osmo-trx/Transceiver52M/sigProcLib.cpp

1943 lines
47 KiB
C++
Raw Normal View History

/*
* Copyright 2008, 2011 Free Software Foundation, Inc.
*
* SPDX-License-Identifier: AGPL-3.0+
*
* This software is distributed under the terms of the GNU Affero Public License.
* See the COPYING file in the main directory for details.
*
* This use of this software may be subject to additional restrictions.
* See the LEGAL file in the main directory for details.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "sigProcLib.h"
#include "GSMCommon.h"
#include "Logger.h"
#include "Resampler.h"
extern "C" {
#include <osmocom/core/panic.h>
#include "convolve.h"
#include "scale.h"
#include "mult.h"
}
using namespace GSM;
#define TABLESIZE 1024
#define DELAYFILTS 64
/* Clipping detection threshold */
#define CLIP_THRESH 30000.0f
/** Lookup tables for trigonometric approximation */
static float sincTable[TABLESIZE+1]; // add 1 element for wrap around
/** Constants */
static const float M_PI_F = (float)M_PI;
/* Precomputed rotation vectors */
static signalVector *GMSKRotation4 = NULL;
static signalVector *GMSKReverseRotation4 = NULL;
static signalVector *GMSKRotation1 = NULL;
static signalVector *GMSKReverseRotation1 = NULL;
/* Precomputed fractional delay filters */
static signalVector *delayFilters[DELAYFILTS];
static const Complex<float> psk8_table[8] = {
Complex<float>(-0.70710678, 0.70710678),
Complex<float>( 0.0, -1.0),
Complex<float>( 0.0, 1.0),
Complex<float>( 0.70710678, -0.70710678),
Complex<float>(-1.0, 0.0),
Complex<float>(-0.70710678, -0.70710678),
Complex<float>( 0.70710678, 0.70710678),
Complex<float>( 1.0, 0.0),
};
/* Downsampling filterbank - 4 SPS to 1 SPS */
#define DOWNSAMPLE_IN_LEN 624
#define DOWNSAMPLE_OUT_LEN 156
static Resampler *dnsampler = NULL;
/*
* RACH and midamble correlation waveforms. Store the buffer separately
* because we need to allocate it explicitly outside of the signal vector
* constructor. This is because C++ (prior to C++11) is unable to natively
* perform 16-byte memory alignment required by many SSE instructions.
*/
struct CorrelationSequence {
CorrelationSequence() : sequence(NULL), buffer(NULL), toa(0.0)
{
}
~CorrelationSequence()
{
delete sequence;
}
signalVector *sequence;
void *buffer;
float toa;
complex gain;
};
/*
* Gaussian and empty modulation pulses. Like the correlation sequences,
* store the runtime (Gaussian) buffer separately because of needed alignment
* for SSE instructions.
*/
struct PulseSequence {
SigProcLib: Improve Vector buffer allocation mess Original issue: In order to use SSE instructions, 16-byte aligned memory chunks are needed, and C++ version < C++11 doesn't provide for a native new/delete store. For that reason, memalign() must be used in the implementation of convolve_h_alloc() for some buffers. On the other side, The C++ code relies on C++ "new T[]" operator to allocate a chunk of memory containing an array of class instances. As classes are complex types, they cannot be allocated through C structures (calling malloc). Experimentally can be seen too that it's unreliable and the process will crash during startup if malloc() is used and then a Complex<> deferred from it. Previous implementation allowed for use of convolve_h_alloc or new[] based on how the (signal)Vector is called, because then the buffer is not going to be managed internally. But that's unreliable since resize() calling resize() on it could use "delete" operator on a malloc'ed buffer, and end up having a new new[] allocated buffer. It was also found that some of the callers were actually leaking memory through ASan (because the buffer is not managed by the Vector instance). IMHO best option would be to rewrite all this code using C structures and malloc/free exclusively, since it would make all this cod eeasier to maintain. But for now, let's extend the Vector class to allow specifying an external alloc/free function and let the Vector instance take care of the ownership of the buffer in all scenarios. Change-Id: Ie484a4762a7f77fe1b105188ea03a6f025730b82
2018-12-03 16:46:04 +00:00
PulseSequence() : c0(NULL), c1(NULL), c0_inv(NULL), empty(NULL)
