTuner, 0x11, &read_byte) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x11, read_byte & 0xFB) != FC0013_I2C_SUCCESS) goto error_status;
}
if(FC0013_Write(pTuner, 0x0E, 0x80) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x0E, 0x00) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x0E, 0x00) != FC0013_I2C_SUCCESS) goto error_status;
// reg[14] = 0x3F & FC0013_Read(0x0E);
if(FC0013_Read(pTuner, 0x0E, &read_byte) != FC0013_I2C_SUCCESS) goto error_status;
reg[14] = 0x3F & read_byte;
if (VCO1)
{
if (reg[14] > 0x3C)
{
reg[6] = ~0x08 & reg[6];
if(FC0013_Write(pTuner, 0x06, reg[6]) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x0E, 0x80) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x0E, 0x00) != FC0013_I2C_SUCCESS) goto error_status;
}
}
else
{
if (reg[14] < 0x02)
{
reg[6] = 0x08 | reg[6];
if(FC0013_Write(pTuner, 0x06, reg[6]) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x0E, 0x80) != FC0013_I2C_SUCCESS) goto error_status;
if(FC0013_Write(pTuner, 0x0E, 0x00) != FC0013_I2C_SUCCESS) goto error_status;
}
}
return 1;
error_status:
return 0; return 0;
} }
static int fc0013_readreg(void *dev, uint8_t reg, uint8_t *val)
{
uint8_t data = reg;
if (rtlsdr_i2c_write_fn(dev, FC0013_I2C_ADDR, &data, 1) < 0)
return -1;
if (rtlsdr_i2c_read_fn(dev, FC0013_I2C_ADDR, &data, 1) < 0)
return -1;
*val = data;
return 0;
}
int fc0013_init(void *dev)
{
int ret = 0;
unsigned int i;
uint8_t reg[] = {
0x00, /* reg. 0x00: dummy */
0x09, /* reg. 0x01 */
0x16, /* reg. 0x02 */
0x00, /* reg. 0x03 */
0x00, /* reg. 0x04 */
0x17, /* reg. 0x05 */
0x02, /* reg. 0x06: LPF bandwidth */
0x0a, /* reg. 0x07: CHECK */
0xff, /* reg. 0x08: AGC Clock divide by 256, AGC gain 1/256,
Loop Bw 1/8 */
0x6f, /* reg. 0x09: enable LoopThrough */
0xb8, /* reg. 0x0a: Disable LO Test Buffer */
0x82, /* reg. 0x0b: CHECK */
0xfc, /* reg. 0x0c: depending on AGC Up-Down mode, may need 0xf8 */
0x01, /* reg. 0x0d: AGC Not Forcing & LNA Forcing, may need 0x02 */
0x00, /* reg. 0x0e */
0x00, /* reg. 0x0f */
0x00, /* reg. 0x10 */
0x00, /* reg. 0x11 */
0x00, /* reg. 0x12 */
0x00, /* reg. 0x13 */
0x50, /* reg. 0x14: DVB-t High Gain, UHF.
Middle Gain: 0x48, Low Gain: 0x40 */
0x01, /* reg. 0x15 */
};
#if 0
switch (rtlsdr_get_tuner_clock(dev)) {
case FC_XTAL_27_MHZ:
case FC_XTAL_28_8_MHZ:
reg[0x07] |= 0x20;
break;
case FC_XTAL_36_MHZ:
default:
break;
}
#endif
reg[0x07] |= 0x20;
// if (dev->dual_master)
reg[0x0c] |= 0x02;
for (i = 1; i < sizeof(reg); i++) {
ret = fc0013_writereg(dev, i, reg[i]);
if (ret < 0)
break;
}
return ret;
}
int fc0013_rc_cal_add(void *dev, int rc_val)
{
int ret;
uint8_t rc_cal;
int val;
/* push rc_cal value, get rc_cal value */
ret = fc0013_writereg(dev, 0x10, 0x00);
if (ret)
goto error_out;
/* get rc_cal value */
ret = fc0013_readreg(dev, 0x10, &rc_cal);
if (ret)
goto error_out;
rc_cal &= 0x0f;
val = (int)rc_cal + rc_val;
/* forcing rc_cal */
ret = fc0013_writereg(dev, 0x0d, 0x11);
if (ret)
goto error_out;
/* modify rc_cal value */
if (val > 15)
ret = fc0013_writereg(dev, 0x10, 0x0f);
else if (val < 0)
ret = fc0013_writereg(dev, 0x10, 0x00);
else
ret = fc0013_writereg(dev, 0x10, (uint8_t)val);
error_out:
return ret;
}
