dect
/
linux-2.6
Archived
13
0
Fork 0
This repository has been archived on 2022-02-17. You can view files and clone it, but cannot push or open issues or pull requests.
linux-2.6/kernel/Makefile

213 lines
7.2 KiB
Makefile
Raw Normal View History

#
# Makefile for the linux kernel.
#
obj-y = fork.o exec_domain.o panic.o printk.o \
cpu.o exit.o itimer.o time.o softirq.o resource.o \
sysctl.o sysctl_binary.o capability.o ptrace.o timer.o user.o \
task_work_add: generic process-context callbacks Provide a simple mechanism that allows running code in the (nonatomic) context of the arbitrary task. The caller does task_work_add(task, task_work) and this task executes task_work->func() either from do_notify_resume() or from do_exit(). The callback can rely on PF_EXITING to detect the latter case. "struct task_work" can be embedded in another struct, still it has "void *data" to handle the most common/simple case. This allows us to kill the ->replacement_session_keyring hack, and potentially this can have more users. Performance-wise, this adds 2 "unlikely(!hlist_empty())" checks into tracehook_notify_resume() and do_exit(). But at the same time we can remove the "replacement_session_keyring != NULL" checks from arch/*/signal.c and exit_creds(). Note: task_work_add/task_work_run abuses ->pi_lock. This is only because this lock is already used by lookup_pi_state() to synchronize with do_exit() setting PF_EXITING. Fortunately the scope of this lock in task_work.c is really tiny, and the code is unlikely anyway. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Acked-by: David Howells <dhowells@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Alexander Gordeev <agordeev@redhat.com> Cc: Chris Zankel <chris@zankel.net> Cc: David Smith <dsmith@redhat.com> Cc: "Frank Ch. Eigler" <fche@redhat.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tejun Heo <tj@kernel.org> Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2012-05-11 00:59:07 +00:00
signal.o sys.o kmod.o workqueue.o pid.o task_work.o \
rcupdate.o extable.o params.o posix-timers.o \
kthread.o wait.o kfifo.o sys_ni.o posix-cpu-timers.o mutex.o \
hrtimer.o rwsem.o nsproxy.o srcu.o semaphore.o \
notifier.o ksysfs.o cred.o \
async.o range.o groups.o lglock.o smpboot.o
ifdef CONFIG_FUNCTION_TRACER
# Do not trace debug files and internal ftrace files
CFLAGS_REMOVE_lockdep.o = -pg
CFLAGS_REMOVE_lockdep_proc.o = -pg
CFLAGS_REMOVE_mutex-debug.o = -pg
CFLAGS_REMOVE_rtmutex-debug.o = -pg
CFLAGS_REMOVE_cgroup-debug.o = -pg
CFLAGS_REMOVE_irq_work.o = -pg
endif
obj-y += sched/
obj-y += power/
syscalls, x86: add __NR_kcmp syscall While doing the checkpoint-restore in the user space one need to determine whether various kernel objects (like mm_struct-s of file_struct-s) are shared between tasks and restore this state. The 2nd step can be solved by using appropriate CLONE_ flags and the unshare syscall, while there's currently no ways for solving the 1st one. One of the ways for checking whether two tasks share e.g. mm_struct is to provide some mm_struct ID of a task to its proc file, but showing such info considered to be not that good for security reasons. Thus after some debates we end up in conclusion that using that named 'comparison' syscall might be the best candidate. So here is it -- __NR_kcmp. It takes up to 5 arguments - the pids of the two tasks (which characteristics should be compared), the comparison type and (in case of comparison of files) two file descriptors. Lookups for pids are done in the caller's PID namespace only. At moment only x86 is supported and tested. [akpm@linux-foundation.org: fix up selftests, warnings] [akpm@linux-foundation.org: include errno.h] [akpm@linux-foundation.org: tweak comment text] Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org> Acked-by: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Andrey Vagin <avagin@openvz.org> Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Glauber Costa <glommer@parallels.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Tejun Heo <tj@kernel.org> Cc: Matt Helsley <matthltc@us.ibm.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Vasiliy Kulikov <segoon@openwall.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Valdis.Kletnieks@vt.edu Cc: Michal Marek <mmarek@suse.cz> Cc: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-31 23:26:44 +00:00
ifeq ($(CONFIG_CHECKPOINT_RESTORE),y)
obj-$(CONFIG_X86) += kcmp.o
endif
obj-$(CONFIG_FREEZER) += freezer.o
obj-$(CONFIG_PROFILING) += profile.o
obj-$(CONFIG_STACKTRACE) += stacktrace.o
obj-y += time/
obj-$(CONFIG_DEBUG_MUTEXES) += mutex-debug.o
[PATCH] lockdep: core Do 'make oldconfig' and accept all the defaults for new config options - reboot into the kernel and if everything goes well it should boot up fine and you should have /proc/lockdep and /proc/lockdep_stats files. Typically if the lock validator finds some problem it will print out voluminous debug output that begins with "BUG: ..." and which syslog output can be used by kernel developers to figure out the precise locking scenario. What does the lock validator do? It "observes" and maps all locking rules as they occur dynamically (as triggered by the kernel's natural use of spinlocks, rwlocks, mutexes and rwsems). Whenever the lock validator subsystem detects a new locking scenario, it validates this new rule against the existing set of rules. If this new rule is consistent with the existing set of rules then the new rule is added transparently and the kernel continues as normal. If the new rule could create a deadlock scenario then this condition is printed out. When determining validity of locking, all possible "deadlock scenarios" are considered: assuming arbitrary number of CPUs, arbitrary irq context and task context constellations, running arbitrary combinations of all the existing locking scenarios. In a typical system this means millions of separate scenarios. This is why we call it a "locking correctness" validator - for all rules that are observed the lock validator proves it with mathematical certainty that a deadlock could not occur (assuming that the lock validator implementation itself is correct and its internal data structures are not corrupted by some other kernel subsystem). [see more details and conditionals of this statement in include/linux/lockdep.h and Documentation/lockdep-design.txt] Furthermore, this "all possible scenarios" property of the validator also enables the finding of complex, highly unlikely multi-CPU multi-context races via single single-context rules, increasing the likelyhood of finding bugs drastically. In practical terms: the lock validator already found a bug in the upstream kernel that could only occur on systems with 3 or more