wireshark/epan/dissectors/packet-rtp.c

1952 lines
53 KiB
C
Raw Normal View History

/* packet-rtp.c
*
* Routines for RTP dissection
* RTP = Real time Transport Protocol
*
* Copyright 2000, Philips Electronics N.V.
* Written by Andreas Sikkema <h323@ramdyne.nl>
*
* $Id$
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*
* This dissector tries to dissect the RTP protocol according to Annex A
* of ITU-T Recommendation H.225.0 (02/98) or RFC 1889
*
* RTP traffic is handled by an even UDP portnumber. This can be any
* port number, but there is a registered port available, port 5004
* See Annex B of ITU-T Recommendation H.225.0, section B.7
*
* This doesn't dissect older versions of RTP, such as:
*
* the vat protocol ("version 0") - see
*
* ftp://ftp.ee.lbl.gov/conferencing/vat/alpha-test/vatsrc-4.0b2.tar.gz
*
* and look in "session-vat.cc" if you want to write a dissector
* (have fun - there aren't any nice header files showing the packet
* format);
*
* version 1, as documented in
*
* ftp://gaia.cs.umass.edu/pub/hgschulz/rtp/draft-ietf-avt-rtp-04.txt
*
* It also dissects PacketCable CCC-encapsulated RTP data, as described in
* chapter 5 of the PacketCable Electronic Surveillance Specification:
*
* http://www.packetcable.com/downloads/specs/PKT-SP-ESP1.5-I01-050128.pdf
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include <glib.h>
#include <epan/packet.h>
#include <stdio.h>
#include <string.h>
#include "packet-rtp.h"
#include <epan/rtp_pt.h>
#include "packet-ntp.h"
#include <epan/conversation.h>
#include <epan/reassemble.h>
#include <epan/tap.h>
#include <epan/prefs.h>
#include <epan/emem.h>
#include <epan/strutil.h>
#include "log.h"
/* uncomment this to enable debugging of fragment reassembly */
/* #define DEBUG_FRAGMENTS 1 */
typedef struct _rfc2198_hdr {
unsigned int pt;
int offset;
int len;
struct _rfc2198_hdr *next;
} rfc2198_hdr;
/* we have one of these for each pdu which spans more than one segment
*/
typedef struct _rtp_multisegment_pdu {
/* the seqno of the segment where the pdu starts */
guint32 startseq;
/* the seqno of the segment where the pdu ends */
guint32 endseq;
} rtp_multisegment_pdu;
typedef struct _rtp_private_conv_info {
/* This tree is indexed by sequence number and keeps track of all
* all pdus spanning multiple segments for this flow.
*/
emem_tree_t *multisegment_pdus;
} rtp_private_conv_info;
static GHashTable *fragment_table = NULL;
static GHashTable * fid_table = NULL;
static int hf_rtp_fragments = -1;
static int hf_rtp_fragment = -1;
static int hf_rtp_fragment_overlap = -1;
static int hf_rtp_fragment_overlap_conflict = -1;
static int hf_rtp_fragment_multiple_tails = -1;
static int hf_rtp_fragment_too_long_fragment = -1;
static int hf_rtp_fragment_error = -1;
static int hf_rtp_reassembled_in = -1;
static gint ett_rtp_fragment = -1;
static gint ett_rtp_fragments = -1;
static const fragment_items rtp_fragment_items = {
&ett_rtp_fragment,
&ett_rtp_fragments,
&hf_rtp_fragments,
&hf_rtp_fragment,
&hf_rtp_fragment_overlap,
&hf_rtp_fragment_overlap_conflict,
&hf_rtp_fragment_multiple_tails,
&hf_rtp_fragment_too_long_fragment,
&hf_rtp_fragment_error,
&hf_rtp_reassembled_in,
"RTP fragments"
};
static dissector_handle_t rtp_handle;
static dissector_handle_t rtp_rfc2198_handle;
static dissector_handle_t stun_handle;
static dissector_handle_t t38_handle;
static dissector_handle_t pkt_ccc_handle;
static int rtp_tap = -1;
static dissector_table_t rtp_pt_dissector_table;
static dissector_table_t rtp_dyn_pt_dissector_table;
static dissector_table_t rtp_hdr_ext_dissector_table;
/* RTP header fields */
static int proto_rtp = -1;
static int hf_rtp_version = -1;
static int hf_rtp_padding = -1;
static int hf_rtp_extension = -1;
static int hf_rtp_csrc_count = -1;
static int hf_rtp_marker = -1;
static int hf_rtp_payload_type = -1;
static int hf_rtp_seq_nr = -1;
static int hf_rtp_ext_seq_nr = -1;
static int hf_rtp_timestamp = -1;
static int hf_rtp_ssrc = -1;
static int hf_rtp_csrc_items = -1;
static int hf_rtp_csrc_item = -1;
static int hf_rtp_data = -1;
static int hf_rtp_padding_data = -1;
static int hf_rtp_padding_count= -1;
static int hf_rtp_rfc2198_follow= -1;
static int hf_rtp_rfc2198_tm_off= -1;
static int hf_rtp_rfc2198_bl_len= -1;
/* RTP header extension fields */
static int hf_rtp_prof_define = -1;
static int hf_rtp_length = -1;
static int hf_rtp_hdr_exts = -1;
static int hf_rtp_hdr_ext = -1;
/* RTP setup fields */
static int hf_rtp_setup = -1;
static int hf_rtp_setup_frame = -1;
static int hf_rtp_setup_method = -1;
/* RTP fields defining a sub tree */
static gint ett_rtp = -1;
static gint ett_csrc_list = -1;
static gint ett_hdr_ext = -1;
static gint ett_rtp_setup = -1;
static gint ett_rtp_rfc2198 = -1;
static gint ett_rtp_rfc2198_hdr = -1;
/* SRTP fields */
static int hf_srtp_encrypted_payload = -1;
static int hf_srtp_mki = -1;
static int hf_srtp_auth_tag = -1;
/* PacketCable CCC header fields */
static int proto_pkt_ccc = -1;
static int hf_pkt_ccc_id = -1;
static int hf_pkt_ccc_ts = -1;
/* PacketCable CCC field defining a sub tree */
static gint ett_pkt_ccc = -1;
/* PacketCable CCC port preference */
static guint global_pkt_ccc_udp_port = 0;
#define RTP0_INVALID 0
#define RTP0_STUN 1
#define RTP0_T38 2
static enum_val_t rtp_version0_types[] = {
{ "invalid", "Invalid RTP packets", RTP0_INVALID },
{ "stun", "STUN packets", RTP0_STUN },
{ "t38", "T.38 packets", RTP0_T38 },
{ NULL, NULL, 0 }
};
static gint global_rtp_version0_type = 0;
static dissector_handle_t data_handle;
/* Forward declaration we need below */
void proto_reg_handoff_rtp(void);
static gboolean dissect_rtp_heur( tvbuff_t *tvb, packet_info *pinfo,
proto_tree *tree );
static void dissect_rtp( tvbuff_t *tvb, packet_info *pinfo,
proto_tree *tree );
static void show_setup_info(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree);
static void get_conv_info(packet_info *pinfo, struct _rtp_info *rtp_info);
/* Preferences bool to control whether or not setup info should be shown */
static gboolean global_rtp_show_setup_info = TRUE;
/* Try heuristic RTP decode */
static gboolean global_rtp_heur = FALSE;
/* desegment RTP streams */
static gboolean desegment_rtp = TRUE;
/* RFC2198 Redundant Audio Data */
static guint rtp_rfc2198_pt = 99;
static guint rtp_saved_rfc2198_pt = 0;
/*
* Fields in the first octet of the RTP header.
*/
/* Version is the first 2 bits of the first octet*/
#define RTP_VERSION(octet) ((octet) >> 6)
/* Padding is the third bit; No need to shift, because true is any value
other than 0! */
#define RTP_PADDING(octet) ((octet) & 0x20)
/* Extension bit is the fourth bit */
#define RTP_EXTENSION(octet) ((octet) & 0x10)
/* CSRC count is the last four bits */
#define RTP_CSRC_COUNT(octet) ((octet) & 0xF)
static const value_string rtp_version_vals[] =
{
{ 0, "Old VAT Version" },
{ 1, "First Draft Version" },
{ 2, "RFC 1889 Version" },
{ 0, NULL },
};
/*
* Fields in the second octet of the RTP header.
