libusrp/host/lib/fusb_darwin.cc

583 lines
17 KiB
C++

/* -*- c++ -*- */
/*
* Copyright 2006,2009,2010 Free Software Foundation, Inc.
*
* This file is part of GNU Radio.
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#define DO_DEBUG 0
#include <usb.h>
#include "fusb.h"
#include "fusb_darwin.h"
#include "darwin_libusb.h"
#include <iostream>
static const int USB_TIMEOUT = 100; // in milliseconds
static const UInt8 NUM_QUEUE_ITEMS = 20;
fusb_devhandle_darwin::fusb_devhandle_darwin (usb_dev_handle* udh)
: fusb_devhandle (udh)
{
// that's it
}
fusb_devhandle_darwin::~fusb_devhandle_darwin ()
{
// nop
}
fusb_ephandle*
fusb_devhandle_darwin::make_ephandle (int endpoint, bool input_p,
int block_size, int nblocks)
{
return new fusb_ephandle_darwin (this, endpoint, input_p,
block_size, nblocks);
}
// ----------------------------------------------------------------
fusb_ephandle_darwin::fusb_ephandle_darwin (fusb_devhandle_darwin* dh,
int endpoint, bool input_p,
int block_size, int nblocks)
: fusb_ephandle (endpoint, input_p, block_size, nblocks),
d_devhandle (dh), d_pipeRef (0), d_transferType (0),
d_interfaceRef (0), d_interface (0), d_queue (0),
d_buffer (0), d_bufLenBytes (0)
{
d_bufLenBytes = fusb_sysconfig::max_block_size();
// create circular buffer
d_buffer = new circular_buffer<char> (NUM_QUEUE_ITEMS * d_bufLenBytes,
!d_input_p, d_input_p);
// create the queue
d_queue = new circular_linked_list <s_buffer_ptr> (NUM_QUEUE_ITEMS);
d_queue->iterate_start ();
s_node_ptr l_node = d_queue->iterate_next ();
while (l_node) {
l_node->both (new s_both<s_buffer_ptr> (l_node, this));
s_buffer_ptr l_buf = new s_buffer (d_bufLenBytes);
l_node->object (l_buf);
l_node = d_queue->iterate_next ();
l_buf = NULL;
}
d_readRunning = new gruel::mutex ();
d_runThreadRunning = new gruel::mutex ();
d_runBlock = new gruel::condition_variable ();
d_readBlock = new gruel::condition_variable ();
d_runBlock_mutex = new gruel::mutex ();
d_readBlock_mutex = new gruel::mutex ();
}
fusb_ephandle_darwin::~fusb_ephandle_darwin ()
{
stop ();
d_queue->iterate_start ();
s_node_ptr l_node = d_queue->iterate_next ();
while (l_node) {
s_both_ptr l_both = l_node->both ();
delete l_both;
l_both = NULL;
l_node->both (NULL);
s_buffer_ptr l_buf = l_node->object ();
delete l_buf;
l_buf = NULL;
l_node->object (NULL);
l_node = d_queue->iterate_next ();
}
delete d_queue;
d_queue = NULL;
delete d_buffer;
d_buffer = NULL;
delete d_readRunning;
d_readRunning = NULL;
delete d_runThreadRunning;
d_runThreadRunning = NULL;
delete d_runBlock_mutex;
d_runBlock_mutex = NULL;
delete d_readBlock_mutex;
d_readBlock_mutex = NULL;
delete d_runBlock;
d_runBlock = NULL;
delete d_readBlock;
d_readBlock = NULL;
}
bool
fusb_ephandle_darwin::start ()
{
UInt8 direction, number, interval;
UInt16 maxPacketSize;
// reset circular buffer
d_buffer->reset ();
// reset the queue
d_queue->num_used (0);
d_queue->iterate_start ();
s_node_ptr l_node = d_queue->iterate_next ();
while (l_node) {
l_node->both()->set (l_node, this);
l_node->object()->reset ();
l_node->set_available ();
l_node = d_queue->iterate_next ();
}
d_pipeRef = d_transferType = 0;
usb_dev_handle* dev = d_devhandle->get_usb_dev_handle ();
if (! dev)
USB_ERROR_STR (false, -ENXIO, "fusb_ephandle_darwin::start: "
"null device");
darwin_dev_handle* device = (darwin_dev_handle*) dev->impl_info;