CPUs, and which needed 3 very unlikely code sequences to occur at once on the 3 CPUs. That bug was found and reported on a single-CPU system (!). So in essence a race will be found "piecemail-wise", triggering all the necessary components for the race, without having to reproduce the race scenario itself! In its short existence the lock validator found and reported many bugs before they actually caused a real deadlock. To further increase the efficiency of the validator, the mapping is not per "lock instance", but per "lock-class". For example, all struct inode objects in the kernel have inode->inotify_mutex. If there are 10,000 inodes cached, then there are 10,000 lock objects. But ->inotify_mutex is a single "lock type", and all locking activities that occur against ->inotify_mutex are "unified" into this single lock-class. The advantage of the lock-class approach is that all historical ->inotify_mutex uses are mapped into a single (and as narrow as possible) set of locking rules - regardless of how many different tasks or inode structures it took to build this set of rules. The set of rules persist during the lifetime of the kernel. To see the rough magnitude of checking that the lock validator does, here's a portion of /proc/lockdep_stats, fresh after bootup: lock-classes: 694 [max: 2048] direct dependencies: 1598 [max: 8192] indirect dependencies: 17896 all direct dependencies: 16206 dependency chains: 1910 [max: 8192] in-hardirq chains: 17 in-softirq chains: 105 in-process chains: 1065 stack-trace entries: 38761 [max: 131072] combined max dependencies: 2033928 hardirq-safe locks: 24 hardirq-unsafe locks: 176 softirq-safe locks: 53 softirq-unsafe locks: 137 irq-safe locks: 59 irq-unsafe locks: 176 The lock validator has observed 1598 actual single-thread locking patterns, and has validated all possible 2033928 distinct locking scenarios. More details about the design of the lock validator can be found in Documentation/lockdep-design.txt, which can also found at: http://redhat.com/~mingo/lockdep-patches/lockdep-design.txt [bunk@stusta.de: cleanups] Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-07-03 07:24:50 +00:00
obj-$(CONFIG_LOCKDEP) += lockdep.o
ifeq ($(CONFIG_PROC_FS),y)
obj-$(CONFIG_LOCKDEP) += lockdep_proc.o
endif
obj-$(CONFIG_FUTEX) += futex.o
ifeq ($(CONFIG_COMPAT),y)
obj-$(CONFIG_FUTEX) += futex_compat.o
endif
obj-$(CONFIG_RT_MUTEXES) += rtmutex.o
obj-$(CONFIG_DEBUG_RT_MUTEXES) += rtmutex-debug.o
obj-$(CONFIG_RT_MUTEX_TESTER) += rtmutex-tester.o
obj-$(CONFIG_GENERIC_ISA_DMA) += dma.o
obj-$(CONFIG_SMP) += smp.o
ifneq ($(CONFIG_SMP),y)
obj-y += up.o
endif
obj-$(CONFIG_SMP) += spinlock.o
[PATCH] spinlock consolidation This patch (written by me and also containing many suggestions of Arjan van de Ven) does a major cleanup of the spinlock code. It does the following things: - consolidates and enhances the spinlock/rwlock debugging code - simplifies the asm/spinlock.h files - encapsulates the raw spinlock type and moves generic spinlock features (such as ->break_lock) into the generic code. - cleans up the spinlock code hierarchy to get rid of the spaghetti. Most notably there's now only a single variant of the debugging code, located in lib/spinlock_debug.c. (previously we had one SMP debugging variant per architecture, plus a separate generic one for UP builds) Also, i've enhanced the rwlock debugging facility, it will now track write-owners. There is new spinlock-owner/CPU-tracking on SMP builds too. All locks have lockup detection now, which will work for both soft and hard spin/rwlock lockups. The arch-level include files now only contain the minimally necessary subset of the spinlock code - all the rest that can be generalized now lives in the generic headers: include/asm-i386/spinlock_types.h | 16 include/asm-x86_64/spinlock_types.h | 16 I have also split up the various spinlock variants into separate files, making it easier to see which does what. The new layout is: SMP | UP ----------------------------|----------------------------------- asm/spinlock_types_smp.h | linux/spinlock_types_up.h linux/spinlock_types.h | linux/spinlock_types.h asm/spinlock_smp.h | linux/spinlock_up.h linux/spinlock_api_smp.h | linux/spinlock_api_up.h linux/spinlock.h | linux/spinlock.h /* * here's the role of the various spinlock/rwlock related include files: * * on SMP builds: * * asm/spinlock_types.h: contains the raw_spinlock_t/raw_rwlock_t and the * initializers * * linux/spinlock_types.h: * defines the generic type and initializers * * asm/spinlock.h: contains the __raw_spin_*()/etc. lowlevel * implementations, mostly inline assembly code * * (also included on UP-debug builds:) * * linux/spinlock_api_smp.h: * contains the prototypes for the _spin_*() APIs. * * linux/spinlock.h: builds the final spin_*() APIs. * * on UP builds: * * linux/spinlock_type_up.h: * contains the generic, simplified UP spinlock type. * (which is an empty structure on non-debug builds) * * linux/spinlock_types.h: * defines the generic type and initializers * * linux/spinlock_up.h: * contains the __raw_spin_*()/etc. version of UP * builds. (which are NOPs on non-debug, non-preempt * builds) * * (included on UP-non-debug builds:) * * linux/spinlock_api_up.h: * builds the _spin_*() APIs. * * linux/spinlock.h: builds the final spin_*() APIs. */ All SMP and UP architectures are converted by this patch. arm, i386, ia64, ppc, ppc64, s390/s390x, x64 was build-tested via crosscompilers. m32r, mips, sh, sparc, have not been tested yet, but should be mostly fine. From: Grant Grundler <grundler@parisc-linux.org> Booted and lightly tested on a500-44 (64-bit, SMP kernel, dual CPU). Builds 32-bit SMP kernel (not booted or tested). I did not try to build non-SMP kernels. That should be trivial to fix up later if necessary. I converted bit ops atomic_hash lock to raw_spinlock_t. Doing so avoids some ugly nesting of linux/*.h and asm/*.h files. Those particular locks are well tested and contained entirely inside arch specific code. I do NOT expect any new issues to arise with them. If someone does ever need to use debug/metrics with them, then they will need to unravel this hairball between spinlocks, atomic ops, and bit ops that exist only because parisc has exactly one atomic instruction: LDCW (load and clear word). From: "Luck, Tony" <tony.luck@intel.com> ia64 fix Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Arjan van de Ven <arjanv@infradead.org> Signed-off-by: Grant Grundler <grundler@parisc-linux.org> Cc: Matthew Wilcox <willy@debian.org> Signed-off-by: Hirokazu Takata <takata@linux-m32r.org> Signed-off-by: Mikael Pettersson <mikpe@csd.uu.se> Signed-off-by: Benoit Boissinot <benoit.boissinot@ens-lyon.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 07:25:56 +00:00