{
}
~PulseSequence()
{
delete c0;
delete c1;
delete c0_inv;
delete empty;
}
signalVector *c0;
signalVector *c1;
signalVector *c0_inv;
signalVector *empty;
};
static CorrelationSequence *gMidambles[] = {NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL};
static CorrelationSequence *gEdgeMidambles[] = {NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL};
static CorrelationSequence *gRACHSequences[] = {NULL,NULL,NULL};
static PulseSequence *GSMPulse1 = NULL;
static PulseSequence *GSMPulse4 = NULL;
void sigProcLibDestroy()
{
for (int i = 0; i < 8; i++) {
delete gMidambles[i];
delete gEdgeMidambles[i];
gMidambles[i] = NULL;
gEdgeMidambles[i] = NULL;
}
for (int i = 0; i < DELAYFILTS; i++) {
delete delayFilters[i];
delayFilters[i] = NULL;
}
for (int i = 0; i < 3; i++) {
delete gRACHSequences[i];
gRACHSequences[i] = NULL;
}
delete GMSKRotation1;
delete GMSKReverseRotation1;
delete GMSKRotation4;
delete GMSKReverseRotation4;
delete GSMPulse1;
delete GSMPulse4;
delete dnsampler;
GMSKRotation1 = NULL;
GMSKRotation4 = NULL;
GMSKReverseRotation4 = NULL;
GMSKReverseRotation1 = NULL;
GSMPulse1 = NULL;
GSMPulse4 = NULL;
}
static float vectorNorm2(const signalVector &x)
{
signalVector::const_iterator xPtr = x.begin();
float Energy = 0.0;
for (;xPtr != x.end();xPtr++) {
Energy += xPtr->norm2();
}
return Energy;
}
/*
* Initialize 4 sps and 1 sps rotation tables
*/
static void initGMSKRotationTables()
{
size_t len1 = 157, len4 = 625;
GMSKRotation4 = new signalVector(len4);
GMSKReverseRotation4 = new signalVector(len4);
signalVector::iterator rotPtr = GMSKRotation4->begin();
signalVector::iterator revPtr = GMSKReverseRotation4->begin();
auto phase = 0.0;
while (rotPtr != GMSKRotation4->end()) {
*rotPtr++ = complex(cos(phase), sin(phase));
*revPtr++ = complex(cos(-phase), sin(-phase));
phase += M_PI / 2.0 / 4.0;
}
GMSKRotation1 = new signalVector(len1);
GMSKReverseRotation1 = new signalVector(len1);
rotPtr = GMSKRotation1->begin();
revPtr = GMSKReverseRotation1->begin();
phase = 0.0;
while (rotPtr != GMSKRotation1->end()) {
*rotPtr++ = complex(cos(phase), sin(phase));
*revPtr++ = complex(cos(-phase), sin(-phase));
phase += M_PI / 2.0;
}
}
static void GMSKRotate(signalVector &x, int sps)
{
#if HAVE_NEON
size_t len;
signalVector *a, *b, *out;
a = &x;
out = &x;
len = out->size();
if (len == 157)
len--;
if (sps == 1)
b = GMSKRotation1;
else
b = GMSKRotation4;
mul_complex((float *) out->begin(),
(float *) a->begin(),
(float *) b->begin(), len);
#else
signalVector::iterator rotPtr, xPtr = x.begin();
if (sps == 1)
rotPtr = GMSKRotation1->begin();
else
rotPtr = GMSKRotation4->begin();
if (x.isReal()) {
while (xPtr < x.end()) {
*xPtr = *rotPtr++ * (xPtr->real());
xPtr++;
}
}
else {
while (xPtr < x.end()) {
*xPtr = *rotPtr++ * (*xPtr);
xPtr++;
}
}
#endif
}
static bool GMSKReverseRotate(signalVector &x, int sps)
{
signalVector::iterator rotPtr, xPtr= x.begin();
if (sps == 1)
rotPtr = GMSKReverseRotation1->begin();
else if (sps == 4)
rotPtr = GMSKReverseRotation4->begin();
else
return false;
if (x.isReal()) {
while (xPtr < x.end()) {
*xPtr = *rotPtr++ * (xPtr->real());
xPtr++;
}
}
else {
while (xPtr < x.end()) {
*xPtr = *rotPtr++ * (*xPtr);
xPtr++;
}
}
return true;
}
/** Convolution type indicator */
enum ConvType {
START_ONLY,
NO_DELAY,
CUSTOM,
UNDEFINED,
};
static signalVector *convolve(const signalVector *x, const signalVector *h,
signalVector *y, ConvType spanType,
size_t start = 0, size_t len = 0)
{
int rc;
size_t head = 0, tail = 0;
bool alloc = false, append = false;
const signalVector *_x = NULL;
if (!x || !h)
return NULL;
switch (spanType) {
case START_ONLY:
start = 0;
head = h->size() - 1;
len = x->size();
if (x->getStart() < head)
append = true;
break;
case NO_DELAY:
start = h->size() / 2;
head = start;
tail = start;
len = x->size();
append = true;
break;
case CUSTOM:
if (start < h->size() - 1) {
head = h->size() - start;
append = true;
}
if (start + len > x->size()) {
tail = start + len - x->size();
append = true;
}
break;
default:
return NULL;
}
/*
* Error if the output vector is too small. Create the output vector
* if the pointer is NULL.