*/
/* Marker is the first bit of the second octet */
#define RTP_MARKER(octet) ((octet) & 0x80)
/* Payload type is the last 7 bits */
#define RTP_PAYLOAD_TYPE(octet) ((octet) & 0x7F)
const value_string rtp_payload_type_vals[] =
{
{ PT_PCMU, "ITU-T G.711 PCMU" },
{ PT_1016, "USA Federal Standard FS-1016" },
{ PT_G721, "ITU-T G.721" },
{ PT_GSM, "GSM 06.10" },
{ PT_G723, "ITU-T G.723" },
{ PT_DVI4_8000, "DVI4 8000 samples/s" },
{ PT_DVI4_16000, "DVI4 16000 samples/s" },
{ PT_LPC, "Experimental linear predictive encoding from Xerox PARC" },
{ PT_PCMA, "ITU-T G.711 PCMA" },
{ PT_G722, "ITU-T G.722" },
{ PT_L16_STEREO, "16-bit uncompressed audio, stereo" },
{ PT_L16_MONO, "16-bit uncompressed audio, monaural" },
{ PT_QCELP, "Qualcomm Code Excited Linear Predictive coding" },
{ PT_CN, "Comfort noise" },
{ PT_MPA, "MPEG-I/II Audio"},
{ PT_G728, "ITU-T G.728" },
{ PT_DVI4_11025, "DVI4 11025 samples/s" },
{ PT_DVI4_22050, "DVI4 22050 samples/s" },
{ PT_G729, "ITU-T G.729" },
{ PT_CN_OLD, "Comfort noise (old)" },
{ PT_CELB, "Sun CellB video encoding" },
{ PT_JPEG, "JPEG-compressed video" },
{ PT_NV, "'nv' program" },
{ PT_H261, "ITU-T H.261" },
{ PT_MPV, "MPEG-I/II Video"},
{ PT_MP2T, "MPEG-II transport streams"},
{ PT_H263, "ITU-T H.263" },
{ 0, NULL },
};
const value_string rtp_payload_type_short_vals[] =
{
{ PT_PCMU, "g711U" },
{ PT_1016, "fs-1016" },
{ PT_G721, "g721" },
{ PT_GSM, "GSM" },
{ PT_G723, "g723" },
{ PT_DVI4_8000, "DVI4 8k" },
{ PT_DVI4_16000, "DVI4 16k" },
{ PT_LPC, "Exp. from Xerox PARC" },
{ PT_PCMA, "g711A" },
{ PT_G722, "g722" },
{ PT_L16_STEREO, "16-bit audio, stereo" },
{ PT_L16_MONO, "16-bit audio, monaural" },
{ PT_QCELP, "Qualcomm" },
{ PT_CN, "CN" },
{ PT_MPA, "MPEG-I/II Audio"},
{ PT_G728, "g728" },
{ PT_DVI4_11025, "DVI4 11k" },
{ PT_DVI4_22050, "DVI4 22k" },
{ PT_G729, "g729" },
{ PT_CN_OLD, "CN(old)" },
{ PT_CELB, "CellB" },
{ PT_JPEG, "JPEG" },
{ PT_NV, "NV" },
{ PT_H261, "h261" },
{ PT_MPV, "MPEG-I/II Video"},
{ PT_MP2T, "MPEG-II streams"},
{ PT_H263, "h263" },
{ 0, NULL },
};
#if 0
static const value_string srtp_encryption_alg_vals[] =
{
{ SRTP_ENC_ALG_NULL, "Null Encryption" },
{ SRTP_ENC_ALG_AES_CM, "AES-128 Counter Mode" },
{ SRTP_ENC_ALG_AES_F8, "AES-128 F8 Mode" },
{ 0, NULL },
};
static const value_string srtp_auth_alg_vals[] =
{
{ SRTP_AUTH_ALG_NONE, "No Authentication" },
{ SRTP_AUTH_ALG_HMAC_SHA1, "HMAC-SHA1" },
{ 0, NULL },
};
#endif
/* initialisation routine */
static void rtp_fragment_init(void)
{
fragment_table_init(&fragment_table);
fid_table = g_hash_table_new(g_direct_hash, g_direct_equal);
}
void
rtp_free_hash_dyn_payload(GHashTable *rtp_dyn_payload)
{
if (rtp_dyn_payload == NULL) return;
g_hash_table_destroy(rtp_dyn_payload);
rtp_dyn_payload = NULL;
}
/* Set up an SRTP conversation */
void srtp_add_address(packet_info *pinfo,
address *addr, int port,
int other_port,
const gchar *setup_method, guint32 setup_frame_number, GHashTable *rtp_dyn_payload,
struct srtp_info *srtp_info)
{
address null_addr;
conversation_t* p_conv;
struct _rtp_conversation_info *p_conv_data = NULL;
/*
* If this isn't the first time this packet has been processed,
* we've already done this work, so we don't need to do it
* again.
*/
if (pinfo->fd->flags.visited)
{
return;
}
#ifdef DEBUG
printf("#%u: %srtp_add_address(%s, %u, %u, %s, %u\n", pinfo->fd->num, (srtp_info)?"s":"", address_to_str(addr), port, other_port, setup_method, setup_frame_number);
#endif
SET_ADDRESS(&null_addr, AT_NONE, 0, NULL);
/*
* Check if the ip address and port combination is not
* already registered as a conversation.
*/
p_conv = find_conversation( setup_frame_number, addr, &null_addr, PT_UDP, port, other_port,
NO_ADDR_B | (!other_port ? NO_PORT_B : 0));
/*
* If not, create a new conversation.
*/
if ( !p_conv || p_conv->setup_frame != setup_frame_number) {
p_conv = conversation_new( setup_frame_number, addr, &null_addr, PT_UDP,
(guint32)port, (guint32)other_port,
NO_ADDR2 | (!other_port ? NO_PORT2 : 0));
}
/* Set dissector */
conversation_set_dissector(p_conv, rtp_handle);
/*
* Check if the conversation has data associated with it.
*/
p_conv_data = conversation_get_proto_data(p_conv, proto_rtp);
/*
* If not, add a new data item.
*/
if ( ! p_conv_data ) {
/* Create conversation data */
p_conv_data = se_alloc(sizeof(struct _rtp_conversation_info));
p_conv_data->rtp_dyn_payload = NULL;
/* start this at 0x10000 so that we cope gracefully with the
* first few packets being out of order (hence 0,65535,1,2,...)
*/
p_conv_data->extended_seqno = 0x10000;
p_conv_data->rtp_conv_info = se_alloc(sizeof(rtp_private_conv_info));
p_conv_data->rtp_conv_info->multisegment_pdus = se_tree_create(EMEM_TREE_TYPE_RED_BLACK,"rtp_ms_pdus");
conversation_add_proto_data(p_conv, proto_rtp, p_conv_data);
}
/*
* Update the conversation data.
*/
/* Free the hash if already exists */
rtp_free_hash_dyn_payload(p_conv_data->rtp_dyn_payload);
g_strlcpy(p_conv_data->method, setup_method, MAX_RTP_SETUP_METHOD_SIZE);
p_conv_data->frame_number = setup_frame_number;
p_conv_data->rtp_dyn_payload = rtp_dyn_payload;
p_conv_data->srtp_info = srtp_info;
}
/* Set up an RTP conversation */
void rtp_add_address(packet_info *pinfo,
address *addr, int port,
int other_port,
const gchar *setup_method, guint32 setup_frame_number, GHashTable *rtp_dyn_payload)
{
srtp_add_address(pinfo, addr, port, other_port, setup_method, setup_frame_number, rtp_dyn_payload, NULL);
}
static gboolean
dissect_rtp_heur( tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree )
{
guint8 octet1, octet2;
unsigned int version;
unsigned int payload_type;
unsigned int offset = 0;
/* This is a heuristic dissector, which means we get all the UDP
* traffic not sent to a known dissector and not claimed by
* a heuristic dissector called before us!