int fc0013_rc_cal_reset(void *dev)
{
int ret;
ret = fc0013_writereg(dev, 0x0d, 0x01);
if (!ret)
ret = fc0013_writereg(dev, 0x10, 0x00);
return ret;
}
static int fc0013_set_vhf_track(void *dev, uint32_t freq)
{
int ret;
uint8_t tmp;
ret = fc0013_readreg(dev, 0x1d, &tmp);
if (ret)
goto error_out;
tmp &= 0xe3;
if (freq <= 177500) { /* VHF Track: 7 */
ret = fc0013_writereg(dev, 0x1d, tmp | 0x1c);
} else if (freq <= 184500) { /* VHF Track: 6 */
ret = fc0013_writereg(dev, 0x1d, tmp | 0x18);
} else if (freq <= 191500) { /* VHF Track: 5 */
ret = fc0013_writereg(dev, 0x1d, tmp | 0x14);
} else if (freq <= 198500) { /* VHF Track: 4 */
ret = fc0013_writereg(dev, 0x1d, tmp | 0x10);
} else if (freq <= 205500) { /* VHF Track: 3 */
ret = fc0013_writereg(dev, 0x1d, tmp | 0x0c);
} else if (freq <= 219500) { /* VHF Track: 2 */
ret = fc0013_writereg(dev, 0x1d, tmp | 0x08);
} else if (freq < 300000) { /* VHF Track: 1 */
ret = fc0013_writereg(dev, 0x1d, tmp | 0x04);
} else { /* UHF and GPS */
ret = fc0013_writereg(dev, 0x1d, tmp | 0x1c);
}
error_out:
return ret;
}
int fc0013_set_params(void *dev, uint32_t frequency, uint32_t bandwidth)
{
int i, ret = 0;
uint32_t freq = frequency / 1000;
uint8_t reg[7], am, pm, multi, tmp;
unsigned long f_vco;
uint16_t xtal_freq_khz_2, xin, xdiv;
int vco_select = 0;
xtal_freq_khz_2 = rtlsdr_get_tuner_clock(dev) / 1000 / 2;
/* set VHF track */
ret = fc0013_set_vhf_track(dev, freq);
if (ret)
goto exit;
if (freq < 300000) {
/* enable VHF filter */
ret = fc0013_readreg(dev, 0x07, &tmp);
if (ret)
goto exit;
ret = fc0013_writereg(dev, 0x07, tmp | 0x10);
if (ret)
goto exit;
/* disable UHF & disable GPS */
ret = fc0013_readreg(dev, 0x14, &tmp);
if (ret)
goto exit;
ret = fc0013_writereg(dev, 0x14, tmp & 0x1f);
if (ret)
goto exit;
} else if (freq <= 862000) {
/* disable VHF filter */
ret = fc0013_readreg(dev, 0x07, &tmp);
if (ret)
goto exit;
ret = fc0013_writereg(dev, 0x07, tmp & 0xef);
if (ret)
goto exit;
/* enable UHF & disable GPS */
ret = fc0013_readreg(dev, 0x14, &tmp);
if (ret)
goto exit;
ret = fc0013_writereg(dev, 0x14, (tmp & 0x1f) | 0x40);
if (ret)
goto exit;
} else {
/* disable VHF filter */
ret = fc0013_readreg(dev, 0x07, &tmp);
if (ret)
goto exit;
ret = fc0013_writereg(dev, 0x07, tmp & 0xef);
if (ret)
goto exit;
/* disable UHF & enable GPS */
ret = fc0013_readreg(dev, 0x14, &tmp);
if (ret)
goto exit;
ret = fc0013_writereg(dev, 0x14, (tmp & 0x1f) | 0x20);
if (ret)
goto exit;
}
/* select frequency divider and the frequency of VCO */
if (freq < 37084) { /* freq * 96 < 3560000 */
multi = 96;
reg[5] = 0x82;
reg[6] = 0x00;
} else if (freq < 55625) { /* freq * 64 < 3560000 */
multi = 64;
reg[5] = 0x02;
reg[6] = 0x02;
} else if (freq < 74167) { /* freq * 48 < 3560000 */
multi = 48;
reg[5] = 0x42;
reg[6] = 0x00;
} else if (freq < 111250) { /* freq * 32 < 3560000 */
multi = 32;
reg[5] = 0x82;
reg[6] = 0x02;
} else if (freq < 148334) { /* freq * 24 < 3560000 */
multi = 24;
reg[5] = 0x22;
reg[6] = 0x00;
} else if (freq < 222500) { /* freq * 16 < 3560000 */
multi = 16;
reg[5] = 0x42;
reg[6] = 0x02;
} else if (freq < 296667) { /* freq * 12 < 3560000 */
multi = 12;
reg[5] = 0x12;
reg[6] = 0x00;