*/
if (y && (len > y->size()))
return NULL;
if (!y) {
SigProcLib: Improve Vector buffer allocation mess Original issue: In order to use SSE instructions, 16-byte aligned memory chunks are needed, and C++ version < C++11 doesn't provide for a native new/delete store. For that reason, memalign() must be used in the implementation of convolve_h_alloc() for some buffers. On the other side, The C++ code relies on C++ "new T[]" operator to allocate a chunk of memory containing an array of class instances. As classes are complex types, they cannot be allocated through C structures (calling malloc). Experimentally can be seen too that it's unreliable and the process will crash during startup if malloc() is used and then a Complex<> deferred from it. Previous implementation allowed for use of convolve_h_alloc or new[] based on how the (signal)Vector is called, because then the buffer is not going to be managed internally. But that's unreliable since resize() calling resize() on it could use "delete" operator on a malloc'ed buffer, and end up having a new new[] allocated buffer. It was also found that some of the callers were actually leaking memory through ASan (because the buffer is not managed by the Vector instance). IMHO best option would be to rewrite all this code using C structures and malloc/free exclusively, since it would make all this cod eeasier to maintain. But for now, let's extend the Vector class to allow specifying an external alloc/free function and let the Vector instance take care of the ownership of the buffer in all scenarios. Change-Id: Ie484a4762a7f77fe1b105188ea03a6f025730b82
2018-12-03 16:46:04 +00:00
y = new signalVector(len, convolve_h_alloc, free);
alloc = true;
}
/* Prepend or post-pend the input vector if the parameters require it */
if (append)
_x = new signalVector(*x, head, tail);
else
_x = x;
/*
* Four convolve types:
* 1. Complex-Real (aligned)
* 2. Complex-Complex (aligned)
* 3. Complex-Real (!aligned)
* 4. Complex-Complex (!aligned)
*/
if (h->isReal() && h->isAligned()) {
rc = convolve_real((float *) _x->begin(), _x->size(),
(float *) h->begin(), h->size(),
(float *) y->begin(), y->size(),
start, len);
} else if (!h->isReal() && h->isAligned()) {
rc = convolve_complex((float *) _x->begin(), _x->size(),
(float *) h->begin(), h->size(),
(float *) y->begin(), y->size(),
start, len);
} else if (h->isReal() && !h->isAligned()) {
rc = base_convolve_real((float *) _x->begin(), _x->size(),
(float *) h->begin(), h->size(),
(float *) y->begin(), y->size(),
start, len);
} else if (!h->isReal() && !h->isAligned()) {
rc = base_convolve_complex((float *) _x->begin(), _x->size(),
(float *) h->begin(), h->size(),
(float *) y->begin(), y->size(),
start, len);
} else {
rc = -1;
}
if (append)
delete _x;
if (rc < 0) {
if (alloc)
delete y;
return NULL;
}
return y;
}
/*
* Generate static EDGE linear equalizer. This equalizer is not adaptive.
* Filter taps are generated from the inverted 1 SPS impulse response of
* the EDGE pulse shape captured after the downsampling filter.