*/
if (! global_rtp_heur)
return FALSE;
/* Get the fields in the first octet */
octet1 = tvb_get_guint8( tvb, offset );
version = RTP_VERSION( octet1 );
if (version == 0) {
switch (global_rtp_version0_type) {
case RTP0_STUN:
call_dissector(stun_handle, tvb, pinfo, tree);
return TRUE;
case RTP0_T38:
call_dissector(t38_handle, tvb, pinfo, tree);
return TRUE;
case RTP0_INVALID:
default:
return FALSE; /* Unknown or unsupported version */
}
} else if (version != 2) {
/* Unknown or unsupported version */
return FALSE;
}
/* Was it sent between 2 even-numbered ports? */
if ((pinfo->srcport % 2) || (pinfo->destport % 2)) {
return FALSE;
}
/* Get the fields in the second octet */
octet2 = tvb_get_guint8( tvb, offset + 1 );
payload_type = RTP_PAYLOAD_TYPE( octet2 );
/* Check for a sensible payload type
(recognised static and preferred dynamic ranges) */
if ((payload_type <= PT_H263) ||
(payload_type >= 96 && payload_type <= 127)) {
dissect_rtp( tvb, pinfo, tree );
return TRUE;
}
else {
return FALSE;
}
}
/*
* Process the payload of the RTP packet, hand it to the subdissector
*/
static void
process_rtp_payload(tvbuff_t *newtvb, packet_info *pinfo, proto_tree *tree,
proto_tree *rtp_tree,
unsigned int payload_type)
{
struct _rtp_conversation_info *p_conv_data = NULL;
gboolean found_match = FALSE;
int payload_len;
struct srtp_info *srtp_info;
int offset=0;
payload_len = tvb_length_remaining(newtvb, offset);
/* first check if this is added as an SRTP stream - if so, don't try to dissector the payload data for now */
p_conv_data = p_get_proto_data(pinfo->fd, proto_rtp);
if (p_conv_data && p_conv_data->srtp_info) {
srtp_info = p_conv_data->srtp_info;
payload_len -= srtp_info->mki_len + srtp_info->auth_tag_len;
#if 0
#error Currently the srtp_info structure contains no cypher data, see packet-sdp.c adding dummy_srtp_info structure
if (p_conv_data->srtp_info->encryption_algorithm==SRTP_ENC_ALG_NULL) {
if (rtp_tree)
proto_tree_add_text(rtp_tree, newtvb, offset, payload_len, "SRTP Payload with NULL encryption");
}
else
#endif
{
if (rtp_tree)
proto_tree_add_item(rtp_tree, hf_srtp_encrypted_payload, newtvb, offset, payload_len, FALSE);
found_match = TRUE; /* use this flag to prevent dissection below */
}
offset += payload_len;
if (srtp_info->mki_len) {
proto_tree_add_item(rtp_tree, hf_srtp_mki, newtvb, offset, srtp_info->mki_len, FALSE);
offset += srtp_info->mki_len;
}
if (srtp_info->auth_tag_len) {
proto_tree_add_item(rtp_tree, hf_srtp_auth_tag, newtvb, offset, srtp_info->auth_tag_len, FALSE);
offset += srtp_info->auth_tag_len;
}
}
/* if the payload type is dynamic (96 to 127), we check if the conv is set and we look for the pt definition */
else if ( (payload_type >=96) && (payload_type <=127) ) {
if (p_conv_data && p_conv_data->rtp_dyn_payload) {
gchar *payload_type_str = NULL;
payload_type_str = g_hash_table_lookup(p_conv_data->rtp_dyn_payload, &payload_type);
if (payload_type_str){
found_match = dissector_try_string(rtp_dyn_pt_dissector_table,
payload_type_str, newtvb, pinfo, tree);
/* If payload type string set from conversation and
* no matching dissector found it's probably because no subdissector
* exists. Don't call the dissectors based on payload number
* as that'd probably be the wrong dissector in this case.
* Just add it as data.
*/
if(found_match==FALSE)
proto_tree_add_item( rtp_tree, hf_rtp_data, newtvb, 0, -1, FALSE );
return;
}
}
}
/* if we don't found, it is static OR could be set static from the preferences */
if (!found_match && !dissector_try_port(rtp_pt_dissector_table, payload_type, newtvb, pinfo, tree))
proto_tree_add_item( rtp_tree, hf_rtp_data, newtvb, 0, -1, FALSE );
}
/* Rtp payload reassembly
*
* This handles the reassembly of PDUs for higher-level protocols.
*
* We're a bit limited on how we can cope with out-of-order packets, because
* we don't have any idea of where the datagram boundaries are. So if we see
* packets A, C, B (all of which comprise a single datagram), we cannot know
* that C should be added to the same datagram as A, until we come to B (which
* may or may not actually be present...).
*
* What we end up doing in this case is passing A+B to the subdissector as one
* datagram, and make out that a new one starts on C.
*/
static void
dissect_rtp_data( tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree,
proto_tree *rtp_tree, int offset, unsigned int data_len,
unsigned int data_reported_len,
unsigned int payload_type )
{
tvbuff_t *newtvb;
struct _rtp_conversation_info *p_conv_data= NULL;
gboolean must_desegment = FALSE;
rtp_private_conv_info *finfo = NULL;
rtp_multisegment_pdu *msp = NULL;
guint32 seqno;
/* Retrieve RTPs idea of a converation */
p_conv_data = p_get_proto_data(pinfo->fd, proto_rtp);
if(p_conv_data != NULL)
finfo = p_conv_data->rtp_conv_info;
if(finfo == NULL || !desegment_rtp) {
/* Hand the whole lot off to the subdissector */
newtvb=tvb_new_subset(tvb,offset,data_len,data_reported_len);
process_rtp_payload(newtvb, pinfo, tree, rtp_tree, payload_type);
return;
}
seqno = p_conv_data->extended_seqno;
pinfo->can_desegment = 2;
pinfo->desegment_offset = 0;
pinfo->desegment_len = 0;
#ifdef DEBUG_FRAGMENTS
g_debug("%d: RTP Part of convo %d(%p); seqno %d",
pinfo->fd->num,
p_conv_data->frame_number, p_conv_data,
seqno
);
#endif
/* look for a pdu which we might be extending */
msp = (rtp_multisegment_pdu *)se_tree_lookup32_le(finfo->multisegment_pdus,seqno-1);
if(msp && msp->startseq < seqno && msp->endseq >= seqno) {
guint32 fid = msp->startseq;
fragment_data *fd_head;
#ifdef DEBUG_FRAGMENTS
g_debug("\tContinues fragment %d", fid);
#endif
/* we always assume the datagram is complete; if this is the
* first pass, that's our best guess, and if it's not, what we
* say gets ignored anyway.