if (! device)
USB_ERROR_STR (false, -ENOENT, "fusb_ephandle_darwin::start: "
"device not initialized");
if (usb_debug) {
std::cerr << "fusb_ephandle_darwin::start: dev = " <<
(void*) dev << ", device = " << (void*) device << std::endl;
}
d_interfaceRef = device->interface;
if (! d_interfaceRef)
USB_ERROR_STR (false, -EACCES, "fusb_ephandle_darwin::start: "
"interface used without being claimed");
d_interface = *d_interfaceRef;
// get read or write pipe info (depends on "d_input_p")
if (usb_debug > 3) {
std::cerr << "fusb_ephandle_darwin::start d_endpoint = " << d_endpoint
<< ", d_input_p = " << (d_input_p ? "TRUE" : "FALSE") << std::endl;
}
int l_endpoint = (d_input_p ? USB_ENDPOINT_IN : USB_ENDPOINT_OUT);
int pipeRef = ep_to_pipeRef (device, d_endpoint | l_endpoint);
if (pipeRef < 0)
USB_ERROR_STR (false, -EINVAL, "fusb_ephandle_darwin::start "
" invalid pipeRef.\n");
d_pipeRef = pipeRef;
d_interface->GetPipeProperties (d_interfaceRef,
d_pipeRef,
&direction,
&number,
&d_transferType,
&maxPacketSize,
&interval);
if (usb_debug == 3) {
std::cerr << "fusb_ephandle_darwin::start: " << (d_input_p ? "read" : "write")
<< ": ep = " << d_endpoint << ", pipeRef = " << d_pipeRef << "interface = "
<< d_interface << ", interfaceRef = " << d_interfaceRef
<< ", if_direction = " << direction << ", if_# = " << number
<< ", if_interval = " << interval << ", if_maxPacketSize = "
<< maxPacketSize << std::endl;
}
// set global start boolean
d_started = true;
// lock the runBlock mutex, before creating the run thread.
// this guarantees that we can control execution between these 2 threads
gruel::scoped_lock l (*d_runBlock_mutex);
// create the run thread, which allows OSX to process I/O separately
d_runThread = new gruel::thread (run_thread, this);
// wait until the run thread (and possibky read thread) are -really-
// going; this will unlock the mutex before waiting for a signal ()
d_runBlock->wait (l);
if (usb_debug) {
std::cerr << "fusb_ephandle_darwin::start: " << (d_input_p ? "read" : "write")
<< " started." << std::endl;
}
return (true);
}
void
fusb_ephandle_darwin::run_thread (void* arg)
{
fusb_ephandle_darwin* This = static_cast<fusb_ephandle_darwin*>(arg);
// lock the run thread running mutex; if ::stop() is called, it will
// first abort() the pipe then wait for the run thread to finish,
// via a lock() on this mutex
gruel::mutex* l_runThreadRunning = This->d_runThreadRunning;
gruel::scoped_lock l0 (*l_runThreadRunning);
gruel::mutex* l_readRunning = This->d_readRunning;
gruel::condition_variable* l_readBlock = This->d_readBlock;
gruel::mutex* l_readBlock_mutex = This->d_readBlock_mutex;
bool l_input_p = This->d_input_p;
if (usb_debug) {
std::cerr << "fusb_ephandle_darwin::run_thread: starting for "
<< (l_input_p ? "read" : "write") << "." << std::endl;
}
usb_interface_t** l_interfaceRef = This->d_interfaceRef;
usb_interface_t* l_interface = This->d_interface;
CFRunLoopSourceRef l_cfSource;
// create async run loop
l_interface->CreateInterfaceAsyncEventSource (l_interfaceRef, &l_cfSource);
CFRunLoopAddSource (CFRunLoopGetCurrent (), l_cfSource,
kCFRunLoopDefaultMode);
// get run loop reference, to allow other threads to stop
This->d_CFRunLoopRef = CFRunLoopGetCurrent ();
gruel::thread* l_rwThread = NULL;
if (l_input_p) {
// lock the readBlock mutex, before creating the read thread.