obj-$(CONFIG_DEBUG_SPINLOCK) += spinlock.o
obj-$(CONFIG_PROVE_LOCKING) += spinlock.o
obj-$(CONFIG_UID16) += uid16.o
obj-$(CONFIG_MODULES) += module.o
obj-$(CONFIG_MODULE_SIG) += module_signing.o modsign_pubkey.o modsign_certificate.o
obj-$(CONFIG_KALLSYMS) += kallsyms.o
obj-$(CONFIG_BSD_PROCESS_ACCT) += acct.o
obj-$(CONFIG_KEXEC) += kexec.o
obj-$(CONFIG_BACKTRACE_SELF_TEST) += backtracetest.o
obj-$(CONFIG_COMPAT) += compat.o
Task Control Groups: basic task cgroup framework Generic Process Control Groups -------------------------- There have recently been various proposals floating around for resource management/accounting and other task grouping subsystems in the kernel, including ResGroups, User BeanCounters, NSProxy cgroups, and others. These all need the basic abstraction of being able to group together multiple processes in an aggregate, in order to track/limit the resources permitted to those processes, or control other behaviour of the processes, and all implement this grouping in different ways. This patchset provides a framework for tracking and grouping processes into arbitrary "cgroups" and assigning arbitrary state to those groupings, in order to control the behaviour of the cgroup as an aggregate. The intention is that the various resource management and virtualization/cgroup efforts can also become task cgroup clients, with the result that: - the userspace APIs are (somewhat) normalised - it's easier to test e.g. the ResGroups CPU controller in conjunction with the BeanCounters memory controller, or use either of them as the resource-control portion of a virtual server system. - the additional kernel footprint of any of the competing resource management systems is substantially reduced, since it doesn't need to provide process grouping/containment, hence improving their chances of getting into the kernel This patch: Add the main task cgroups framework - the cgroup filesystem, and the basic structures for tracking membership and associating subsystem state objects to tasks. Signed-off-by: Paul Menage <menage@google.com> Cc: Serge E. Hallyn <serue@us.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Paul Jackson <pj@sgi.com> Cc: Kirill Korotaev <dev@openvz.org> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com> Cc: Cedric Le Goater <clg@fr.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 06:39:30 +00:00
obj-$(CONFIG_CGROUPS) += cgroup.o
container freezer: implement freezer cgroup subsystem This patch implements a new freezer subsystem in the control groups framework. It provides a way to stop and resume execution of all tasks in a cgroup by writing in the cgroup filesystem. The freezer subsystem in the container filesystem defines a file named freezer.state. Writing "FROZEN" to the state file will freeze all tasks in the cgroup. Subsequently writing "RUNNING" will unfreeze the tasks in the cgroup. Reading will return the current state. * Examples of usage : # mkdir /containers/freezer # mount -t cgroup -ofreezer freezer /containers # mkdir /containers/0 # echo $some_pid > /containers/0/tasks to get status of the freezer subsystem : # cat /containers/0/freezer.state RUNNING to freeze all tasks in the container : # echo FROZEN > /containers/0/freezer.state # cat /containers/0/freezer.state FREEZING # cat /containers/0/freezer.state FROZEN to unfreeze all tasks in the container : # echo RUNNING > /containers/0/freezer.state # cat /containers/0/freezer.state RUNNING This is the basic mechanism which should do the right thing for user space task in a simple scenario. It's important to note that freezing can be incomplete. In that case we return EBUSY. This means that some tasks in the cgroup are busy doing something that prevents us from completely freezing the cgroup at this time. After EBUSY, the cgroup will remain partially frozen -- reflected by freezer.state reporting "FREEZING" when read. The state will remain "FREEZING" until one of these things happens: 1) Userspace cancels the freezing operation by writing "RUNNING" to the freezer.state file 2) Userspace retries the freezing operation by writing "FROZEN" to the freezer.state file (writing "FREEZING" is not legal and returns EIO) 3) The tasks that blocked the cgroup from entering the "FROZEN" state disappear from the cgroup's set of tasks. [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: export thaw_process] Signed-off-by: Cedric Le Goater <clg@fr.ibm.com> Signed-off-by: Matt Helsley <matthltc@us.ibm.com> Acked-by: Serge E. Hallyn <serue@us.ibm.com> Tested-by: Matt Helsley <matthltc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-19 03:27:21 +00:00
obj-$(CONFIG_CGROUP_FREEZER) += cgroup_freezer.o
obj-$(CONFIG_CPUSETS) += cpuset.o
obj-$(CONFIG_UTS_NS) += utsname.o
obj-$(CONFIG_USER_NS) += user_namespace.o
obj-$(CONFIG_PID_NS) += pid_namespace.o
obj-$(CONFIG_IKCONFIG) += configs.o
obj-$(CONFIG_RESOURCE_COUNTERS) += res_counter.o
obj-$(CONFIG_SMP) += stop_machine.o
obj-$(CONFIG_KPROBES_SANITY_TEST) += test_kprobes.o
obj-$(CONFIG_AUDIT) += audit.o auditfilter.o
obj-$(CONFIG_AUDITSYSCALL) += auditsc.o
obj-$(CONFIG_AUDIT_WATCH) += audit_watch.o
obj-$(CONFIG_AUDIT_TREE) += audit_tree.o
obj-$(CONFIG_GCOV_KERNEL) += gcov/
obj-$(CONFIG_KPROBES) += kprobes.o
obj-$(CONFIG_KGDB) += debug/
obj-$(CONFIG_DETECT_HUNG_TASK) += hung_task.o
lockup_detector: Combine nmi_watchdog and softlockup detector The new nmi_watchdog (which uses the perf event subsystem) is very similar in structure to the softlockup detector. Using Ingo's suggestion, I combined the two functionalities into one file: kernel/watchdog.c. Now both the nmi_watchdog (or hardlockup detector) and softlockup detector sit on top of the perf event subsystem, which is run every 60 seconds or so to see if there are any lockups. To detect hardlockups, cpus not responding to interrupts, I implemented an hrtimer that runs 5 times for every perf event overflow event. If that stops counting on a cpu, then the cpu is most likely in trouble. To detect softlockups, tasks not yielding to the scheduler, I used the previous kthread idea that now gets kicked every time the hrtimer fires. If the kthread isn't being scheduled neither is anyone else and the warning is printed to the console. I tested this on x86_64 and both the softlockup and hardlockup paths work. V2: - cleaned up the Kconfig and softlockup combination - surrounded hardlockup cases with #ifdef CONFIG_PERF_EVENTS_NMI - seperated out the softlockup case from perf event subsystem - re-arranged the enabling/disabling nmi watchdog from proc space - added cpumasks for hardlockup failure cases - removed fallback to soft events if no PMU exists for hard events V3: - comment cleanups - drop support for older softlockup code - per_cpu cleanups - completely remove software clock base hardlockup detector - use per_cpu masking on hard/soft lockup detection - #ifdef cleanups - rename config option NMI_WATCHDOG to LOCKUP_DETECTOR - documentation additions V4: - documentation fixes - convert per_cpu to __get_cpu_var - powerpc compile fixes V5: - split apart warn flags for hard and soft lockups TODO: - figure out how to make an arch-agnostic clock2cycles call (if possible) to feed into perf events as a sample period [fweisbec: merged conflict patch] Signed-off-by: Don Zickus <dzickus@redhat.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Eric Paris <eparis@redhat.com> Cc: Randy Dunlap <randy.dunlap@oracle.com> LKML-Reference: <1273266711-18706-2-git-send-email-dzickus@redhat.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2010-05-07 21:11:44 +00:00