*/
fd_head = fragment_add_seq(tvb, offset, pinfo, fid, fragment_table,
seqno-msp->startseq, data_len, FALSE);
newtvb = process_reassembled_data(tvb,offset, pinfo, "Reassembled RTP", fd_head,
&rtp_fragment_items, NULL, tree);
#ifdef DEBUG_FRAGMENTS
g_debug("\tFragment Coalesced; fd_head=%p, newtvb=%p (len %d)",fd_head, newtvb,
newtvb?tvb_reported_length(newtvb):0);
#endif
if(newtvb != NULL) {
/* Hand off to the subdissector */
process_rtp_payload(newtvb, pinfo, tree, rtp_tree, payload_type);
/*
* Check to see if there were any complete fragments within the chunk
*/
if( pinfo->desegment_len && pinfo->desegment_offset == 0 )
{
#ifdef DEBUG_FRAGMENTS
g_debug("\tNo complete pdus in payload" );
#endif
/* Mark the fragments and not complete yet */
fragment_set_partial_reassembly(pinfo, fid, fragment_table);
/* we must need another segment */
msp->endseq = MIN(msp->endseq,seqno) + 1;
}
else
{
/*
* Data was dissected so add the protocol tree to the display
*/
proto_item *rtp_tree_item, *frag_tree_item;
/* this nargery is to insert the fragment tree into the main tree
* between the RTP protocol entry and the subdissector entry */
show_fragment_tree(fd_head, &rtp_fragment_items, tree, pinfo, newtvb, &frag_tree_item);
rtp_tree_item = proto_item_get_parent( proto_tree_get_parent( rtp_tree ));
if( frag_tree_item && rtp_tree_item )
proto_tree_move_item( tree, rtp_tree_item, frag_tree_item );
if(pinfo->desegment_len)
{
/* the higher-level dissector has asked for some more data - ie,
the end of this segment does not coincide with the end of a
higher-level PDU. */
must_desegment = TRUE;
}
}
}
}
else
{
/*
* The segment is not the continuation of a fragmented segment
* so process it as normal
*/
#ifdef DEBUG_FRAGMENTS
g_debug("\tRTP non-fragment payload");
#endif
newtvb = tvb_new_subset( tvb, offset, data_len, data_reported_len );
/* Hand off to the subdissector */
process_rtp_payload(newtvb, pinfo, tree, rtp_tree, payload_type);
if(pinfo->desegment_len) {
/* the higher-level dissector has asked for some more data - ie,
the end of this segment does not coincide with the end of a
higher-level PDU. */
must_desegment = TRUE;
}
}
/*
* There were bytes left over that the higher protocol couldn't dissect so save them
*/
if(must_desegment)
{
guint32 deseg_offset = pinfo->desegment_offset;
guint32 frag_len = tvb_reported_length_remaining(newtvb, deseg_offset);
fragment_data *fd_head = NULL;
#ifdef DEBUG_FRAGMENTS
g_debug("\tRTP Must Desegment: tvb_len=%d ds_len=%d %d frag_len=%d ds_off=%d",
tvb_reported_length(newtvb),
pinfo->desegment_len,
pinfo->fd->flags.visited,
frag_len,
deseg_offset);
#endif
/* allocate a new msp for this pdu */
msp = se_alloc(sizeof(rtp_multisegment_pdu));
msp->startseq = seqno;
msp->endseq = seqno+1;
se_tree_insert32(finfo->multisegment_pdus,seqno,msp);
/*
* Add the fragment to the fragment table
*/
fd_head = fragment_add_seq(newtvb,deseg_offset, pinfo, seqno, fragment_table, 0, frag_len,
TRUE );
if(fd_head != NULL)
{
if( fd_head->reassembled_in != 0 && !(fd_head->flags & FD_PARTIAL_REASSEMBLY) )
{
proto_item *rtp_tree_item;
rtp_tree_item = proto_tree_add_uint( tree, hf_rtp_reassembled_in,
newtvb, deseg_offset, tvb_reported_length_remaining(newtvb,deseg_offset),
fd_head->reassembled_in);
PROTO_ITEM_SET_GENERATED(rtp_tree_item);
#ifdef DEBUG_FRAGMENTS
g_debug("\tReassembled in %d", fd_head->reassembled_in);
#endif
}
else
{
#ifdef DEBUG_FRAGMENTS
g_debug("\tUnfinished fragment");
#endif
/* this fragment is never reassembled */
proto_tree_add_text( tree, tvb, deseg_offset, -1,"RTP fragment, unfinished");
}
}
else
{
/*
* This fragment was the first fragment in a new entry in the
* frag_table; we don't yet know where it is reassembled
*/
#ifdef DEBUG_FRAGMENTS
g_debug("\tnew pdu");
#endif
}
if( pinfo->desegment_offset == 0 )
{
if (check_col(pinfo->cinfo, COL_PROTOCOL))
{
col_set_str(pinfo->cinfo, COL_PROTOCOL, "RTP");
}
if (check_col(pinfo->cinfo, COL_INFO))
{
col_set_str(pinfo->cinfo, COL_INFO, "[RTP segment of a reassembled PDU]");
}
}
}
pinfo->can_desegment = 0;
pinfo->desegment_offset = 0;
pinfo->desegment_len = 0;
}
static void
dissect_rtp_rfc2198(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree )
{
int offset = 0;
guint8 octet1;
int cnt;
gboolean hdr_follow = TRUE;
proto_item *ti = NULL;
proto_tree *rfc2198_tree = NULL;
proto_tree *rfc2198_hdr_tree = NULL;
rfc2198_hdr *hdr_last, *hdr_new;
rfc2198_hdr *hdr_chain = NULL;
struct _rtp_conversation_info *p_conv_data= NULL;
gchar *payload_type_str;
/* Retrieve RTPs idea of a converation */
p_conv_data = p_get_proto_data(pinfo->fd, proto_rtp);
/* Add try to RFC 2198 data */
ti = proto_tree_add_text(tree, tvb, offset, -1, "RFC 2198: Redundant Audio Data");
rfc2198_tree = proto_item_add_subtree(ti, ett_rtp_rfc2198);
hdr_last = NULL;
cnt = 0;
while (hdr_follow) {
cnt++;
payload_type_str = NULL;
/* Allocate and fill in header */
hdr_new = ep_alloc(sizeof(rfc2198_hdr));
hdr_new->next = NULL;
octet1 = tvb_get_guint8(tvb, offset);
hdr_new->pt = RTP_PAYLOAD_TYPE(octet1);
hdr_follow = (octet1 & 0x80);
/* if it is dynamic payload, let use the conv data to see if it is defined */
if ((hdr_new->pt > 95) && (hdr_new->pt < 128)) {
if (p_conv_data && p_conv_data->rtp_dyn_payload){
payload_type_str = g_hash_table_lookup(p_conv_data->rtp_dyn_payload, &hdr_new->pt);
}
}
/* Add a subtree for this header and add items */
ti = proto_tree_add_text(rfc2198_tree, tvb, offset, (hdr_follow)?4:1, "Header %u", cnt);
rfc2198_hdr_tree = proto_item_add_subtree(ti, ett_rtp_rfc2198_hdr);
proto_tree_add_item(rfc2198_hdr_tree, hf_rtp_rfc2198_follow, tvb, offset, 1, FALSE );
proto_tree_add_uint_format(rfc2198_hdr_tree, hf_rtp_payload_type, tvb,
offset, 1, octet1, "Payload type: %s (%u)",
payload_type_str ? payload_type_str : val_to_str(hdr_new->pt, rtp_payload_type_vals, "Unknown"),
hdr_new->pt);
proto_item_append_text(ti, ": PT=%s", payload_type_str ? payload_type_str : val_to_str(hdr_new->pt, rtp_payload_type_vals, "Unknown (%u)"));
offset += 1;
/* Timestamp offset and block length don't apply to last header */
if (hdr_follow) {
proto_tree_add_item(rfc2198_hdr_tree, hf_rtp_rfc2198_tm_off, tvb, offset, 2, FALSE );
proto_tree_add_item(rfc2198_hdr_tree, hf_rtp_rfc2198_bl_len, tvb, offset + 1, 2, FALSE );
hdr_new->len = tvb_get_ntohs(tvb, offset + 1) & 0x03FF;
proto_item_append_text(ti, ", len=%u", hdr_new->len);
offset += 3;
} else {
hdr_new->len = -1;
hdr_follow = FALSE;
}
if (hdr_last) {
hdr_last->next = hdr_new;
} else {
hdr_chain = hdr_new;
}
hdr_last = hdr_new;
}
/* Dissect each data block according to the header info */
hdr_last = hdr_chain;
while (hdr_last) {
hdr_last->offset = offset;
if (!hdr_last->next) {
hdr_last->len = tvb_reported_length_remaining(tvb, offset);
}
dissect_rtp_data(tvb, pinfo, tree, rfc2198_tree, hdr_last->offset, hdr_last->len, hdr_last->len, hdr_last->pt);
offset += hdr_last->len;
hdr_last = hdr_last->next;
}
}
static void
dissect_rtp( tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree )
{
proto_item *ti = NULL;
proto_tree *rtp_tree = NULL;
proto_tree *rtp_csrc_tree = NULL;
proto_tree *rtp_hext_tree = NULL;
guint8 octet1, octet2;
unsigned int version;
gboolean padding_set;
gboolean extension_set;
unsigned int csrc_count;
gboolean marker_set;
unsigned int payload_type;
gchar *payload_type_str = NULL;
gboolean is_srtp = FALSE;
unsigned int i = 0;
unsigned int hdr_extension= 0;
unsigned int padding_count;
gint length, reported_length;
int data_len;
unsigned int offset = 0;
guint16 seq_num;
guint32 timestamp;
guint32 sync_src;
guint32 csrc_item;
struct _rtp_conversation_info *p_conv_data = NULL;
struct srtp_info *srtp_info = NULL;
unsigned int srtp_offset;
unsigned int hdrext_offset = 0;
tvbuff_t *newtvb = NULL;
/* Can tap up to 4 RTP packets within same packet */
static struct _rtp_info rtp_info_arr[4];
static int rtp_info_current=0;
struct _rtp_info *rtp_info;
rtp_info_current++;
if (rtp_info_current==4) {
rtp_info_current=0;
}
rtp_info = &rtp_info_arr[rtp_info_current];
/* Get the fields in the first octet */
octet1 = tvb_get_guint8( tvb, offset );
version = RTP_VERSION( octet1 );
if (version == 0) {
switch (global_rtp_version0_type) {
case RTP0_STUN:
call_dissector(stun_handle, tvb, pinfo, tree);
return;
case RTP0_T38:
call_dissector(t38_handle, tvb, pinfo, tree);
return;
case RTP0_INVALID:
default:
; /* Unknown or unsupported version (let it fall through */
}
}
/* fill in the rtp_info structure */
rtp_info->info_version = version;
if (version != 2) {
/*
* Unknown or unsupported version.