*/
static bool generateInvertC0Pulse(PulseSequence *pulse)
{
if (!pulse)
return false;
SigProcLib: Improve Vector buffer allocation mess Original issue: In order to use SSE instructions, 16-byte aligned memory chunks are needed, and C++ version < C++11 doesn't provide for a native new/delete store. For that reason, memalign() must be used in the implementation of convolve_h_alloc() for some buffers. On the other side, The C++ code relies on C++ "new T[]" operator to allocate a chunk of memory containing an array of class instances. As classes are complex types, they cannot be allocated through C structures (calling malloc). Experimentally can be seen too that it's unreliable and the process will crash during startup if malloc() is used and then a Complex<> deferred from it. Previous implementation allowed for use of convolve_h_alloc or new[] based on how the (signal)Vector is called, because then the buffer is not going to be managed internally. But that's unreliable since resize() calling resize() on it could use "delete" operator on a malloc'ed buffer, and end up having a new new[] allocated buffer. It was also found that some of the callers were actually leaking memory through ASan (because the buffer is not managed by the Vector instance). IMHO best option would be to rewrite all this code using C structures and malloc/free exclusively, since it would make all this cod eeasier to maintain. But for now, let's extend the Vector class to allow specifying an external alloc/free function and let the Vector instance take care of the ownership of the buffer in all scenarios. Change-Id: Ie484a4762a7f77fe1b105188ea03a6f025730b82
2018-12-03 16:46:04 +00:00
pulse->c0_inv = new signalVector((complex *) convolve_h_alloc(5), 0, 5, convolve_h_alloc, free);
pulse->c0_inv->isReal(true);
pulse->c0_inv->setAligned(false);
signalVector::iterator xP = pulse->c0_inv->begin();
*xP++ = 0.15884;
*xP++ = -0.43176;
*xP++ = 1.00000;
*xP++ = -0.42608;
*xP++ = 0.14882;
return true;
}
static bool generateC1Pulse(int sps, PulseSequence *pulse)
{
int len;
if (!pulse)
return false;
switch (sps) {
case 4:
len = 8;
break;
default:
return false;
}
SigProcLib: Improve Vector buffer allocation mess Original issue: In order to use SSE instructions, 16-byte aligned memory chunks are needed, and C++ version < C++11 doesn't provide for a native new/delete store. For that reason, memalign() must be used in the implementation of convolve_h_alloc() for some buffers. On the other side, The C++ code relies on C++ "new T[]" operator to allocate a chunk of memory containing an array of class instances. As classes are complex types, they cannot be allocated through C structures (calling malloc). Experimentally can be seen too that it's unreliable and the process will crash during startup if malloc() is used and then a Complex<> deferred from it. Previous implementation allowed for use of convolve_h_alloc or new[] based on how the (signal)Vector is called, because then the buffer is not going to be managed internally. But that's unreliable since resize() calling resize() on it could use "delete" operator on a malloc'ed buffer, and end up having a new new[] allocated buffer. It was also found that some of the callers were actually leaking memory through ASan (because the buffer is not managed by the Vector instance). IMHO best option would be to rewrite all this code using C structures and malloc/free exclusively, since it would make all this cod eeasier to maintain. But for now, let's extend the Vector class to allow specifying an external alloc/free function and let the Vector instance take care of the ownership of the buffer in all scenarios. Change-Id: Ie484a4762a7f77fe1b105188ea03a6f025730b82
2018-12-03 16:46:04 +00:00
pulse->c1 = new signalVector((complex *) convolve_h_alloc(len), 0, len, convolve_h_alloc, free);
pulse->c1->isReal(true);
/* Enable alignment for SSE usage */
pulse->c1->setAligned(true);
signalVector::iterator xP = pulse->c1->begin();
switch (sps) {
case 4:
/* BT = 0.30 */
*xP++ = 0.0;
*xP++ = 8.16373112e-03;
*xP++ = 2.84385729e-02;
*xP++ = 5.64158904e-02;
*xP++ = 7.05463553e-02;
*xP++ = 5.64158904e-02;
*xP++ = 2.84385729e-02;
*xP++ = 8.16373112e-03;
}
return true;
}
static PulseSequence *generateGSMPulse(int sps)
{
int len;
float arg, avg, center;
PulseSequence *pulse;
if ((sps != 1) && (sps != 4))
return NULL;
/* Store a single tap filter used for correlation sequence generation */
pulse = new PulseSequence();
pulse->empty = new signalVector(1);
pulse->empty->isReal(true);
*(pulse->empty->begin()) = 1.0f;
/*
* For 4 samples-per-symbol use a precomputed single pulse Laurent
* approximation. This should yields below 2 degrees of phase error at
* the modulator output. Use the existing pulse approximation for all
* other oversampling factors.