obj-$(CONFIG_LOCKUP_DETECTOR) += watchdog.o
obj-$(CONFIG_GENERIC_HARDIRQS) += irq/
obj-$(CONFIG_SECCOMP) += seccomp.o
obj-$(CONFIG_RCU_TORTURE_TEST) += rcutorture.o
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-18 20:55:32 +00:00
obj-$(CONFIG_TREE_RCU) += rcutree.o
rcu: Merge preemptable-RCU functionality into hierarchical RCU Create a kernel/rcutree_plugin.h file that contains definitions for preemptable RCU (or, under the #else branch of the #ifdef, empty definitions for the classic non-preemptable semantics). These definitions fit into plugins defined in kernel/rcutree.c for this purpose. This variant of preemptable RCU uses a new algorithm whose read-side expense is roughly that of classic hierarchical RCU under CONFIG_PREEMPT. This new algorithm's update-side expense is similar to that of classic hierarchical RCU, and, in absence of read-side preemption or blocking, is exactly that of classic hierarchical RCU. Perhaps more important, this new algorithm has a much simpler implementation, saving well over 1,000 lines of code compared to mainline's implementation of preemptable RCU, which will hopefully be retired in favor of this new algorithm. The simplifications are obtained by maintaining per-task nesting state for running tasks, and using a simple lock-protected algorithm to handle accounting when tasks block within RCU read-side critical sections, making use of lessons learned while creating numerous user-level RCU implementations over the past 18 months. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josht@linux.vnet.ibm.com Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org LKML-Reference: <12509746134003-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-22 20:56:52 +00:00
obj-$(CONFIG_TREE_PREEMPT_RCU) += rcutree.o
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-18 20:55:32 +00:00
obj-$(CONFIG_TREE_RCU_TRACE) += rcutree_trace.o
rcu: "Tiny RCU", The Bloatwatch Edition This patch is a version of RCU designed for !SMP provided for a small-footprint RCU implementation. In particular, the implementation of synchronize_rcu() is extremely lightweight and high performance. It passes rcutorture testing in each of the four relevant configurations (combinations of NO_HZ and PREEMPT) on x86. This saves about 1K bytes compared to old Classic RCU (which is no longer in mainline), and more than three kilobytes compared to Hierarchical RCU (updated to 2.6.30): CONFIG_TREE_RCU: text data bss dec filename 183 4 0 187 kernel/rcupdate.o 2783 520 36 3339 kernel/rcutree.o 3526 Total (vs 4565 for v7) CONFIG_TREE_PREEMPT_RCU: text data bss dec filename 263 4 0 267 kernel/rcupdate.o 4594 776 52 5422 kernel/rcutree.o 5689 Total (6155 for v7) CONFIG_TINY_RCU: text data bss dec filename 96 4 0 100 kernel/rcupdate.o 734 24 0 758 kernel/rcutiny.o 858 Total (vs 848 for v7) The above is for x86. Your mileage may vary on other platforms. Further compression is possible, but is being procrastinated. Changes from v7 (http://lkml.org/lkml/2009/10/9/388) o Apply Lai Jiangshan's review comments (aside from might_sleep() in synchronize_sched(), which is covered by SMP builds). o Fix up expedited primitives. Changes from v6 (http://lkml.org/lkml/2009/9/23/293). o Forward ported to put it into the 2.6.33 stream. o Added lockdep support. o Make lightweight rcu_barrier. Changes from v5 (http://lkml.org/lkml/2009/6/23/12). o Ported to latest pre-2.6.32 merge window kernel. - Renamed rcu_qsctr_inc() to rcu_sched_qs(). - Renamed rcu_bh_qsctr_inc() to rcu_bh_qs(). - Provided trivial rcu_cpu_notify(). - Provided trivial exit_rcu(). - Provided trivial rcu_needs_cpu(). - Fixed up the rcu_*_enter/exit() functions in linux/hardirq.h. o Removed the dependence on EMBEDDED, with a view to making TINY_RCU default for !SMP at some time in the future. o Added (trivial) support for expedited grace periods. Changes from v4 (http://lkml.org/lkml/2009/5/2/91) include: o Squeeze the size down a bit further by removing the ->completed field from struct rcu_ctrlblk. o This permits synchronize_rcu() to become the empty function. Previous concerns about rcutorture were unfounded, as rcutorture correctly handles a constant value from rcu_batches_completed() and rcu_batches_completed_bh(). Changes from v3 (http://lkml.org/lkml/2009/3/29/221) include: o Changed rcu_batches_completed(), rcu_batches_completed_bh() rcu_enter_nohz(), rcu_exit_nohz(), rcu_nmi_enter(), and rcu_nmi_exit(), to be static inlines, as suggested by David Howells. Doing this saves about 100 bytes from rcutiny.o. (The numbers between v3 and this v4 of the patch are not directly comparable, since they are against different versions of Linux.) Changes from v2 (http://lkml.org/lkml/2009/2/3/333) include: o Fix whitespace issues. o Change short-circuit "||" operator to instead be "+" in order to fix performance bug noted by "kraai" on LWN. (http://lwn.net/Articles/324348/) Changes from v1 (http://lkml.org/lkml/2009/1/13/440) include: o This version depends on EMBEDDED as well as !SMP, as suggested by Ingo. o Updated rcu_needs_cpu() to unconditionally return zero, permitting the CPU to enter dynticks-idle mode at any time. This works because callbacks can be invoked upon entry to dynticks-idle mode. o Paul is now OK with this being included, based on a poll at the Kernel Miniconf at linux.conf.au, where about ten people said that they cared about saving 900 bytes on single-CPU systems. o Applies to both mainline and tip/core/rcu. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Acked-by: David Howells <dhowells@redhat.com> Acked-by: Josh Triplett <josh@joshtriplett.org> Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: avi@redhat.com Cc: mtosatti@redhat.com LKML-Reference: <12565226351355-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-10-26 02:03:50 +00:00
obj-$(CONFIG_TINY_RCU) += rcutiny.o