// this guarantees that we can control execution between these 2 threads
gruel::scoped_lock l1 (*l_readBlock_mutex);
// create the read thread, which just issues all of the starting
// async read commands, then returns
l_rwThread = new gruel::thread (read_thread, arg);
// wait until the the read thread is -really- going; this will
// unlock the read block mutex before waiting for a signal ()
l_readBlock->wait (l1);
}
{
// now signal the run condition to release and finish ::start().
// lock the runBlock mutex first; this will force waiting until the
// ->wait() command is issued in ::start()
gruel::mutex* l_run_block_mutex = This->d_runBlock_mutex;
gruel::scoped_lock l2 (*l_run_block_mutex);
// now that the lock is in place, signal the parent thread that
// things are running
This->d_runBlock->notify_one ();
}
// run the loop
CFRunLoopRun ();
if (l_input_p) {
// wait for read_thread () to finish, if needed
gruel::scoped_lock l3 (*l_readRunning);
}
// remove run loop stuff
CFRunLoopRemoveSource (CFRunLoopGetCurrent (),
l_cfSource, kCFRunLoopDefaultMode);
if (usb_debug) {
std::cerr << "fusb_ephandle_darwin::run_thread: finished for "
<< (l_input_p ? "read" : "write") << "." << std::endl;
}
}
void
fusb_ephandle_darwin::read_thread (void* arg)
{
if (usb_debug) {
std::cerr << "fusb_ephandle_darwin::read_thread: starting." << std::endl;
}
fusb_ephandle_darwin* This = static_cast<fusb_ephandle_darwin*>(arg);
// before doing anything else, lock the read running mutex. this
// mutex does flow control between this thread and the run_thread
gruel::mutex* l_readRunning = This->d_readRunning;
gruel::scoped_lock l0 (*l_readRunning);
// signal the read condition from run_thread() to continue
// lock the readBlock mutex first; this will force waiting until the
// ->wait() command is issued in ::run_thread()
gruel::condition_variable* l_readBlock = This->d_readBlock;
gruel::mutex* l_read_block_mutex = This->d_readBlock_mutex;
{
gruel::scoped_lock l1 (*l_read_block_mutex);
// now that the lock is in place, signal the parent thread that
// things are running here
l_readBlock->notify_one ();
}
// queue up all of the available read requests
s_queue_ptr l_queue = This->d_queue;
l_queue->iterate_start ();
s_node_ptr l_node = l_queue->iterate_next ();
while (l_node) {
This->read_issue (l_node->both ());
l_node = l_queue->iterate_next ();
}
if (usb_debug) {
std::cerr << "fusb_ephandle_darwin::read_thread: finished." << std::endl;
}
}
void
fusb_ephandle_darwin::read_issue (s_both_ptr l_both)
{
if ((! l_both) || (! d_started)) {
if (usb_debug > 4) {
std::cerr << "fusb_ephandle_darwin::read_issue: Doing nothing; "
<< "l_both is " << (void*) l_both << "; started is "
<< (d_started ? "TRUE" : "FALSE") << std::endl;
}
return;
}
// set the node and buffer from the input "both"
s_node_ptr l_node = l_both->node ();
s_buffer_ptr l_buf = l_node->object ();
void* v_buffer = (void*) l_buf->buffer ();
// read up to d_bufLenBytes
size_t bufLen = d_bufLenBytes;
l_buf->n_used (bufLen);