*/
switch (sps) {
case 4:
len = 16;
break;
case 1:
default:
len = 4;
}
SigProcLib: Improve Vector buffer allocation mess Original issue: In order to use SSE instructions, 16-byte aligned memory chunks are needed, and C++ version < C++11 doesn't provide for a native new/delete store. For that reason, memalign() must be used in the implementation of convolve_h_alloc() for some buffers. On the other side, The C++ code relies on C++ "new T[]" operator to allocate a chunk of memory containing an array of class instances. As classes are complex types, they cannot be allocated through C structures (calling malloc). Experimentally can be seen too that it's unreliable and the process will crash during startup if malloc() is used and then a Complex<> deferred from it. Previous implementation allowed for use of convolve_h_alloc or new[] based on how the (signal)Vector is called, because then the buffer is not going to be managed internally. But that's unreliable since resize() calling resize() on it could use "delete" operator on a malloc'ed buffer, and end up having a new new[] allocated buffer. It was also found that some of the callers were actually leaking memory through ASan (because the buffer is not managed by the Vector instance). IMHO best option would be to rewrite all this code using C structures and malloc/free exclusively, since it would make all this cod eeasier to maintain. But for now, let's extend the Vector class to allow specifying an external alloc/free function and let the Vector instance take care of the ownership of the buffer in all scenarios. Change-Id: Ie484a4762a7f77fe1b105188ea03a6f025730b82
2018-12-03 16:46:04 +00:00
pulse->c0 = new signalVector((complex *) convolve_h_alloc(len), 0, len, convolve_h_alloc, free);
pulse->c0->isReal(true);
/* Enable alingnment for SSE usage */
pulse->c0->setAligned(true);
signalVector::iterator xP = pulse->c0->begin();
if (sps == 4) {
*xP++ = 0.0;
*xP++ = 4.46348606e-03;
*xP++ = 2.84385729e-02;
*xP++ = 1.03184855e-01;
*xP++ = 2.56065552e-01;
*xP++ = 4.76375085e-01;
*xP++ = 7.05961177e-01;
*xP++ = 8.71291644e-01;
*xP++ = 9.29453645e-01;
*xP++ = 8.71291644e-01;
*xP++ = 7.05961177e-01;
*xP++ = 4.76375085e-01;
*xP++ = 2.56065552e-01;
*xP++ = 1.03184855e-01;
*xP++ = 2.84385729e-02;
*xP++ = 4.46348606e-03;
generateC1Pulse(sps, pulse);
} else {
center = (float) (len - 1.0) / 2.0;
/* GSM pulse approximation */
for (int i = 0; i < len; i++) {
arg = ((float) i - center) / (float) sps;
*xP++ = 0.96 * exp(-1.1380 * arg * arg -
0.527 * arg * arg * arg * arg);
}
avg = sqrtf(vectorNorm2(*pulse->c0) / sps);
xP = pulse->c0->begin();
for (int i = 0; i < len; i++)
*xP++ /= avg;
}
/*
* Current form of the EDGE equalization filter non-realizable at 4 SPS.
* Load the onto both 1 SPS and 4 SPS objects for convenience. Note that
* the EDGE demodulator downsamples to 1 SPS prior to equalization.
*/
generateInvertC0Pulse(pulse);
return pulse;
}
/* Convert -1..+1 soft bits to 0..1 soft bits */
void vectorSlicer(float *dest, const float *src, size_t len)
{
size_t i;
for (i = 0; i < len; i++) {
dest[i] = 0.5 * (src[i] + 1.0f);
if (dest[i] > 1.0)
dest[i] = 1.0;
else if (dest[i] < 0.0)
dest[i] = 0.0;
}
}
static signalVector *rotateBurst(const BitVector &wBurst,
int guardPeriodLength, int sps)
{
int burst_len;
signalVector *pulse, rotated;
signalVector::iterator itr;
pulse = GSMPulse1->empty;
burst_len = sps * (wBurst.size() + guardPeriodLength);
rotated = signalVector(burst_len);
itr = rotated.begin();
for (unsigned i = 0; i < wBurst.size(); i++) {
*itr = 2.0 * (wBurst[i] & 0x01) - 1.0;
itr += sps;
}
GMSKRotate(rotated, sps);
rotated.isReal(false);
/* Dummy filter operation */
return convolve(&rotated, pulse, NULL, START_ONLY);
}
static void rotateBurst2(signalVector &burst, double phase)
{
Complex<float> rot = Complex<float>(cos(phase), sin(phase));
for (size_t i = 0; i < burst.size(); i++)
burst[i] = burst[i] * rot;
}
/*
* Ignore the guard length argument in the GMSK modulator interface
* because it results in 624/628 sized bursts instead of the preferred
* burst length of 625. Only 4 SPS is supported.