*/
if ( check_col( pinfo->cinfo, COL_PROTOCOL ) ) {
col_set_str( pinfo->cinfo, COL_PROTOCOL, "RTP" );
}
if ( check_col( pinfo->cinfo, COL_INFO) ) {
col_add_fstr( pinfo->cinfo, COL_INFO,
"Unknown RTP version %u", version);
}
if ( tree ) {
ti = proto_tree_add_item( tree, proto_rtp, tvb, offset, -1, FALSE );
rtp_tree = proto_item_add_subtree( ti, ett_rtp );
proto_tree_add_uint( rtp_tree, hf_rtp_version, tvb,
offset, 1, octet1);
}
return;
}
padding_set = RTP_PADDING( octet1 );
extension_set = RTP_EXTENSION( octet1 );
csrc_count = RTP_CSRC_COUNT( octet1 );
/* Get the fields in the second octet */
octet2 = tvb_get_guint8( tvb, offset + 1 );
marker_set = RTP_MARKER( octet2 );
payload_type = RTP_PAYLOAD_TYPE( octet2 );
/* Get the subsequent fields */
seq_num = tvb_get_ntohs( tvb, offset + 2 );
timestamp = tvb_get_ntohl( tvb, offset + 4 );
sync_src = tvb_get_ntohl( tvb, offset + 8 );
/* fill in the rtp_info structure */
rtp_info->info_padding_set = padding_set;
rtp_info->info_padding_count = 0;
rtp_info->info_marker_set = marker_set;
rtp_info->info_payload_type = payload_type;
rtp_info->info_seq_num = seq_num;
rtp_info->info_timestamp = timestamp;
rtp_info->info_sync_src = sync_src;
rtp_info->info_is_srtp = FALSE;
rtp_info->info_setup_frame_num = 0;
rtp_info->info_payload_type_str = NULL;
/*
* Do we have all the data?
*/
length = tvb_length_remaining(tvb, offset);
reported_length = tvb_reported_length_remaining(tvb, offset);
if (reported_length >= 0 && length >= reported_length) {
/*
* Yes.
*/
rtp_info->info_all_data_present = TRUE;
rtp_info->info_data_len = reported_length;
/*
* Save the pointer to raw rtp data (header + payload incl.
* padding).
* That should be safe because the "epan_dissect_t"
* constructed for the packet has not yet been freed when
* the taps are called.
* (Destroying the "epan_dissect_t" will end up freeing
* all the tvbuffs and hence invalidating pointers to
* their data.)
* See "add_packet_to_packet_list()" for details.
*/
rtp_info->info_data = tvb_get_ptr(tvb, 0, -1);
} else {
/*
* No - packet was cut short at capture time.
*/
rtp_info->info_all_data_present = FALSE;
rtp_info->info_data_len = 0;
rtp_info->info_data = NULL;
}
/* Look for conv and add to the frame if found */
get_conv_info(pinfo, rtp_info);
p_conv_data = p_get_proto_data(pinfo->fd, proto_rtp);
if (p_conv_data && p_conv_data->srtp_info) is_srtp = TRUE;
rtp_info->info_is_srtp = is_srtp;
if ( check_col( pinfo->cinfo, COL_PROTOCOL ) ) {
col_set_str( pinfo->cinfo, COL_PROTOCOL, (is_srtp) ? "SRTP" : "RTP" );
}
/* check if this is added as an SRTP stream - if so, don't try to dissector the payload data for now */
p_conv_data = p_get_proto_data(pinfo->fd, proto_rtp);
if (p_conv_data && p_conv_data->srtp_info) {
srtp_info = p_conv_data->srtp_info;
if (rtp_info->info_all_data_present) {
srtp_offset = rtp_info->info_data_len - srtp_info->mki_len - srtp_info->auth_tag_len;
}
}
/* if it is dynamic payload, let use the conv data to see if it is defined */
if ( (payload_type>95) && (payload_type<128) ) {
if (p_conv_data && p_conv_data->rtp_dyn_payload){
payload_type_str = g_hash_table_lookup(p_conv_data->rtp_dyn_payload, &payload_type);
rtp_info->info_payload_type_str = payload_type_str;
}
}
if ( check_col( pinfo->cinfo, COL_INFO) ) {
col_add_fstr( pinfo->cinfo, COL_INFO,
"PT=%s, SSRC=0x%X, Seq=%u, Time=%u%s",
payload_type_str ? payload_type_str : val_to_str( payload_type, rtp_payload_type_vals,"Unknown (%u)" ),
sync_src,
seq_num,
timestamp,
marker_set ? ", Mark " : " ");
}
if ( tree ) {
proto_tree *item;
/* Create RTP protocol tree */
ti = proto_tree_add_item(tree, proto_rtp, tvb, offset, -1, FALSE );
rtp_tree = proto_item_add_subtree(ti, ett_rtp );
/* Conversation setup info */
if (global_rtp_show_setup_info)
{
show_setup_info(tvb, pinfo, rtp_tree);
}
proto_tree_add_uint( rtp_tree, hf_rtp_version, tvb,
offset, 1, octet1 );
proto_tree_add_boolean( rtp_tree, hf_rtp_padding, tvb,
offset, 1, octet1 );
proto_tree_add_boolean( rtp_tree, hf_rtp_extension, tvb,
offset, 1, octet1 );
proto_tree_add_uint( rtp_tree, hf_rtp_csrc_count, tvb,
offset, 1, octet1 );
offset++;
proto_tree_add_boolean( rtp_tree, hf_rtp_marker, tvb, offset,
1, octet2 );
item = proto_tree_add_uint_format( rtp_tree, hf_rtp_payload_type, tvb,
offset, 1, octet2, "Payload type: %s (%u)",
payload_type_str ? payload_type_str : val_to_str( payload_type, rtp_payload_type_vals,"Unknown"),
payload_type);
offset++;
/* Sequence number 16 bits (2 octets) */
proto_tree_add_uint( rtp_tree, hf_rtp_seq_nr, tvb, offset, 2, seq_num );
if(p_conv_data != NULL) {
item = proto_tree_add_uint( rtp_tree, hf_rtp_ext_seq_nr, tvb, offset, 2, p_conv_data->extended_seqno );
PROTO_ITEM_SET_GENERATED(item);
}
offset += 2;
/* Timestamp 32 bits (4 octets) */
proto_tree_add_uint( rtp_tree, hf_rtp_timestamp, tvb, offset, 4, timestamp );
offset += 4;
/* Synchronization source identifier 32 bits (4 octets) */
proto_tree_add_uint( rtp_tree, hf_rtp_ssrc, tvb, offset, 4, sync_src );
offset += 4;
} else {
offset += 12;
}
/* CSRC list*/
if ( csrc_count > 0 ) {
if ( tree ) {
ti = proto_tree_add_item(rtp_tree, hf_rtp_csrc_items, tvb, offset,
csrc_count * 4, FALSE);
proto_item_append_text(ti, " (%u items)", csrc_count);
rtp_csrc_tree = proto_item_add_subtree( ti, ett_csrc_list );
}
for (i = 0; i < csrc_count; i++ ) {
csrc_item = tvb_get_ntohl( tvb, offset );
if ( tree ) proto_tree_add_uint_format( rtp_csrc_tree,
hf_rtp_csrc_item, tvb, offset, 4,
csrc_item,
"CSRC item %d: 0x%X",
i, csrc_item );
offset += 4;
}
}
/* Optional RTP header extension */
if ( extension_set ) {
/* Defined by profile field is 16 bits (2 octets) */
if ( tree ) proto_tree_add_uint( rtp_tree, hf_rtp_prof_define, tvb, offset, 2, tvb_get_ntohs( tvb, offset ) );
offset += 2;
hdr_extension = tvb_get_ntohs( tvb, offset );
if ( tree ) proto_tree_add_uint( rtp_tree, hf_rtp_length, tvb, offset, 2, hdr_extension);
offset += 2;
if ( hdr_extension > 0 ) {
if ( tree ) {
ti = proto_tree_add_item(rtp_tree, hf_rtp_hdr_exts, tvb, offset, hdr_extension * 4, FALSE);
rtp_hext_tree = proto_item_add_subtree( ti, ett_hdr_ext );
}
/* pass interpretation of header extension to a registered subdissector */
newtvb = tvb_new_subset(tvb, offset, hdr_extension * 4, hdr_extension * 4);
if ( !(rtp_info->info_payload_type_str && dissector_try_string(rtp_hdr_ext_dissector_table,
rtp_info->info_payload_type_str, newtvb, pinfo, rtp_hext_tree)) ) {
hdrext_offset = offset;
for ( i = 0; i < hdr_extension; i++ ) {
if ( tree ) proto_tree_add_uint( rtp_hext_tree, hf_rtp_hdr_ext, tvb, hdrext_offset, 4, tvb_get_ntohl( tvb, hdrext_offset ) );
hdrext_offset += 4;
}
}
offset += hdr_extension * 4;
}
}
if ( padding_set ) {
/*
* This RTP frame has padding - find it.