// setup system call result
io_return_t result = kIOReturnSuccess;
if (d_transferType == kUSBInterrupt)
/* This is an interrupt pipe. We can't specify a timeout. */
result = d_interface->ReadPipeAsync
(d_interfaceRef, d_pipeRef, v_buffer, bufLen,
(IOAsyncCallback1) read_completed, (void*) l_both);
else
result = d_interface->ReadPipeAsyncTO
(d_interfaceRef, d_pipeRef, v_buffer, bufLen, 0, USB_TIMEOUT,
(IOAsyncCallback1) read_completed, (void*) l_both);
if (result != kIOReturnSuccess)
USB_ERROR_STR_NO_RET (- darwin_to_errno (result),
"fusb_ephandle_darwin::read_issue "
"(ReadPipeAsync%s): %s",
d_transferType == kUSBInterrupt ? "" : "TO",
darwin_error_str (result));
else if (usb_debug > 4) {
std::cerr << "fusb_ephandle_darwin::read_issue: Queued " << (void*) l_both
<< " (" << bufLen << " Bytes)" << std::endl;
}
}
void
fusb_ephandle_darwin::read_completed (void* refCon,
io_return_t result,
void* io_size)
{
size_t l_size = (size_t) io_size;
s_both_ptr l_both = static_cast<s_both_ptr>(refCon);
fusb_ephandle_darwin* This = static_cast<fusb_ephandle_darwin*>(l_both->This ());
s_node_ptr l_node = l_both->node ();
circular_buffer<char>* l_buffer = This->d_buffer;
s_buffer_ptr l_buf = l_node->object ();
size_t l_i_size = l_buf->n_used ();
if (This->d_started && (l_i_size != l_size)) {
std::cerr << "fusb_ephandle_darwin::read_completed: Expected " << l_i_size
<< " bytes; read " << l_size << "." << std::endl;
} else if (usb_debug > 4) {
std::cerr << "fusb_ephandle_darwin::read_completed: Read " << (void*) l_both
<< " (" << l_size << " bytes)" << std::endl;
}
// add this read to the transfer buffer, and check for overflow
// -> data is being enqueued faster than it can be dequeued
if (l_buffer->enqueue (l_buf->buffer (), l_size) == -1) {
// print out that there's an overflow
fputs ("uO", stderr);
fflush (stderr);
}
// set buffer's # data to 0
l_buf->n_used (0);
// issue another read for this "both"
This->read_issue (l_both);
}
int
fusb_ephandle_darwin::read (void* buffer, int nbytes)
{
size_t l_nbytes = (size_t) nbytes;
d_buffer->dequeue ((char*) buffer, &l_nbytes);
if (usb_debug > 4) {
std::cerr << "fusb_ephandle_darwin::read: request for " << nbytes
<< " bytes, " << l_nbytes << " bytes retrieved." << std::endl;
}
return ((int) l_nbytes);
}
int
fusb_ephandle_darwin::write (const void* buffer, int nbytes)
{
size_t l_nbytes = (size_t) nbytes;
if (! d_started) {
if (usb_debug) {
std::cerr << "fusb_ephandle_darwin::write: Not yet started." << std::endl;
}
return (0);
}
while (l_nbytes != 0) {
// find out how much data to copy; limited to "d_bufLenBytes" per node
size_t t_nbytes = (l_nbytes > d_bufLenBytes) ? d_bufLenBytes : l_nbytes;
// get next available node to write into;
// blocks internally if none available
s_node_ptr l_node = d_queue->find_next_available_node ();
// copy the input into the node's buffer
s_buffer_ptr l_buf = l_node->object ();
l_buf->buffer ((char*) buffer, t_nbytes);
void* v_buffer = (void*) l_buf->buffer ();
// setup callback parameter & system call return