rcu: Add a TINY_PREEMPT_RCU Implement a small-memory-footprint uniprocessor-only implementation of preemptible RCU. This implementation uses but a single blocked-tasks list rather than the combinatorial number used per leaf rcu_node by TREE_PREEMPT_RCU, which reduces memory consumption and greatly simplifies processing. This version also takes advantage of uniprocessor execution to accelerate grace periods in the case where there are no readers. The general design is otherwise broadly similar to that of TREE_PREEMPT_RCU. This implementation is a step towards having RCU implementation driven off of the SMP and PREEMPT kernel configuration variables, which can happen once this implementation has accumulated sufficient experience. Removed ACCESS_ONCE() from __rcu_read_unlock() and added barrier() as suggested by Steve Rostedt in order to avoid the compiler-reordering issue noted by Mathieu Desnoyers (http://lkml.org/lkml/2010/8/16/183). As can be seen below, CONFIG_TINY_PREEMPT_RCU represents almost 5Kbyte savings compared to CONFIG_TREE_PREEMPT_RCU. Of course, for non-real-time workloads, CONFIG_TINY_RCU is even better. CONFIG_TREE_PREEMPT_RCU text data bss dec filename 13 0 0 13 kernel/rcupdate.o 6170 825 28 7023 kernel/rcutree.o ---- 7026 Total CONFIG_TINY_PREEMPT_RCU text data bss dec filename 13 0 0 13 kernel/rcupdate.o 2081 81 8 2170 kernel/rcutiny.o ---- 2183 Total CONFIG_TINY_RCU (non-preemptible) text data bss dec filename 13 0 0 13 kernel/rcupdate.o 719 25 0 744 kernel/rcutiny.o --- 757 Total Requested-by: Loïc Minier <loic.minier@canonical.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2010-06-29 23:49:16 +00:00
obj-$(CONFIG_TINY_PREEMPT_RCU) += rcutiny.o
obj-$(CONFIG_RELAY) += relay.o
obj-$(CONFIG_SYSCTL) += utsname_sysctl.o
obj-$(CONFIG_TASK_DELAY_ACCT) += delayacct.o
obj-$(CONFIG_TASKSTATS) += taskstats.o tsacct.o
tracing: Kernel Tracepoints Implementation of kernel tracepoints. Inspired from the Linux Kernel Markers. Allows complete typing verification by declaring both tracing statement inline functions and probe registration/unregistration static inline functions within the same macro "DEFINE_TRACE". No format string is required. See the tracepoint Documentation and Samples patches for usage examples. Taken from the documentation patch : "A tracepoint placed in code provides a hook to call a function (probe) that you can provide at runtime. A tracepoint can be "on" (a probe is connected to it) or "off" (no probe is attached). When a tracepoint is "off" it has no effect, except for adding a tiny time penalty (checking a condition for a branch) and space penalty (adding a few bytes for the function call at the end of the instrumented function and adds a data structure in a separate section). When a tracepoint is "on", the function you provide is called each time the tracepoint is executed, in the execution context of the caller. When the function provided ends its execution, it returns to the caller (continuing from the tracepoint site). You can put tracepoints at important locations in the code. They are lightweight hooks that can pass an arbitrary number of parameters, which prototypes are described in a tracepoint declaration placed in a header file." Addition and removal of tracepoints is synchronized by RCU using the scheduler (and preempt_disable) as guarantees to find a quiescent state (this is really RCU "classic"). The update side uses rcu_barrier_sched() with call_rcu_sched() and the read/execute side uses "preempt_disable()/preempt_enable()". We make sure the previous array containing probes, which has been scheduled for deletion by the rcu callback, is indeed freed before we proceed to the next update. It therefore limits the rate of modification of a single tracepoint to one update per RCU period. The objective here is to permit fast batch add/removal of probes on _different_ tracepoints. Changelog : - Use #name ":" #proto as string to identify the tracepoint in the tracepoint table. This will make sure not type mismatch happens due to connexion of a probe with the wrong type to a tracepoint declared with the same name in a different header. - Add tracepoint_entry_free_old. - Change __TO_TRACE to get rid of the 'i' iterator. Masami Hiramatsu <mhiramat@redhat.com> : Tested on x86-64. Performance impact of a tracepoint : same as markers, except that it adds about 70 bytes of instructions in an unlikely branch of each instrumented function (the for loop, the stack setup and the function call). It currently adds a memory read, a test and a conditional branch at the instrumentation site (in the hot path). Immediate values will eventually change this into a load immediate, test and branch, which removes the memory read which will make the i-cache impact smaller (changing the memory read for a load immediate removes 3-4 bytes per site on x86_32 (depending on mov prefixes), or 7-8 bytes on x86_64, it also saves the d-cache hit). About the performance impact of tracepoints (which is comparable to markers), even without immediate values optimizations, tests done by Hideo Aoki on ia64 show no regression. His test case was using hackbench on a kernel where scheduler instrumentation (about 5 events in code scheduler code) was added. Quoting Hideo Aoki about Markers : I evaluated overhead of kernel marker using linux-2.6-sched-fixes git tree, which includes several markers for LTTng, using an ia64 server. While the immediate trace mark feature isn't implemented on ia64, there is no major performance regression. So, I think that we don't have any issues to propose merging marker point patches into Linus's tree from the viewpoint of performance impact. I prepared two kernels to evaluate. The first one was compiled without CONFIG_MARKERS. The second one was enabled CONFIG_MARKERS. I downloaded the original hackbench from the following URL: http://devresources.linux-foundation.org/craiger/hackbench/src/hackbench.c I ran hackbench 5 times in each condition and calculated the average and difference between the kernels. The parameter of hackbench: every 50 from 50 to 800 The number of CPUs of the server: 2, 4, and 8 Below is the results. As you can see, major performance regression wasn't found in any case. Even if number of processes increases, differences between marker-enabled kernel and marker- disabled kernel doesn't increase. Moreover, if number of CPUs increases, the differences doesn't increase either. Curiously, marker-enabled kernel is better than marker-disabled kernel in more than half cases, although I guess it comes from the difference of memory access pattern. * 2 CPUs Number of | without | with | diff | diff | processes | Marker [Sec] | Marker [Sec] | [Sec] | [%] | -------------------------------------------------------------- 50 | 4.811 | 4.872 | +0.061 | +1.27 | 100 | 9.854 | 10.309 | +0.454 | +4.61 | 150 | 15.602 | 15.040 | -0.562 | -3.6 | 200 | 20.489 | 20.380 | -0.109 | -0.53 | 250 | 25.798 | 25.652 | -0.146 | -0.56 | 300 | 31.260 | 30.797 | -0.463 | -1.48 | 350 | 36.121 | 35.770 | -0.351 | -0.97 | 400 | 42.288 | 42.102 | -0.186 | -0.44 | 450 | 47.778 | 47.253 | -0.526 | -1.1 | 500 | 51.953 | 52.278 | +0.325 | +0.63 | 550 | 58.401 | 57.700 | -0.701 | -1.2 | 600 | 63.334 | 63.222 | -0.112 | -0.18 | 650 | 68.816 | 68.511 | -0.306 | -0.44 | 700 | 74.667 | 74.088 | -0.579 | -0.78 | 750 | 78.612 | 79.582 | +0.970 | +1.23 | 800 | 85.431 | 85.263 | -0.168 | -0.2 | -------------------------------------------------------------- * 4 CPUs Number of | without | with | diff | diff | processes | Marker [Sec] | Marker [Sec] | [Sec] | [%] | -------------------------------------------------------------- 50 | 2.586 | 2.584 | -0.003 | -0.1 | 100 | 5.254 | 5.283 | +0.030 | +0.56 | 150 | 8.012 | 8.074 | +0.061 | +0.76 | 200 | 11.172 | 11.000 | -0.172 | -1.54 | 250 | 13.917 | 14.036 | +0.119 | +0.86 | 300 | 16.905 | 16.543 | -0.362 | -2.14 | 350 | 19.901 | 20.036 | +0.135 | +0.68 | 400 | 22.908 | 23.094 | +0.186 | +0.81 | 450 | 26.273 | 26.101 | -0.172 | -0.66 | 500 | 29.554 | 29.092 | -0.461 | -1.56 | 550 | 32.377 | 32.274 | -0.103 | -0.32 | 600 | 35.855 | 35.322 | -0.533 | -1.49 | 650 | 39.192 | 38.388 | -0.804 | -2.05 | 700 | 41.744 | 41.719 | -0.025 | -0.06 | 750 | 45.016 | 44.496 | -0.520 | -1.16 | 800 | 48.212 | 47.603 | -0.609 | -1.26 | -------------------------------------------------------------- * 8 CPUs Number of | without | with | diff | diff | processes | Marker [Sec] | Marker [Sec] | [Sec] | [%] | -------------------------------------------------------------- 50 | 2.094 | 2.072 | -0.022 | -1.07 | 100 | 4.162 | 4.273 | +0.111 | +2.66 | 150 | 6.485 | 6.540 | +0.055 | +0.84 | 200 | 8.556 | 8.478 | -0.078 | -0.91 | 250 | 10.458 | 10.258 | -0.200 | -1.91 | 300 | 12.425 | 12.750 | +0.325 | +2.62 | 350 | 14.807 | 14.839 | +0.032 | +0.22 | 400 | 16.801 | 16.959 | +0.158 | +0.94 | 450 | 19.478 | 19.009 | -0.470 | -2.41 | 500 | 21.296 | 21.504 | +0.208 | +0.98 | 550 | 23.842 | 23.979 | +0.137 | +0.57 | 600 | 26.309 | 26.111 | -0.198 | -0.75 | 650 | 28.705 | 28.446 | -0.259 | -0.9 | 700 | 31.233 | 31.394 | +0.161 | +0.52 | 750 | 34.064 | 33.720 | -0.344 | -1.01 | 800 | 36.320 | 36.114 | -0.206 | -0.57 | -------------------------------------------------------------- Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Acked-by: Masami Hiramatsu <mhiramat@redhat.com> Acked-by: 'Peter Zijlstra' <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-18 16:16:16 +00:00
obj-$(CONFIG_TRACEPOINTS) += tracepoint.o
obj-$(CONFIG_LATENCYTOP) += latencytop.o
obj-$(CONFIG_BINFMT_ELF) += elfcore.o
obj-$(CONFIG_COMPAT_BINFMT_ELF) += elfcore.o
obj-$(CONFIG_BINFMT_ELF_FDPIC) += elfcore.o
obj-$(CONFIG_FUNCTION_TRACER) += trace/
ftrace: latency tracer infrastructure This patch adds the latency tracer infrastructure. This patch does not add anything that will select and turn it on, but will be used by later patches. If it were to be compiled, it would add the following files to the debugfs: The root tracing directory: /debugfs/tracing/ This patch also adds the following files: available_tracers list of available tracers. Currently no tracers are available. Looking into this file only shows "none" which is used to unregister all tracers. current_tracer The trace that is currently active. Empty on start up. To switch to a tracer simply echo one of the tracers that are listed in available_tracers: example: (used with later patches) echo function > /debugfs/tracing/current_tracer To disable the tracer: echo disable > /debugfs/tracing/current_tracer tracing_enabled echoing "1" into this file starts the ftrace function tracing (if sysctl kernel.ftrace_enabled=1) echoing "0" turns it off. latency_trace This file is readonly and holds the result of the trace. trace This file outputs a easier to read version of the trace. iter_ctrl Controls the way the output of traces look. So far there's two controls: echoing in "symonly" will only show the kallsyms variables without the addresses (if kallsyms was configured) echoing in "verbose" will change the output to show a lot more data, but not very easy to understand by humans. echoing in "nosymonly" turns off symonly. echoing in "noverbose" turns off verbose. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Arnaldo Carvalho de Melo <acme@ghostprotocols.net> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-12 19:20:42 +00:00
obj-$(CONFIG_TRACING) += trace/
obj-$(CONFIG_TRACE_CLOCK) += trace/
obj-$(CONFIG_RING_BUFFER) += trace/
obj-$(CONFIG_TRACEPOINTS) += trace/
obj-$(CONFIG_IRQ_WORK) += irq_work.o
obj-$(CONFIG_CPU_PM) += cpu_pm.o
obj-$(CONFIG_PERF_EVENTS) += events/
obj-$(CONFIG_USER_RETURN_NOTIFIER) += user-return-notifier.o
obj-$(CONFIG_PADATA) += padata.o
obj-$(CONFIG_CRASH_DUMP) += crash_dump.o
jump label: Reduce the cycle count by changing the link order In the course of testing jump labels for use with the CFS bandwidth controller, Paul Turner, discovered that using jump labels reduced the branch count and the instruction count, but did not reduce the cycle count or wall time. I noticed that having the jump_label.o included in the kernel but not used in any way still caused this increase in cycle count and wall time. Thus, I moved jump_label.o in the kernel/Makefile, thus changing the link order, and presumably moving it out of hot icache areas. This brought down the cycle count/time as expected. In addition to Paul's testing, I've tested the patch using a single 'static_branch()' in the getppid() path, and basically running tight loops of calls to getppid(). Here are my results for the branch disabled case: With jump labels turned on (CONFIG_JUMP_LABEL), branch disabled: Performance counter stats for 'bash -c /tmp/getppid;true' (50 runs): 3,969,510,217 instructions # 0.864 IPC ( +-0.000% ) 4,592,334,954 cycles ( +- 0.046% ) 751,634,470 branches ( +- 0.000% ) 1.722635797 seconds time elapsed ( +- 0.046% ) Jump labels turned off (CONFIG_JUMP_LABEL not set), branch disabled: Performance counter stats for 'bash -c /tmp/getppid;true' (50 runs): 4,009,611,846 instructions # 0.867 IPC ( +-0.000% ) 4,622,210,580 cycles ( +- 0.012% ) 771,662,904 branches ( +- 0.000% ) 1.734341454 seconds time elapsed ( +- 0.022% ) Signed-off-by: Jason Baron <jbaron@redhat.com> Cc: rth@redhat.com Cc: a.p.zijlstra@chello.nl Cc: rostedt@goodmis.org Link: http://lkml.kernel.org/r/20110805204040.GG2522@redhat.com Signed-off-by: Ingo Molnar <mingo@elte.hu> Tested-by: Paul Turner <pjt@google.com>