*
* The padding count is found in the LAST octet of
* the packet; it contains the number of octets
* that can be ignored at the end of the packet.
*/
if (tvb_length(tvb) < tvb_reported_length(tvb)) {
/*
* We don't *have* the last octet of the
* packet, so we can't get the padding
* count.
*
* Put an indication of that into the
* tree, and just put in a raw data
* item.
*/
if ( tree ) proto_tree_add_text(rtp_tree, tvb, 0, 0,
"Frame has padding, but not all the frame data was captured");
call_dissector(data_handle,
tvb_new_subset(tvb, offset, -1, -1),
pinfo, rtp_tree);
return;
}
padding_count = tvb_get_guint8( tvb,
tvb_reported_length( tvb ) - 1 );
data_len =
tvb_reported_length_remaining( tvb, offset ) - padding_count;
rtp_info->info_payload_offset = offset;
rtp_info->info_payload_len = tvb_length_remaining(tvb, offset);
rtp_info->info_padding_count = padding_count;
if (data_len > 0) {
/*
* There's data left over when you take out
* the padding; dissect it.
*/
dissect_rtp_data( tvb, pinfo, tree, rtp_tree,
offset,
data_len,
data_len,
payload_type );
offset += data_len;
} else if (data_len < 0) {
/*
* The padding count is bigger than the
* amount of RTP payload in the packet!
* Clip the padding count.
*
* XXX - put an item in the tree to indicate
* that the padding count is bogus?
*/
padding_count =
tvb_reported_length_remaining(tvb, offset);
}
if (padding_count > 1) {
/*
* There's more than one byte of padding;
* show all but the last byte as padding
* data.
*/
if ( tree ) proto_tree_add_item( rtp_tree, hf_rtp_padding_data,
tvb, offset, padding_count - 1, FALSE );
offset += padding_count - 1;
}
/*
* Show the last byte in the PDU as the padding
* count.
*/
if ( tree ) proto_tree_add_item( rtp_tree, hf_rtp_padding_count,
tvb, offset, 1, FALSE );
}
else {
/*
* No padding.
*/
dissect_rtp_data( tvb, pinfo, tree, rtp_tree, offset,
tvb_length_remaining( tvb, offset ),
tvb_reported_length_remaining( tvb, offset ),
payload_type );
rtp_info->info_payload_offset = offset;
rtp_info->info_payload_len = tvb_length_remaining(tvb, offset);
}
if (!pinfo->in_error_pkt)
tap_queue_packet(rtp_tap, pinfo, rtp_info);
}
/* calculate the extended sequence number - top 16 bits of the previous sequence number,
* plus our own; then correct for wrapping */
static guint32 calculate_extended_seqno(guint32 previous_seqno, guint16 raw_seqno)
{
guint32 seqno = (previous_seqno & 0xffff0000) | raw_seqno;
if(seqno + 0x8000 < previous_seqno) {
seqno += 0x10000;
} else if(previous_seqno + 0x8000 < seqno) {
/* we got an out-of-order packet which happened to go backwards over the
* wrap boundary */
seqno -= 0x10000;
}
return seqno;
}
/* Look for conversation info */
static void get_conv_info(packet_info *pinfo, struct _rtp_info *rtp_info)
{
/* Conversation and current data */
conversation_t *p_conv = NULL;
struct _rtp_conversation_info *p_conv_data = NULL;
/* Use existing packet info if available */
p_conv_data = p_get_proto_data(pinfo->fd, proto_rtp);
if (!p_conv_data)
{
/* First time, get info from conversation */
p_conv = find_conversation(pinfo->fd->num, &pinfo->net_dst, &pinfo->net_src,
pinfo->ptype,
pinfo->destport, pinfo->srcport, NO_ADDR_B);
if (p_conv)
{
/* Create space for packet info */
struct _rtp_conversation_info *p_conv_packet_data;
p_conv_data = conversation_get_proto_data(p_conv, proto_rtp);
if (p_conv_data) {
guint32 seqno;
/* Save this conversation info into packet info */
p_conv_packet_data = se_alloc(sizeof(struct _rtp_conversation_info));
g_snprintf(p_conv_packet_data->method, MAX_RTP_SETUP_METHOD_SIZE+1, "%s", p_conv_data->method);
p_conv_packet_data->method[MAX_RTP_SETUP_METHOD_SIZE]='\0';
p_conv_packet_data->frame_number = p_conv_data->frame_number;
p_conv_packet_data->rtp_dyn_payload = p_conv_data->rtp_dyn_payload;
p_conv_packet_data->rtp_conv_info = p_conv_data->rtp_conv_info;
p_conv_packet_data->srtp_info = p_conv_data->srtp_info;
p_add_proto_data(pinfo->fd, proto_rtp, p_conv_packet_data);
/* calculate extended sequence number */
seqno = calculate_extended_seqno(p_conv_data->extended_seqno,
rtp_info->info_seq_num);
p_conv_packet_data->extended_seqno = seqno;
p_conv_data->extended_seqno = seqno;
}
}
}
if (p_conv_data) rtp_info->info_setup_frame_num = p_conv_data->frame_number;
}
/* Display setup info */
static void show_setup_info(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
/* Conversation and current data */
struct _rtp_conversation_info *p_conv_data = NULL;
proto_tree *rtp_setup_tree;
proto_item *ti;
/* Use existing packet info if available */
p_conv_data = p_get_proto_data(pinfo->fd, proto_rtp);
if (!p_conv_data) return;
/* Create setup info subtree with summary info. */
ti = proto_tree_add_string_format(tree, hf_rtp_setup, tvb, 0, 0,
"",
"Stream setup by %s (frame %u)",
p_conv_data->method,
p_conv_data->frame_number);
PROTO_ITEM_SET_GENERATED(ti);
rtp_setup_tree = proto_item_add_subtree(ti, ett_rtp_setup);
if (rtp_setup_tree)
{
/* Add details into subtree */
proto_item* item = proto_tree_add_uint(rtp_setup_tree, hf_rtp_setup_frame,
tvb, 0, 0, p_conv_data->frame_number);
PROTO_ITEM_SET_GENERATED(item);
item = proto_tree_add_string(rtp_setup_tree, hf_rtp_setup_method,
tvb, 0, 0, p_conv_data->method);
PROTO_ITEM_SET_GENERATED(item);
}
}
/* Dissect PacketCable CCC header */
static void
dissect_pkt_ccc(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
proto_item *ti = NULL;
proto_tree *pkt_ccc_tree = NULL;
const guint8 *ptime = tvb_get_ptr(tvb, 4, 8);
if ( tree ) {
ti = proto_tree_add_item(tree, proto_pkt_ccc, tvb, 0, 12, FALSE);
pkt_ccc_tree = proto_item_add_subtree(ti, ett_pkt_ccc);
proto_tree_add_item(pkt_ccc_tree, hf_pkt_ccc_id, tvb, 0, 4, FALSE);
proto_tree_add_bytes_format(pkt_ccc_tree, hf_pkt_ccc_ts, tvb,
4, 8, ptime, "NTP timestamp: %s", ntp_fmt_ts(ptime));
}
dissect_rtp(tvb, pinfo, tree);
}
/* Register PacketCable CCC */
void
proto_register_pkt_ccc(void)
{
