/* -*- c++ -*- */ /* * Copyright 2006,2009,2010 Free Software Foundation, Inc. * * This file is part of GNU Radio. * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #define DO_DEBUG 0 #include #include "fusb.h" #include "fusb_darwin.h" #include "darwin_libusb.h" #include static const int USB_TIMEOUT = 100; // in milliseconds static const UInt8 NUM_QUEUE_ITEMS = 20; fusb_devhandle_darwin::fusb_devhandle_darwin (usb_dev_handle* udh) : fusb_devhandle (udh) { // that's it } fusb_devhandle_darwin::~fusb_devhandle_darwin () { // nop } fusb_ephandle* fusb_devhandle_darwin::make_ephandle (int endpoint, bool input_p, int block_size, int nblocks) { return new fusb_ephandle_darwin (this, endpoint, input_p, block_size, nblocks); } // ---------------------------------------------------------------- fusb_ephandle_darwin::fusb_ephandle_darwin (fusb_devhandle_darwin* dh, int endpoint, bool input_p, int block_size, int nblocks) : fusb_ephandle (endpoint, input_p, block_size, nblocks), d_devhandle (dh), d_pipeRef (0), d_transferType (0), d_interfaceRef (0), d_interface (0), d_queue (0), d_buffer (0), d_bufLenBytes (0) { d_bufLenBytes = fusb_sysconfig::max_block_size(); // create circular buffer d_buffer = new circular_buffer (NUM_QUEUE_ITEMS * d_bufLenBytes, !d_input_p, d_input_p); // create the queue d_queue = new circular_linked_list (NUM_QUEUE_ITEMS); d_queue->iterate_start (); s_node_ptr l_node = d_queue->iterate_next (); while (l_node) { l_node->both (new s_both (l_node, this)); s_buffer_ptr l_buf = new s_buffer (d_bufLenBytes); l_node->object (l_buf); l_node = d_queue->iterate_next (); l_buf = NULL; } d_readRunning = new gruel::mutex (); d_runThreadRunning = new gruel::mutex (); d_runBlock = new gruel::condition_variable (); d_readBlock = new gruel::condition_variable (); d_runBlock_mutex = new gruel::mutex (); d_readBlock_mutex = new gruel::mutex (); } fusb_ephandle_darwin::~fusb_ephandle_darwin () { stop (); d_queue->iterate_start (); s_node_ptr l_node = d_queue->iterate_next (); while (l_node) { s_both_ptr l_both = l_node->both (); delete l_both; l_both = NULL; l_node->both (NULL); s_buffer_ptr l_buf = l_node->object (); delete l_buf; l_buf = NULL; l_node->object (NULL); l_node = d_queue->iterate_next (); } delete d_queue; d_queue = NULL; delete d_buffer; d_buffer = NULL; delete d_readRunning; d_readRunning = NULL; delete d_runThreadRunning; d_runThreadRunning = NULL; delete d_runBlock_mutex; d_runBlock_mutex = NULL; delete d_readBlock_mutex; d_readBlock_mutex = NULL; delete d_runBlock; d_runBlock = NULL; delete d_readBlock; d_readBlock = NULL; } bool fusb_ephandle_darwin::start () { UInt8 direction, number, interval; UInt16 maxPacketSize; // reset circular buffer d_buffer->reset (); // reset the queue d_queue->num_used (0); d_queue->iterate_start (); s_node_ptr l_node = d_queue->iterate_next (); while (l_node) { l_node->both()->set (l_node, this); l_node->object()->reset (); l_node->set_available (); l_node = d_queue->iterate_next (); } d_pipeRef = d_transferType = 0; usb_dev_handle* dev = d_devhandle->get_usb_dev_handle (); if (! dev) USB_ERROR_STR (false, -ENXIO, "fusb_ephandle_darwin::start: " "null device"); darwin_dev_handle* device = (darwin_dev_handle*) dev->impl_info; if (! device) USB_ERROR_STR (false, -ENOENT, "fusb_ephandle_darwin::start: " "device not initialized"); if (usb_debug) { std::cerr << "fusb_ephandle_darwin::start: dev = " << (void*) dev << ", device = " << (void*) device << std::endl; } d_interfaceRef = device->interface; if (! d_interfaceRef) USB_ERROR_STR (false, -EACCES, "fusb_ephandle_darwin::start: " "interface used without being claimed"); d_interface = *d_interfaceRef; // get read or write pipe info (depends on "d_input_p") if (usb_debug > 3) { std::cerr << "fusb_ephandle_darwin::start d_endpoint = " << d_endpoint << ", d_input_p = " << (d_input_p ? "TRUE" : "FALSE") << std::endl; } int l_endpoint = (d_input_p ? USB_ENDPOINT_IN : USB_ENDPOINT_OUT); int pipeRef = ep_to_pipeRef (device, d_endpoint | l_endpoint); if (pipeRef < 0) USB_ERROR_STR (false, -EINVAL, "fusb_ephandle_darwin::start " " invalid pipeRef.