2011-08-05 20:40:40 +00:00
obj-$(CONFIG_JUMP_LABEL) += jump_label.o
obj-$(CONFIG_CONTEXT_TRACKING) += context_tracking.o
$(obj)/configs.o: $(obj)/config_data.h
# config_data.h contains the same information as ikconfig.h but gzipped.
# Info from config_data can be extracted from /proc/config*
targets += config_data.gz
$(obj)/config_data.gz: $(KCONFIG_CONFIG) FORCE
$(call if_changed,gzip)
filechk_ikconfiggz = (echo "static const char kernel_config_data[] __used = MAGIC_START"; cat $< | scripts/bin2c; echo "MAGIC_END;")
targets += config_data.h
$(obj)/config_data.h: $(obj)/config_data.gz FORCE
$(call filechk,ikconfiggz)
avoid overflows in kernel/time.c When the conversion factor between jiffies and milli- or microseconds is not a single multiply or divide, as for the case of HZ == 300, we currently do a multiply followed by a divide. The intervening result, however, is subject to overflows, especially since the fraction is not simplified (for HZ == 300, we multiply by 300 and divide by 1000). This is exposed to the user when passing a large timeout to poll(), for example. This patch replaces the multiply-divide with a reciprocal multiplication on 32-bit platforms. When the input is an unsigned long, there is no portable way to do this on 64-bit platforms there is no portable way to do this since it requires a 128-bit intermediate result (which gcc does support on 64-bit platforms but may generate libgcc calls, e.g. on 64-bit s390), but since the output is a 32-bit integer in the cases affected, just simplify the multiply-divide (*3/10 instead of *300/1000). The reciprocal multiply used can have off-by-one errors in the upper half of the valid output range. This could be avoided at the expense of having to deal with a potential 65-bit intermediate result. Since the intent is to avoid overflow problems and most of the other time conversions are only semiexact, the off-by-one errors were considered an acceptable tradeoff. At Ralf Baechle's suggestion, this version uses a Perl script to compute the necessary constants. We already have dependencies on Perl for kernel compiles. This does, however, require the Perl module Math::BigInt, which is included in the standard Perl distribution starting with version 5.8.0. In order to support older versions of Perl, include a table of canned constants in the script itself, and structure the script so that Math::BigInt isn't required if pulling values from said table. Running the script requires that the HZ value is available from the Makefile. Thus, this patch also adds the Kconfig variable CONFIG_HZ to the architectures which didn't already have it (alpha, cris, frv, h8300, m32r, m68k, m68knommu, sparc, v850, and xtensa.) It does *not* touch the sh or sh64 architectures, since Paul Mundt has dealt with those separately in the sh tree. Signed-off-by: H. Peter Anvin <hpa@zytor.com> Cc: Ralf Baechle <ralf@linux-mips.org>, Cc: Sam Ravnborg <sam@ravnborg.org>, Cc: Paul Mundt <lethal@linux-sh.org>, Cc: Richard Henderson <rth@twiddle.net>, Cc: Michael Starvik <starvik@axis.com>, Cc: David Howells <dhowells@redhat.com>, Cc: Yoshinori Sato <ysato@users.sourceforge.jp>, Cc: Hirokazu Takata <takata@linux-m32r.org>, Cc: Geert Uytterhoeven <geert@linux-m68k.org>, Cc: Roman Zippel <zippel@linux-m68k.org>, Cc: William L. Irwin <sparclinux@vger.kernel.org>, Cc: Chris Zankel <chris@zankel.net>, Cc: H. Peter Anvin <hpa@zytor.com>, Cc: Jan Engelhardt <jengelh@computergmbh.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 12:21:26 +00:00
$(obj)/time.o: $(obj)/timeconst.h
quiet_cmd_timeconst = TIMEC $@
cmd_timeconst = $(PERL) $< $(CONFIG_HZ) > $@
targets += timeconst.h
$(obj)/timeconst.h: $(src)/timeconst.pl FORCE
$(call if_changed,timeconst)
MODSIGN: Automatically generate module signing keys if missing Automatically generate keys for module signing if they're absent so that allyesconfig doesn't break. The builder should consider generating their own key and certificate, however, so that the keys are appropriately named. The private key for the module signer should be placed in signing_key.priv (unencrypted!) and the public key in an X.509 certificate as signing_key.x509. If a transient key is desired for signing the modules, a config file for 'openssl req' can be placed in x509.genkey, looking something like the following: [ req ] default_bits = 4096 distinguished_name = req_distinguished_name prompt = no x509_extensions = myexts [ req_distinguished_name ] O = Magarathea CN = Glacier signing key emailAddress = slartibartfast@magrathea.h2g2 [ myexts ] basicConstraints=critical,CA:FALSE keyUsage=digitalSignature subjectKeyIdentifier=hash authorityKeyIdentifier=hash The build process will use this to configure: openssl req -new -nodes -utf8 -sha1 -days 36500 -batch \ -x509 -config x509.genkey \ -outform DER -out signing_key.x509 \ -keyout signing_key.priv to generate the key. Note that it is required that the X.509 certificate have a subjectKeyIdentifier and an authorityKeyIdentifier. Without those, the certificate will be rejected. These can be used to check the validity of a certificate. Note that 'make distclean' will remove signing_key.{priv,x509} and x509.genkey, whether or not they were generated automatically. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-26 09:09:51 +00:00
ifeq ($(CONFIG_MODULE_SIG),y)
#
# Pull the signing certificate and any extra certificates into the kernel
#
quiet_cmd_touch = TOUCH $@
cmd_touch = touch $@
extra_certificates:
$(call cmd,touch)
kernel/modsign_certificate.o: signing_key.x509 extra_certificates
MODSIGN: Automatically generate module signing keys if missing Automatically generate keys for module signing if they're absent so that allyesconfig doesn't break. The builder should consider generating their own key and certificate, however, so that the keys are appropriately named. The private key for the module signer should be placed in signing_key.priv (unencrypted!) and the public key in an X.509 certificate as signing_key.x509. If a transient key is desired for signing the modules, a config file for 'openssl req' can be placed in x509.genkey, looking something like the following: [ req ] default_bits = 4096 distinguished_name = req_distinguished_name prompt = no x509_extensions = myexts [ req_distinguished_name ] O = Magarathea CN = Glacier signing key emailAddress = slartibartfast@magrathea.h2g2 [ myexts ] basicConstraints=critical,CA:FALSE keyUsage=digitalSignature subjectKeyIdentifier=hash authorityKeyIdentifier=hash The build process will use this to configure: openssl req -new -nodes -utf8 -sha1 -days 36500 -batch \ -x509 -config x509.genkey \ -outform DER -out signing_key.x509 \ -keyout signing_key.priv to generate the key. Note that it is required that the X.509 certificate have a subjectKeyIdentifier and an authorityKeyIdentifier. Without those, the certificate will be rejected. These can be used to check the validity of a certificate. Note that 'make distclean' will remove signing_key.{priv,x509} and x509.genkey, whether or not they were generated automatically. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-26 09:09:51 +00:00