s_both_ptr l_both = l_node->both ();
io_return_t result = kIOReturnSuccess;
if (d_transferType == kUSBInterrupt)
/* This is an interrupt pipe ... can't specify a timeout. */
result = d_interface->WritePipeAsync
(d_interfaceRef, d_pipeRef, v_buffer, t_nbytes,
(IOAsyncCallback1) write_completed, (void*) l_both);
else
result = d_interface->WritePipeAsyncTO
(d_interfaceRef, d_pipeRef, v_buffer, t_nbytes, 0, USB_TIMEOUT,
(IOAsyncCallback1) write_completed, (void*) l_both);
if (result != kIOReturnSuccess)
USB_ERROR_STR (-1, - darwin_to_errno (result),
"fusb_ephandle_darwin::write_thread "
"(WritePipeAsync%s): %s",
d_transferType == kUSBInterrupt ? "" : "TO",
darwin_error_str (result));
else if (usb_debug > 4) {
std::cerr << "fusb_ephandle_darwin::write_thread: Queued " << (void*) l_both
<< " (" << t_nbytes << " Bytes)" << std::endl;
}
l_nbytes -= t_nbytes;
}
return (nbytes);
}
void
fusb_ephandle_darwin::write_completed (void* refCon,
io_return_t result,
void* io_size)
{
s_both_ptr l_both = static_cast<s_both_ptr>(refCon);
fusb_ephandle_darwin* This = static_cast<fusb_ephandle_darwin*>(l_both->This ());
size_t l_size = (size_t) io_size;
s_node_ptr l_node = l_both->node ();
s_queue_ptr l_queue = This->d_queue;
s_buffer_ptr l_buf = l_node->object ();
size_t l_i_size = l_buf->n_used ();
if (This->d_started && (l_i_size != l_size)) {
std::cerr << "fusb_ephandle_darwin::write_completed: Expected " << l_i_size
<< " bytes written; wrote " << l_size << "." << std::endl;
} else if (usb_debug > 4) {
std::cerr << "fusb_ephandle_darwin::write_completed: Wrote " << (void*) l_both
<< " (" << l_size << " Bytes)" << std::endl;
}
// set buffer's # data to 0
l_buf->n_used (0);
// make the node available for reuse
l_queue->make_node_available (l_node);
}
void
fusb_ephandle_darwin::abort ()
{
if (usb_debug) {
std::cerr << "fusb_ephandle_darwin::abort: starting." << std::endl;
}
io_return_t result = d_interface->AbortPipe (d_interfaceRef, d_pipeRef);
if (result != kIOReturnSuccess)
USB_ERROR_STR_NO_RET (- darwin_to_errno (result),
"fusb_ephandle_darwin::abort "
"(AbortPipe): %s", darwin_error_str (result));
if (usb_debug) {
std::cerr << "fusb_ephandle_darwin::abort: finished." << std::endl;
}
}
bool
fusb_ephandle_darwin::stop ()
{
if (! d_started)
return (true);
if (usb_debug) {
std::cerr << "fusb_ephandle_darwin::stop: stopping "
<< (d_input_p ? "read" : "write") << "." << std::endl;
}
d_started = false;
// abort any pending IO transfers
abort ();
// wait for write transfer to finish
wait_for_completion ();
// tell IO buffer to abort any waiting conditions
d_buffer->abort ();
// stop the run loop
CFRunLoopStop (d_CFRunLoopRef);
// wait for the runThread to stop
gruel::scoped_lock l (*d_runThreadRunning);
if (usb_debug) {
std::cerr << "fusb_ephandle_darwin::stop: " << (d_input_p ? "read" : "write")
<< " stopped." << std::endl;
}
return (true);
}
void
fusb_ephandle_darwin::wait_for_completion ()
{
if (d_queue)
while (d_queue->in_use ())
usleep (1000);
}