\n"); d_pipeRef = pipeRef; d_interface->GetPipeProperties (d_interfaceRef, d_pipeRef, &direction, &number, &d_transferType, &maxPacketSize, &interval); if (usb_debug == 3) { std::cerr << "fusb_ephandle_darwin::start: " << (d_input_p ? "read" : "write") << ": ep = " << d_endpoint << ", pipeRef = " << d_pipeRef << "interface = " << d_interface << ", interfaceRef = " << d_interfaceRef << ", if_direction = " << direction << ", if_# = " << number << ", if_interval = " << interval << ", if_maxPacketSize = " << maxPacketSize << std::endl; } // set global start boolean d_started = true; // lock the runBlock mutex, before creating the run thread. // this guarantees that we can control execution between these 2 threads gruel::scoped_lock l (*d_runBlock_mutex); // create the run thread, which allows OSX to process I/O separately d_runThread = new gruel::thread (run_thread, this); // wait until the run thread (and possibky read thread) are -really- // going; this will unlock the mutex before waiting for a signal () d_runBlock->wait (l); if (usb_debug) { std::cerr << "fusb_ephandle_darwin::start: " << (d_input_p ? "read" : "write") << " started." << std::endl; } return (true); } void fusb_ephandle_darwin::run_thread (void* arg) { fusb_ephandle_darwin* This = static_cast(arg); // lock the run thread running mutex; if ::stop() is called, it will // first abort() the pipe then wait for the run thread to finish, // via a lock() on this mutex gruel::mutex* l_runThreadRunning = This->d_runThreadRunning; gruel::scoped_lock l0 (*l_runThreadRunning); gruel::mutex* l_readRunning = This->d_readRunning; gruel::condition_variable* l_readBlock = This->d_readBlock; gruel::mutex* l_readBlock_mutex = This->d_readBlock_mutex; bool l_input_p = This->d_input_p; if (usb_debug) { std::cerr << "fusb_ephandle_darwin::run_thread: starting for " << (l_input_p ? "read" : "write") << "." << std::endl; } usb_interface_t** l_interfaceRef = This->d_interfaceRef; usb_interface_t* l_interface = This->d_interface; CFRunLoopSourceRef l_cfSource; // create async run loop l_interface->CreateInterfaceAsyncEventSource (l_interfaceRef, &l_cfSource); CFRunLoopAddSource (CFRunLoopGetCurrent (), l_cfSource, kCFRunLoopDefaultMode); // get run loop reference, to allow other threads to stop This->d_CFRunLoopRef = CFRunLoopGetCurrent (); gruel::thread* l_rwThread = NULL; if (l_input_p) { // lock the readBlock mutex, before creating the read thread. // this guarantees that we can control execution between these 2 threads gruel::scoped_lock l1 (*l_readBlock_mutex); // create the read thread, which just issues all of the starting // async read commands, then returns l_rwThread = new gruel::thread (read_thread, arg); // wait until the the read thread is -really- going; this will // unlock the read block mutex before waiting for a signal () l_readBlock->wait (l1); } { // now signal the run condition to release and finish ::start(). // lock the runBlock mutex first; this will force waiting until the // ->wait() command is issued in ::start() gruel::mutex* l_run_block_mutex = This->d_runBlock_mutex; gruel::scoped_lock l2 (*l_run_block_mutex); // now that the lock is in place, signal the parent thread that // things are running This->d_runBlock->notify_one (); } // run the loop CFRunLoopRun (); if (l_input_p) { // wait for read_thread () to finish, if needed gruel::scoped_lock l3 (*l_readRunning); } // remove run loop stuff CFRunLoopRemoveSource (CFRunLoopGetCurrent (), l_cfSource, kCFRunLoopDefaultMode); if (usb_debug) { std::cerr << "fusb_ephandle_darwin::run_thread: finished for " << (l_input_p ? "read" : "write") << "." << std::endl; } } void fusb_ephandle_darwin::read_thread (void* arg) { if (usb_debug) { std::cerr << "fusb_ephandle_darwin::read_thread: starting." << std::endl; } fusb_ephandle_darwin* This = static_cast(arg); // before doing anything else, lock the read running mutex. this // mutex does flow control between this thread and the run_thread gruel::mutex* l_readRunning = This->d_readRunning; gruel::scoped_lock l0 (*l_readRunning); // signal the read condition from run_thread() to continue // lock the readBlock mutex first; this will force waiting until the // ->wait() command is issued in ::run_thread() gruel::condition_variable* l_readBlock = This->d_readBlock; gruel::mutex* l_read_block_mutex = This->d_readBlock_mutex; { gruel::scoped_lock l1 (*l_read_block_mutex); // now that the lock is in place, signal the parent thread that // things are running here l_readBlock->notify_one (); } // queue up all of the available read requests s_queue_ptr l_queue = This->d_queue; l_queue->iterate_start (); s_node_ptr l_node = l_queue->iterate_next (); while (l_node) { This->read_issue (l_node->both ()); l_node = l_queue->iterate_next (); } if (usb_debug) { std::cerr << "fusb_ephandle_darwin::read_thread: finished." << std::endl; } } void fusb_ephandle_darwin::read_issue (s_both_ptr l_both) { if ((! l_both) || (! d_started)) { if (usb_debug > 4) { std::cerr << "fusb_ephandle_darwin::read_issue: Doing nothing; " << "l_both is " << (void*) l_both << "; started is " << (d_started ? "TRUE" : "FALSE") << std::endl; } return; } // set the node and buffer from the input "both" s_node_ptr l_node = l_both->node (); s_buffer_ptr l_buf = l_node->object (); void* v_buffer = (void*) l_buf->buffer (); // read up to d_bufLenBytes size_t bufLen = d_bufLenBytes; l_buf->n_used (bufLen); // setup system call result io_return_t result = kIOReturnSuccess; if (d_transferType == kUSBInterrupt) /* This is an interrupt pipe. We can't specify a timeout. */ result = d_interface->ReadPipeAsync (d_interfaceRef, d_pipeRef, v_buffer, bufLen, (IOAsyncCallback1) read_completed, (void*) l_both); else result = d_interface->ReadPipeAsyncTO (d_interfaceRef, d_pipeRef, v_buffer, bufLen, 0, USB_TIMEOUT, (IOAsyncCallback1) read_completed, (void*) l_both); if (result != kIOReturnSuccess) USB_ERROR_STR_NO_RET (- darwin_to_errno (result), "fusb_ephandle_darwin::read_issue " "(ReadPipeAsync%s): %s", d_transferType == kUSBInterrupt ? "" : "TO", darwin_error_str (result)); else if (usb_debug > 4) { std::cerr << "fusb_ephandle_darwin::read_issue: Queued " << (void*) l_both << " (" << bufLen << " Bytes)" << std::endl; } } void fusb_ephandle_darwin::read_completed (void* refCon, io_return_t result, void* io_size) { size_t l_size = (size_t) io_size; s_both_ptr l_both = static_cast(refCon); fusb_ephandle_darwin* This = static_cast(l_both->This ()); s_node_ptr l_node = l_both->node (); circular_buffer* l_buffer = This->d_buffer; s_buffer_ptr l_buf = l_node->object (); size_t l_i_size = l_buf->n_used (); if (This->d_started && (l_i_size != l_size)) { std::cerr << "fusb_ephandle_darwin::read_completed: Expected " << l_i_size << " bytes; read " << l_size << "." << std::endl; } else if (usb_debug > 4) { std::cerr << "fusb_ephandle_darwin::read_completed: Read " << (void*) l_both << " (" << l_size << " bytes)" << std::endl; } // add this read to the transfer buffer, and check for overflow // -> data is being enqueued faster than it can be dequeued if (l_buffer->enqueue (l_buf->buffer (), l_size) == -1) { // print out that there's an overflow fputs ("uO", stderr); fflush (stderr); } // set buffer's # data to 0 l_buf->n_used (0); // issue another read for this "both" This->read_issue (l_both); } int fusb_ephandle_darwin::read (void* buffer, int nbytes) { size_t l_nbytes = (size_t) nbytes; d_buffer->dequeue ((char*) buffer, &l_nbytes); if (usb_debug > 4) { std::cerr << "fusb_ephandle_darwin::read: request for " << nbytes << " bytes, " << l_nbytes << " bytes retrieved." << std::endl; } return ((int) l_nbytes); } int fusb_ephandle_darwin::write (const void* buffer, int nbytes) { size_t l_nbytes = (size_t) nbytes; if (! d_started) { if (usb_debug) { std::cerr << "fusb_ephandle_darwin::write: Not yet started." << std::endl; } return (0); } while (l_nbytes != 0) { // find out how much data to copy; limited to "d_bufLenBytes" per node size_t t_nbytes = (l_nbytes > d_bufLenBytes) ? d_bufLenBytes : l_nbytes; // get next available node to write into; // blocks internally if none available s_node_ptr l_node = d_queue->find_next_available_node (); // copy the input into the node's buffer s_buffer_ptr l_buf = l_node->object (); l_buf->buffer ((char*) buffer, t_nbytes); void* v_buffer = (void*) l_buf->buffer (); // setup callback parameter & system call return s_both_ptr l_both = l_node->both (); io_return_t result = kIOReturnSuccess; if (d_transferType == kUSBInterrupt) /* This is an interrupt pipe ... can't specify a timeout. */ result = d_interface->WritePipeAsync (d_interfaceRef, d_pipeRef, v_buffer, t_nbytes, (IOAsyncCallback1) write_completed, (void*) l_both); else result = d_interface->WritePipeAsyncTO (d_interfaceRef, d_pipeRef, v_buffer, t_nbytes, 0, USB_TIMEOUT, (IOAsyncCallback1) write_completed, (void*) l_both); if (result != kIOReturnSuccess) USB_ERROR_STR (-1, - darwin_to_errno (result), "fusb_ephandle_darwin::write_thread " "(WritePipeAsync%s): %s", d_transferType == kUSBInterrupt ? "" : "TO", darwin_error_str (result)); else if (usb_debug > 4) { std::cerr << "fusb_ephandle_darwin::write_thread: Queued " << (void*) l_both << " (" << t_nbytes << " Bytes)" << std::endl; } l_nbytes -= t_nbytes; } return (nbytes); } void fusb_ephandle_darwin::write_completed (void* refCon, io_return_t result, void* io_size) { s_both_ptr l_both = static_cast(refCon); fusb_ephandle_darwin* This = static_cast(l_both->This ()); size_t l_size = (size_t) io_size; s_node_ptr l_node = l_both->node (); s_queue_ptr l_queue = This->d_queue; s_buffer_ptr l_buf = l_node->object (); size_t l_i_size = l_buf->n_used (); if (This->d_started && (l_i_size != l_size)) { std::cerr << "fusb_ephandle_darwin::write_completed: Expected " << l_i_size << " bytes written; wrote " << l_size << "." << std::endl; } else if (usb_debug > 4) { std::cerr << "fusb_ephandle_darwin::write_completed: Wrote " << (void*) l_both << " (" << l_size << " Bytes)" << std::endl; } // set buffer's # data to 0 l_buf->n_used (0); // make the node available for reuse l_queue->make_node_available (l_node); } void fusb_ephandle_darwin::abort () { if (usb_debug) { std::cerr << "fusb_ephandle_darwin::abort: starting." << std::endl; } io_return_t result = d_interface->AbortPipe (d_interfaceRef, d_pipeRef); if (result != kIOReturnSuccess) USB_ERROR_STR_NO_RET (- darwin_to_errno (result), "fusb_ephandle_darwin::abort " "(AbortPipe): %s", darwin_error_str (result)); if (usb_debug) { std::cerr << "fusb_ephandle_darwin::abort: finished." << std::endl; } } bool fusb_ephandle_darwin::stop () { if (! d_started) return (true); if (usb_debug) { std::cerr << "fusb_ephandle_darwin::stop: stopping " << (d_input_p ? "read" : "write") << "." << std::endl; } d_started = false; // abort any pending IO transfers abort (); // wait for write transfer to finish wait_for_completion (); // tell IO buffer to abort any waiting conditions d_buffer->abort (); // stop the run loop CFRunLoopStop (d_CFRunLoopRef); // wait for the runThread to stop gruel::scoped_lock l (*d_runThreadRunning); if (usb_debug) { std::cerr << "fusb_ephandle_darwin::stop: " << (d_input_p ? "read" : "write") << " stopped." << std::endl; } return (true); } void fusb_ephandle_darwin::wait_for_completion () { if (d_queue) while (d_queue->in_use ()) usleep (1000); }