*/
static signalVector *modulateBurstLaurent(const BitVector &bits)
{
int burst_len, sps = 4;
float phase;
signalVector *c0_pulse, *c1_pulse, *c0_shaped, *c1_shaped;
signalVector::iterator c0_itr, c1_itr;
c0_pulse = GSMPulse4->c0;
c1_pulse = GSMPulse4->c1;
if (bits.size() > 156)
return NULL;
burst_len = 625;
signalVector c0_burst(burst_len, c0_pulse->size());
c0_burst.isReal(true);
c0_itr = c0_burst.begin();
signalVector c1_burst(burst_len, c1_pulse->size());
c1_itr = c1_burst.begin();
/* Padded differential tail bits */
*c0_itr = 2.0 * (0x00 & 0x01) - 1.0;
c0_itr += sps;
/* Main burst bits */
for (unsigned i = 0; i < bits.size(); i++) {
*c0_itr = 2.0 * (bits[i] & 0x01) - 1.0;
c0_itr += sps;
}
/* Padded differential tail bits */
*c0_itr = 2.0 * (0x00 & 0x01) - 1.0;
/* Generate C0 phase coefficients */
GMSKRotate(c0_burst, sps);
c0_burst.isReal(false);
c0_itr = c0_burst.begin();
c0_itr += sps * 2;
c1_itr += sps * 2;
/* Start magic */
phase = 2.0 * ((0x01 & 0x01) ^ (0x01 & 0x01)) - 1.0;
*c1_itr = *c0_itr * Complex<float>(0, phase);
c0_itr += sps;
c1_itr += sps;
/* Generate C1 phase coefficients */
for (unsigned i = 2; i < bits.size(); i++) {
phase = 2.0 * ((bits[i - 1] & 0x01) ^ (bits[i - 2] & 0x01)) - 1.0;
*c1_itr = *c0_itr * Complex<float>(0, phase);
c0_itr += sps;
c1_itr += sps;
}
/* End magic */
int i = bits.size();
phase = 2.0 * ((bits[i-1] & 0x01) ^ (bits[i-2] & 0x01)) - 1.0;
*c1_itr = *c0_itr * Complex<float>(0, phase);
/* Primary (C0) and secondary (C1) pulse shaping */
c0_shaped = convolve(&c0_burst, c0_pulse, NULL, START_ONLY);
c1_shaped = convolve(&c1_burst, c1_pulse, NULL, START_ONLY);
/* Sum shaped outputs into C0 */
c0_itr = c0_shaped->begin();
c1_itr = c1_shaped->begin();
for (unsigned i = 0; i < c0_shaped->size(); i++ )
*c0_itr++ += *c1_itr++;
delete c1_shaped;
return c0_shaped;
}
static signalVector *rotateEdgeBurst(const signalVector &symbols, int sps)
{
signalVector *burst;
signalVector::iterator burst_itr;
burst = new signalVector(symbols.size() * sps);
burst_itr = burst->begin();
for (size_t i = 0; i < symbols.size(); i++) {
float phase = i * 3.0f * M_PI / 8.0f;
Complex<float> rot = Complex<float>(cos(phase), sin(phase));
*burst_itr = symbols[i] * rot;
burst_itr += sps;
}
return burst;
}
static signalVector *derotateEdgeBurst(const signalVector &symbols, int sps)
{
signalVector *burst;
signalVector::iterator burst_itr;
if (symbols.size() % sps)
return NULL;
burst = new signalVector(symbols.size() / sps);
burst_itr = burst->begin();
for (size_t i = 0; i < burst->size(); i++) {
float phase = (float) (i % 16) * 3.0f * M_PI / 8.0f;
Complex<float> rot = Complex<float>(cosf(phase), -sinf(phase));
*burst_itr = symbols[sps * i] * rot;
burst_itr++;
}
return burst;
}
static signalVector *mapEdgeSymbols(const BitVector &bits)
{
if (bits.size() % 3)
return NULL;
signalVector *symbols = new signalVector(bits.size() / 3);
for (size_t i = 0; i < symbols->size(); i++) {
unsigned index = (((unsigned) bits[3 * i + 0] & 0x01) << 0) |
(((unsigned) bits[3 * i + 1] & 0x01) << 1) |
(((unsigned) bits[3 * i + 2] & 0x01) << 2);
(*symbols)[i] = psk8_table[index];
}
return symbols;
}
/*
* EDGE 8-PSK rotate and pulse shape
*
* Delay the EDGE downlink bursts by one symbol in order to match GMSK pulse
* shaping group delay. The difference in group delay arises from the dual
* pulse filter combination of the GMSK Laurent representation whereas 8-PSK
* uses a single pulse linear filter.