###############################################################################
#
# If module signing is requested, say by allyesconfig, but a key has not been
# supplied, then one will need to be generated to make sure the build does not
# fail and that the kernel may be used afterwards.
#
###############################################################################
sign_key_with_hash :=
ifeq ($(CONFIG_MODULE_SIG_SHA1),y)
sign_key_with_hash := -sha1
endif
ifeq ($(CONFIG_MODULE_SIG_SHA224),y)
sign_key_with_hash := -sha224
endif
ifeq ($(CONFIG_MODULE_SIG_SHA256),y)
sign_key_with_hash := -sha256
endif
ifeq ($(CONFIG_MODULE_SIG_SHA384),y)
sign_key_with_hash := -sha384
endif
ifeq ($(CONFIG_MODULE_SIG_SHA512),y)
sign_key_with_hash := -sha512
endif
ifeq ($(sign_key_with_hash),)
$(error Could not determine digest type to use from kernel config)
endif
MODSIGN: Automatically generate module signing keys if missing Automatically generate keys for module signing if they're absent so that allyesconfig doesn't break. The builder should consider generating their own key and certificate, however, so that the keys are appropriately named. The private key for the module signer should be placed in signing_key.priv (unencrypted!) and the public key in an X.509 certificate as signing_key.x509. If a transient key is desired for signing the modules, a config file for 'openssl req' can be placed in x509.genkey, looking something like the following: [ req ] default_bits = 4096 distinguished_name = req_distinguished_name prompt = no x509_extensions = myexts [ req_distinguished_name ] O = Magarathea CN = Glacier signing key emailAddress = slartibartfast@magrathea.h2g2 [ myexts ] basicConstraints=critical,CA:FALSE keyUsage=digitalSignature subjectKeyIdentifier=hash authorityKeyIdentifier=hash The build process will use this to configure: openssl req -new -nodes -utf8 -sha1 -days 36500 -batch \ -x509 -config x509.genkey \ -outform DER -out signing_key.x509 \ -keyout signing_key.priv to generate the key. Note that it is required that the X.509 certificate have a subjectKeyIdentifier and an authorityKeyIdentifier. Without those, the certificate will be rejected. These can be used to check the validity of a certificate. Note that 'make distclean' will remove signing_key.{priv,x509} and x509.genkey, whether or not they were generated automatically. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-26 09:09:51 +00:00
signing_key.priv signing_key.x509: x509.genkey
@echo "###"
@echo "### Now generating an X.509 key pair to be used for signing modules."
@echo "###"
@echo "### If this takes a long time, you might wish to run rngd in the"
@echo "### background to keep the supply of entropy topped up. It"
@echo "### needs to be run as root, and uses a hardware random"
@echo "### number generator if one is available."
MODSIGN: Automatically generate module signing keys if missing Automatically generate keys for module signing if they're absent so that allyesconfig doesn't break. The builder should consider generating their own key and certificate, however, so that the keys are appropriately named. The private key for the module signer should be placed in signing_key.priv (unencrypted!) and the public key in an X.509 certificate as signing_key.x509. If a transient key is desired for signing the modules, a config file for 'openssl req' can be placed in x509.genkey, looking something like the following: [ req ] default_bits = 4096 distinguished_name = req_distinguished_name prompt = no x509_extensions = myexts [ req_distinguished_name ] O = Magarathea CN = Glacier signing key emailAddress = slartibartfast@magrathea.h2g2 [ myexts ] basicConstraints=critical,CA:FALSE keyUsage=digitalSignature subjectKeyIdentifier=hash authorityKeyIdentifier=hash The build process will use this to configure: openssl req -new -nodes -utf8 -sha1 -days 36500 -batch \ -x509 -config x509.genkey \ -outform DER -out signing_key.x509 \ -keyout signing_key.priv to generate the key. Note that it is required that the X.509 certificate have a subjectKeyIdentifier and an authorityKeyIdentifier. Without those, the certificate will be rejected. These can be used to check the validity of a certificate. Note that 'make distclean' will remove signing_key.{priv,x509} and x509.genkey, whether or not they were generated automatically. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-26 09:09:51 +00:00
@echo "###"
openssl req -new -nodes -utf8 $(sign_key_with_hash) -days 36500 -batch \
MODSIGN: Automatically generate module signing keys if missing Automatically generate keys for module signing if they're absent so that allyesconfig doesn't break. The builder should consider generating their own key and certificate, however, so that the keys are appropriately named. The private key for the module signer should be placed in signing_key.priv (unencrypted!) and the public key in an X.509 certificate as signing_key.x509. If a transient key is desired for signing the modules, a config file for 'openssl req' can be placed in x509.genkey, looking something like the following: [ req ] default_bits = 4096 distinguished_name = req_distinguished_name prompt = no x509_extensions = myexts [ req_distinguished_name ] O = Magarathea CN = Glacier signing key emailAddress = slartibartfast@magrathea.h2g2 [ myexts ] basicConstraints=critical,CA:FALSE keyUsage=digitalSignature subjectKeyIdentifier=hash authorityKeyIdentifier=hash The build process will use this to configure: openssl req -new -nodes -utf8 -sha1 -days 36500 -batch \ -x509 -config x509.genkey \ -outform DER -out signing_key.x509 \ -keyout signing_key.priv to generate the key. Note that it is required that the X.509 certificate have a subjectKeyIdentifier and an authorityKeyIdentifier. Without those, the certificate will be rejected. These can be used to check the validity of a certificate. Note that 'make distclean' will remove signing_key.{priv,x509} and x509.genkey, whether or not they were generated automatically. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-26 09:09:51 +00:00
-x509 -config x509.genkey \
-outform DER -out signing_key.x509 \
-keyout signing_key.priv
@echo "###"
@echo "### Key pair generated."
@echo "###"
x509.genkey:
@echo Generating X.509 key generation config
@echo >x509.genkey "[ req ]"
@echo >>x509.genkey "default_bits = 4096"
@echo >>x509.genkey "distinguished_name = req_distinguished_name"
@echo >>x509.genkey "prompt = no"
@echo >>x509.genkey "string_mask = utf8only"
MODSIGN: Automatically generate module signing keys if missing Automatically generate keys for module signing if they're absent so that allyesconfig doesn't break. The builder should consider generating their own key and certificate, however, so that the keys are appropriately named. The private key for the module signer should be placed in signing_key.priv (unencrypted!) and the public key in an X.509 certificate as signing_key.x509. If a transient key is desired for signing the modules, a config file for 'openssl req' can be placed in x509.genkey, looking something like the following: [ req ] default_bits = 4096 distinguished_name = req_distinguished_name prompt = no x509_extensions = myexts [ req_distinguished_name ] O = Magarathea CN = Glacier signing key emailAddress = slartibartfast@magrathea.h2g2 [ myexts ] basicConstraints=critical,CA:FALSE keyUsage=digitalSignature subjectKeyIdentifier=hash authorityKeyIdentifier=hash The build process will use this to configure: openssl req -new -nodes -utf8 -sha1 -days 36500 -batch \ -x509 -config x509.genkey \ -outform DER -out signing_key.x509 \ -keyout signing_key.priv to generate the key. Note that it is required that the X.509 certificate have a subjectKeyIdentifier and an authorityKeyIdentifier. Without those, the certificate will be rejected. These can be used to check the validity of a certificate. Note that 'make distclean' will remove signing_key.{priv,x509} and x509.genkey, whether or not they were generated automatically. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-09-26 09:09:51 +00:00
@echo >>x509.genkey "x509_extensions = myexts"
@echo >>x509.genkey
@echo >>x509.genkey "[ req_distinguished_name ]"
@echo >>x509.genkey "O = Magrathea"
@echo >>x509.genkey "CN = Glacier signing key"
@echo >>x509.genkey "emailAddress = slartibartfast@magrathea.h2g2"
@echo >>x509.genkey
@echo >>x509.genkey "[ myexts ]"
@echo >>x509.genkey "basicConstraints=critical,CA:FALSE"
@echo >>x509.genkey "keyUsage=digitalSignature"
@echo >>x509.genkey "subjectKeyIdentifier=hash"
@echo >>x509.genkey "authorityKeyIdentifier=keyid"
endif