static hf_register_info hf[] =
{
{
&hf_pkt_ccc_id,
{
"PacketCable CCC Identifier",
"pkt_ccc.ccc_id",
FT_UINT32,
BASE_DEC,
NULL,
0x0,
"CCC_ID", HFILL
}
},
{
&hf_pkt_ccc_ts,
{
"PacketCable CCC Timestamp",
"pkt_ccc.ts",
FT_BYTES,
BASE_NONE,
NULL,
0x0,
"Timestamp", HFILL
}
},
};
static gint *ett[] =
{
&ett_pkt_ccc,
};
module_t *pkt_ccc_module;
proto_pkt_ccc = proto_register_protocol("PacketCable Call Content Connection",
"PKT CCC", "pkt_ccc");
proto_register_field_array(proto_pkt_ccc, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));
register_dissector("pkt_ccc", dissect_pkt_ccc, proto_pkt_ccc);
pkt_ccc_module = prefs_register_protocol(proto_pkt_ccc, NULL);
prefs_register_uint_preference(pkt_ccc_module, "udp_port",
"UDP port",
"Decode packets on this UDP port as PacketCable CCC",
10, &global_pkt_ccc_udp_port);
}
void
proto_reg_handoff_pkt_ccc(void)
{
/*
* Register this dissector as one that can be selected by a
* UDP port number.
*/
pkt_ccc_handle = find_dissector("pkt_ccc");
dissector_add_handle("udp.port", pkt_ccc_handle);
}
/* Register RTP */
void
proto_register_rtp(void)
{
static hf_register_info hf[] =
{
{
&hf_rtp_version,
{
"Version",
"rtp.version",
FT_UINT8,
BASE_DEC,
VALS(rtp_version_vals),
0xC0,
"", HFILL
}
},
{
&hf_rtp_padding,
{
"Padding",
"rtp.padding",
FT_BOOLEAN,
8,
NULL,
0x20,
"", HFILL
}
},
{
&hf_rtp_extension,
{
"Extension",
"rtp.ext",
FT_BOOLEAN,
8,
NULL,
0x10,
"", HFILL
}
},
{
&hf_rtp_csrc_count,
{
"Contributing source identifiers count",
"rtp.cc",
FT_UINT8,
BASE_DEC,
NULL,
0x0F,
"", HFILL
}
},
{
&hf_rtp_marker,
{
"Marker",
"rtp.marker",
FT_BOOLEAN,
8,
NULL,
0x80,
"", HFILL
}
},
{
&hf_rtp_payload_type,
{
"Payload type",
"rtp.p_type",
FT_UINT8,
BASE_DEC,
NULL,
0x7F,
"", HFILL
}
},
{
&hf_rtp_seq_nr,
{
"Sequence number",
"rtp.seq",
FT_UINT16,
BASE_DEC,
NULL,
0x0,
"", HFILL
}
},
{
&hf_rtp_ext_seq_nr,
{
"Extended sequence number",
"rtp.extseq",
FT_UINT32,
BASE_DEC,
NULL,
0x0,
"", HFILL
}
},
{
&hf_rtp_timestamp,
{
"Timestamp",
"rtp.timestamp",
FT_UINT32,
BASE_DEC,
NULL,
0x0,
"", HFILL
}
},
{
&hf_rtp_ssrc,
{
"Synchronization Source identifier",
"rtp.ssrc",
FT_UINT32,
BASE_HEX_DEC,
NULL,
0x0,
"", HFILL
}
},
{
&hf_rtp_prof_define,
{
"Defined by profile",
"rtp.ext.profile",
FT_UINT16,
BASE_DEC,
NULL,
0x0,
"", HFILL
}
},
{
&hf_rtp_length,
{
"Extension length",
"rtp.ext.len",
FT_UINT16,
BASE_DEC,
NULL,
0x0,
"", HFILL
}
},
{
&hf_rtp_csrc_items,
{
"Contributing Source identifiers",
"rtp.csrc.items",
FT_NONE,
BASE_NONE,
NULL,
0x0,
"", HFILL
}
},
{
&hf_rtp_csrc_item,
{
"CSRC item",
"rtp.csrc.item",
FT_UINT32,
BASE_HEX_DEC,
NULL,
0x0,
"", HFILL
}
},
{
&hf_rtp_hdr_exts,
{
"Header extensions",
"rtp.hdr_exts",
FT_NONE,
BASE_NONE,
NULL,
0x0,
"", HFILL
}
},
{
&hf_rtp_hdr_ext,
{
"Header extension",
"rtp.hdr_ext",
FT_UINT32,
BASE_DEC,
NULL,
0x0,
"", HFILL
}
},
{
&hf_rtp_data,
{
"Payload",
"rtp.payload",
FT_BYTES,
BASE_HEX,
NULL,
0x0,
"", HFILL
}
},
{
&hf_rtp_padding_data,
{
"Padding data",
"rtp.padding.data",
FT_BYTES,
BASE_HEX,
NULL,
0x0,
"", HFILL
}
},
{
&hf_rtp_padding_count,
{
"Padding count",
"rtp.padding.count",
FT_UINT8,
BASE_DEC,
NULL,
0x0,
"", HFILL
}
},
{
&hf_rtp_setup,
{
"Stream setup",
"rtp.setup",
FT_STRING,
BASE_NONE,
NULL,
0x0,
"Stream setup, method and frame number", HFILL
}
},
{
&hf_rtp_setup_frame,
{
"Setup frame",
"rtp.setup-frame",
FT_FRAMENUM,
BASE_NONE,
NULL,
0x0,
"Frame that set up this stream", HFILL
}
},
{
&hf_rtp_setup_method,
{
"Setup Method",
"rtp.setup-method",
FT_STRING,
BASE_NONE,
NULL,
0x0,
"Method used to set up this stream", HFILL
}
},
{
&hf_rtp_rfc2198_follow,
{
"Follow",
"rtp.follow",
FT_BOOLEAN,
8,
TFS(&flags_set_truth),
0x80,
"Next header follows", HFILL
}
},
{
&hf_rtp_rfc2198_tm_off,
{
"Timestamp offset",
"rtp.timestamp-offset",
FT_UINT16,
BASE_DEC,
NULL,
0xFFFC,
"Timestamp Offset", HFILL
}
},
{
&hf_rtp_rfc2198_bl_len,
{
"Block length",
"rtp.block-length",
FT_UINT16,
BASE_DEC,
NULL,
0x03FF,
"Block Length", HFILL
}
},
/* reassembly stuff */
{&hf_rtp_fragments,
{"RTP Fragments", "rtp.fragments", FT_NONE, BASE_NONE, NULL, 0x0,
"RTP Fragments", HFILL }
},
{&hf_rtp_fragment,
{"RTP Fragment data", "rtp.fragment", FT_FRAMENUM, BASE_NONE, NULL, 0x0,
"RTP Fragment data", HFILL }
},
{&hf_rtp_fragment_overlap,
{"Fragment overlap", "rtp.fragment.overlap", FT_BOOLEAN, BASE_NONE,
NULL, 0x0, "Fragment overlaps with other fragments", HFILL }
},
{&hf_rtp_fragment_overlap_conflict,
{"Conflicting data in fragment overlap", "rtp.fragment.overlap.conflict",
FT_BOOLEAN, BASE_NONE, NULL, 0x0,
"Overlapping fragments contained conflicting data", HFILL }
},
{&hf_rtp_fragment_multiple_tails,
{"Multiple tail fragments found", "rtp.fragment.multipletails",
FT_BOOLEAN, BASE_NONE, NULL, 0x0,
"Several tails were found when defragmenting the packet", HFILL }
},
{&hf_rtp_fragment_too_long_fragment,
{"Fragment too long", "rtp.fragment.toolongfragment",
FT_BOOLEAN, BASE_NONE, NULL, 0x0,
"Fragment contained data past end of packet", HFILL }
},
{&hf_rtp_fragment_error,
{"Defragmentation error", "rtp.fragment.error",
FT_FRAMENUM, BASE_NONE, NULL, 0x0,
"Defragmentation error due to illegal fragments", HFILL }
},
{&hf_rtp_reassembled_in,
{"RTP fragment, reassembled in frame", "rtp.reassembled_in",
FT_FRAMENUM, BASE_NONE, NULL, 0x0,
"This RTP packet is reassembled in this frame", HFILL }
},
{&hf_srtp_encrypted_payload,
{"SRTP Encrypted Payload", "srtp.enc_payload",
FT_BYTES, BASE_NONE, NULL, 0x0,
"SRTP Encrypted Payload", HFILL }
},
{&hf_srtp_mki,
{"SRTP MKI", "srtp.mki",
FT_BYTES, BASE_NONE, NULL, 0x0,
"SRTP Master Key Index", HFILL }
},
{&hf_srtp_auth_tag,
{"SRTP Auth Tag", "srtp.auth_tag",
FT_BYTES, BASE_NONE, NULL, 0x0,
"SRTP Authentication Tag", HFILL }
}
};
static gint *ett[] =
{
&ett_rtp,
&ett_csrc_list,
&ett_hdr_ext,
&ett_rtp_setup,
&ett_rtp_rfc2198,
&ett_rtp_rfc2198_hdr,
&ett_rtp_fragment,
&ett_rtp_fragments
};
module_t *rtp_module;
proto_rtp = proto_register_protocol("Real-Time Transport Protocol",