*/
static signalVector *shapeEdgeBurst(const signalVector &symbols)
{
size_t nsyms, nsamps = 625, sps = 4;
signalVector::iterator burst_itr;
nsyms = symbols.size();
if (nsyms * sps > nsamps)
nsyms = 156;
signalVector burst(nsamps, GSMPulse4->c0->size());
/* Delay burst by 1 symbol */
burst_itr = burst.begin() + sps;
for (size_t i = 0; i < nsyms; i++) {
float phase = i * 3.0f * M_PI / 8.0f;
Complex<float> rot = Complex<float>(cos(phase), sin(phase));
*burst_itr = symbols[i] * rot;
burst_itr += sps;
}
/* Single Gaussian pulse approximation shaping */
return convolve(&burst, GSMPulse4->c0, NULL, START_ONLY);
}
/*
* Generate a random GSM normal burst.
*/
signalVector *genRandNormalBurst(int tsc, int sps, int tn)
{
if ((tsc < 0) || (tsc > 7) || (tn < 0) || (tn > 7))
return NULL;
if ((sps != 1) && (sps != 4))
return NULL;
int i = 0;
BitVector bits(148);
/* Tail bits */
for (; i < 3; i++)
bits[i] = 0;
/* Random bits */
for (; i < 60; i++)
bits[i] = rand() % 2;
/* Stealing bit */
bits[i++] = 0;
/* Training sequence */
for (int n = 0; i < 87; i++, n++)
bits[i] = gTrainingSequence[tsc][n];
/* Stealing bit */
bits[i++] = 0;
/* Random bits */
for (; i < 145; i++)
bits[i] = rand() % 2;
/* Tail bits */
for (; i < 148; i++)
bits[i] = 0;
int guard = 8 + !(tn % 4);
return modulateBurst(bits, guard, sps);
}
/*
* Generate a random GSM access burst.
*/
signalVector *genRandAccessBurst(int delay, int sps, int tn)
{
if ((tn < 0) || (tn > 7))
return NULL;
if ((sps != 1) && (sps != 4))
return NULL;
if (delay > 68)
return NULL;
int i = 0;
BitVector bits(88 + delay);
/* delay */
for (; i < delay; i++)
bits[i] = 0;
/* head and synch bits */
for (int n = 0; i < 49+delay; i++, n++)
bits[i] = gRACHBurst[n];
/* Random bits */
for (; i < 85+delay; i++)
bits[i] = rand() % 2;
/* Tail bits */
for (; i < 88+delay; i++)
bits[i] = 0;
int guard = 68-delay + !(tn % 4);
return modulateBurst(bits, guard, sps);
}
signalVector *generateEmptyBurst(int sps, int tn)
{
if ((tn < 0) || (tn > 7))
return NULL;
if (sps == 4)
return new signalVector(625);
else if (sps == 1)
return new signalVector(148 + 8 + !(tn % 4));
else
return NULL;
}
signalVector *generateDummyBurst(int sps, int tn)
{
if (((sps != 1) && (sps != 4)) || (tn < 0) || (tn > 7))
return NULL;
return modulateBurst(gDummyBurst, 8 + !(tn % 4), sps);
}
/*
* Generate a random 8-PSK EDGE burst. Only 4 SPS is supported with
* the returned burst being 625 samples in length.
*/
signalVector *generateEdgeBurst(int tsc)
{
int tail = 9 / 3;
int data = 174 / 3;
int train = 78 / 3;
if ((tsc < 0) || (tsc > 7))
return NULL;
signalVector burst(148);
const BitVector *midamble = &gEdgeTrainingSequence[tsc];
/* Tail */
int n, i = 0;
for (; i < tail; i++)
burst[i] = psk8_table[7];
/* Body */
for (; i < tail + data; i++)
burst[i] = psk8_table[rand() % 8];
/* TSC */
for (n = 0; i < tail + data + train; i++, n++) {
unsigned index = (((unsigned) (*midamble)[3 * n + 0] & 0x01) << 0) |
(((unsigned) (*midamble)[3 * n + 1] & 0x01) << 1) |
(((unsigned) (*midamble)[3 * n + 2] & 0x01) << 2);
burst[i] = psk8_table[index];
}
/* Body */
for (; i < tail + data + train + data; i++)
burst[i] = psk8_table[rand() % 8];
/* Tail */
for (; i < tail + data + train + data + tail; i++)
burst[i] = psk8_table[7];
return shapeEdgeBurst(burst);
}
/*
* Modulate 8-PSK burst. When empty pulse shaping (rotation only)
* is enabled, the output vector length will be bit sequence length
* times the SPS value. When pulse shaping is enabled, the output
* vector length is fixed at 625 samples (156.25 symbols at 4 SPS).