} else if (freq < 445000) { /* freq * 8 < 3560000 */
multi = 8;
reg[5] = 0x22;
reg[6] = 0x02;
} else if (freq < 593334) { /* freq * 6 < 3560000 */
multi = 6;
reg[5] = 0x0a;
reg[6] = 0x00;
} else if (freq < 950000) { /* freq * 4 < 3800000 */
multi = 4;
reg[5] = 0x12;
reg[6] = 0x02;
} else {
multi = 2;
reg[5] = 0x0a;
reg[6] = 0x02;
}
f_vco = freq * multi;
if (f_vco >= 3060000) {
reg[6] |= 0x08;
vco_select = 1;
}
if (freq >= 45000) {
/* From divided value (XDIV) determined the FA and FP value */
xdiv = (uint16_t)(f_vco / xtal_freq_khz_2);
if ((f_vco - xdiv * xtal_freq_khz_2) >= (xtal_freq_khz_2 / 2))
xdiv++;
pm = (uint8_t)(xdiv / 8);
am = (uint8_t)(xdiv - (8 * pm));
if (am < 2) {
reg[1] = am + 8;
reg[2] = pm - 1;
} else {
reg[1] = am;
reg[2] = pm;
}
} else {
/* fix for frequency less than 45 MHz */
reg[1] = 0x06;
reg[2] = 0x11;
}
/* fix clock out */
reg[6] |= 0x20;
/* From VCO frequency determines the XIN ( fractional part of Delta
Sigma PLL) and divided value (XDIV) */
xin = (uint16_t)(f_vco - (f_vco / xtal_freq_khz_2) * xtal_freq_khz_2);
xin = (xin << 15) / xtal_freq_khz_2;
if (xin >= 16384)
xin += 32768;
reg[3] = xin >> 8;
reg[4] = xin & 0xff;
reg[6] &= 0x3f; /* bits 6 and 7 describe the bandwidth */
switch (bandwidth) {
case 6000000:
reg[6] |= 0x80;
break;
case 7000000:
reg[6] |= 0x40;
break;
case 8000000:
default:
break;
}
/* modified for Realtek demod */
reg[5] |= 0x07;
for (i = 1; i <= 6; i++) {
ret = fc0013_writereg(dev, i, reg[i]);
if (ret)
goto exit;
}
ret = fc0013_readreg(dev, 0x11, &tmp);
if (ret)
goto exit;
if (multi == 64)
ret = fc0013_writereg(dev, 0x11, tmp | 0x04);
else
ret = fc0013_writereg(dev, 0x11, tmp & 0xfb);
if (ret)
goto exit;
/* VCO Calibration */
ret = fc0013_writereg(dev, 0x0e, 0x80);
if (!ret)
ret = fc0013_writereg(dev, 0x0e, 0x00);
/* VCO Re-Calibration if needed */
if (!ret)
ret = fc0013_writereg(dev, 0x0e, 0x00);
if (!ret) {
// msleep(10);
ret = fc0013_readreg(dev, 0x0e, &tmp);
}
if (ret)
goto exit;
/* vco selection */
tmp &= 0x3f;
if (vco_select) {
if (tmp > 0x3c) {
reg[6] &= ~0x08;
ret = fc0013_writereg(dev, 0x06, reg[6]);
if (!ret)
ret = fc0013_writereg(dev, 0x0e, 0x80);
if (!ret)
ret = fc0013_writereg(dev, 0x0e, 0x00);
}
} else {
if (tmp < 0x02) {
reg[6] |= 0x08;
ret = fc0013_writereg(dev, 0x06, reg[6]);
if (!ret)
ret = fc0013_writereg(dev, 0x0e, 0x80);
if (!ret)
ret = fc0013_writereg(dev, 0x0e, 0x00);
}
}
exit:
return ret;
}
int fc0013_set_gain(void *dev, int gain)
{
int ret, gainshift = 0, en_in_chg = 0;
uint8_t tmp = 0;
ret = fc0013_readreg(dev, 0x14, &tmp);
/* mask bits off */
tmp &= 0xe0;
switch (gain) {
case -63: /* -6.3 dB */
break;
case 71:
tmp |= 0x08; /* 7.1 dB */
break;
case 191:
gainshift = 1;
tmp |= 0x11; /* 19.1 dB */
break;
case 197:
default:
en_in_chg = 1;
gainshift = 1;
tmp |= 0x10; /* 19.7 dB */
break;
}
/* set gain */
ret = fc0013_writereg(dev, 0x14, tmp);
/* set en_in_chg */
ret = fc0013_readreg(dev, 0x0a, &tmp);
if (en_in_chg)
tmp |= 0x20;
else
tmp &= ~0x20;
ret = fc0013_writereg(dev, 0x0a, tmp);
/* set gain shift */
ret = fc0013_readreg(dev, 0x07, &tmp);
tmp &= 0xf0;
tmp |= gainshift ? 0x0a : 0x07;
ret = fc0013_writereg(dev, 0x07, tmp);
return ret;
}