"RTP", "rtp");
proto_register_field_array(proto_rtp, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));
register_dissector("rtp", dissect_rtp, proto_rtp);
register_dissector("rtp.rfc2198", dissect_rtp_rfc2198, proto_rtp);
rtp_tap = register_tap("rtp");
rtp_pt_dissector_table = register_dissector_table("rtp.pt",
"RTP payload type", FT_UINT8, BASE_DEC);
rtp_dyn_pt_dissector_table = register_dissector_table("rtp_dyn_payload_type",
"Dynamic RTP payload type", FT_STRING, BASE_NONE);
rtp_hdr_ext_dissector_table = register_dissector_table("rtp_hdr_ext",
"RTP header extension", FT_STRING, BASE_NONE);
rtp_module = prefs_register_protocol(proto_rtp, proto_reg_handoff_rtp);
prefs_register_bool_preference(rtp_module, "show_setup_info",
"Show stream setup information",
"Where available, show which protocol and frame caused "
"this RTP stream to be created",
&global_rtp_show_setup_info);
prefs_register_bool_preference(rtp_module, "heuristic_rtp",
"Try to decode RTP outside of conversations",
"If call control SIP/H323/RTSP/.. messages are missing in the trace, "
"RTP isn't decoded without this",
&global_rtp_heur);
prefs_register_bool_preference(rtp_module, "desegment_rtp_streams",
"Allow subdissector to reassemble RTP streams",
"Whether subdissector can request RTP streams to be reassembled",
&desegment_rtp);
prefs_register_enum_preference(rtp_module, "version0_type",
"Treat RTP version 0 packets as",
"If an RTP version 0 packet is encountered, it can be treated as an invalid packet, a STUN packet, or a T.38 packet",
&global_rtp_version0_type,
rtp_version0_types, FALSE);
prefs_register_uint_preference(rtp_module,
"rfc2198_payload_type", "Payload Type for RFC2198",
"Payload Type for RFC2198 Redundant Audio Data",
10,
&rtp_rfc2198_pt);
register_init_routine(rtp_fragment_init);
}
void
proto_reg_handoff_rtp(void)
{
static gboolean rtp_prefs_initialized = FALSE;
data_handle = find_dissector("data");
stun_handle = find_dissector("stun");
t38_handle = find_dissector("t38");
/*
Get rid of the lists of conversation dissectors; instead, have a dissector table contain both a hash table, to use to look up port numbers to find a dissector, and a list of all dissectors that *could* be assigned to ports in that hash table, to be used by user interface code. Make the "Decode As" dialog box code use that. Also make it *not* let you choose whether to set the dissector for both the UDP and TCP versions of a port; some protocols run only atop TCP, some run only atop UDP, and even those that can run atop both may have different dissector handles to use over TCP and UDP, so handling a single merged list would be a mess. (If the user is setting the dissector for a TCP port, only those protocols that Ethereal can handle over TCP should be listed; if the user is setting the dissector for a UDP port, only those protocols that Ethereal can handle over TCP should be listed; if the user is setting a dissector for both, only those protocols that Ethereal can handle over *both* TCP *and* UDP should be listed, *and* there needs to be a way to let the "Decode As" code get both the TCP handle *and* the UDP handle and use the right ones. If somebody really wants that, they need to implement all of the above if they want the code to be correct.) Fix the code that handles setting the dissection for the IP protocol number to correctly update the lists of protocols being dissected as TCP and as UDP; the code before this change wasn't updating the single such list to add new protocols. svn path=/trunk/; revision=4311
2001-12-03 08:47:31 +00:00
* Register this dissector as one that can be selected by a
* UDP port number.
*/
rtp_handle = find_dissector("rtp");
rtp_rfc2198_handle = find_dissector("rtp.rfc2198");
Get rid of the lists of conversation dissectors; instead, have a dissector table contain both a hash table, to use to look up port numbers to find a dissector, and a list of all dissectors that *could* be assigned to ports in that hash table, to be used by user interface code. Make the "Decode As" dialog box code use that. Also make it *not* let you choose whether to set the dissector for both the UDP and TCP versions of a port; some protocols run only atop TCP, some run only atop UDP, and even those that can run atop both may have different dissector handles to use over TCP and UDP, so handling a single merged list would be a mess. (If the user is setting the dissector for a TCP port, only those protocols that Ethereal can handle over TCP should be listed; if the user is setting the dissector for a UDP port, only those protocols that Ethereal can handle over TCP should be listed; if the user is setting a dissector for both, only those protocols that Ethereal can handle over *both* TCP *and* UDP should be listed, *and* there needs to be a way to let the "Decode As" code get both the TCP handle *and* the UDP handle and use the right ones. If somebody really wants that, they need to implement all of the above if they want the code to be correct.) Fix the code that handles setting the dissection for the IP protocol number to correctly update the lists of protocols being dissected as TCP and as UDP; the code before this change wasn't updating the single such list to add new protocols. svn path=/trunk/; revision=4311
2001-12-03 08:47:31 +00:00
dissector_add_handle("udp.port", rtp_handle);
dissector_add_string("rtp_dyn_payload_type", "red", rtp_rfc2198_handle);
if (rtp_prefs_initialized) {
dissector_delete("rtp.pt", rtp_saved_rfc2198_pt, rtp_rfc2198_handle);
} else {
rtp_prefs_initialized = TRUE;
}
rtp_saved_rfc2198_pt = rtp_rfc2198_pt;
dissector_add("rtp.pt", rtp_saved_rfc2198_pt, rtp_rfc2198_handle);
heur_dissector_add( "udp", dissect_rtp_heur, proto_rtp);
heur_dissector_add("stun2", dissect_rtp_heur, proto_rtp);
}
/*
* Local Variables:
* c-basic-offset: 8
* indent-tabs-mode: t
* tab-width: 8
* End:
*/