* Pulse shaped bit sequences that go beyond one burst are truncated.
* Pulse shaping at anything but 4 SPS is not supported.
*/
signalVector *modulateEdgeBurst(const BitVector &bits,
int sps, bool empty)
{
signalVector *shape, *burst;
if ((sps != 4) && !empty)
return NULL;
burst = mapEdgeSymbols(bits);
if (!burst)
return NULL;
if (empty)
shape = rotateEdgeBurst(*burst, sps);
else
shape = shapeEdgeBurst(*burst);
delete burst;
return shape;
}
static signalVector *modulateBurstBasic(const BitVector &bits,
int guard_len, int sps)
{
int burst_len;
signalVector *pulse;
signalVector::iterator burst_itr;
if (sps == 1)
pulse = GSMPulse1->c0;
else
pulse = GSMPulse4->c0;
burst_len = sps * (bits.size() + guard_len);
signalVector burst(burst_len, pulse->size());
burst.isReal(true);
burst_itr = burst.begin();
/* Raw bits are not differentially encoded */
for (unsigned i = 0; i < bits.size(); i++) {
*burst_itr = 2.0 * (bits[i] & 0x01) - 1.0;
burst_itr += sps;
}
GMSKRotate(burst, sps);
burst.isReal(false);
/* Single Gaussian pulse approximation shaping */
return convolve(&burst, pulse, NULL, START_ONLY);
}
/* Assume input bits are not differentially encoded */
signalVector *modulateBurst(const BitVector &wBurst, int guardPeriodLength,
int sps, bool emptyPulse)
{
if (emptyPulse)
return rotateBurst(wBurst, guardPeriodLength, sps);
else if (sps == 4)
return modulateBurstLaurent(wBurst);
else
return modulateBurstBasic(wBurst, guardPeriodLength, sps);
}
static void generateSincTable()
{
for (int i = 0; i < TABLESIZE; i++) {
auto x = (double) i / TABLESIZE * 8 * M_PI;
auto y = sin(x) / x;
sincTable[i] = std::isnan(y) ? 1.0 : y;
}
}
static float sinc(float x)
{
if (fabs(x) >= 8 * M_PI)
return 0.0;
int index = (int) floorf(fabs(x) / (8 * M_PI) * TABLESIZE);
return sincTable[index];
}
/*
* Create fractional delay filterbank with Blackman-harris windowed
* sinc function generator. The number of filters generated is specified
* by the DELAYFILTS value.
*/
static void generateDelayFilters()
{
int h_len = 20;
complex *data;
signalVector *h;
signalVector::iterator itr;
float k, sum;
float a0 = 0.35875;
float a1 = 0.48829;
float a2 = 0.14128;
float a3 = 0.01168;
for (int i = 0; i < DELAYFILTS; i++) {
data = (complex *) convolve_h_alloc(h_len);
SigProcLib: Improve Vector buffer allocation mess Original issue: In order to use SSE instructions, 16-byte aligned memory chunks are needed, and C++ version < C++11 doesn't provide for a native new/delete store. For that reason, memalign() must be used in the implementation of convolve_h_alloc() for some buffers. On the other side, The C++ code relies on C++ "new T[]" operator to allocate a chunk of memory containing an array of class instances. As classes are complex types, they cannot be allocated through C structures (calling malloc). Experimentally can be seen too that it's unreliable and the process will crash during startup if malloc() is used and then a Complex<> deferred from it. Previous implementation allowed for use of convolve_h_alloc or new[] based on how the (signal)Vector is called, because then the buffer is not going to be managed internally. But that's unreliable since resize() calling resize() on it could use "delete" operator on a malloc'ed buffer, and end up having a new new[] allocated buffer. It was also found that some of the callers were actually leaking memory through ASan (because the buffer is not managed by the Vector instance). IMHO best option would be to rewrite all this code using C structures and malloc/free exclusively, since it would make all this cod eeasier to maintain. But for now, let's extend the Vector class to allow specifying an external alloc/free function and let the Vector instance take care of the ownership of the buffer in all scenarios. Change-Id: Ie484a4762a7f77fe1b105188ea03a6f025730b82
2018-12-03 16:46:04 +00:00
h = new signalVector(data, 0, h_len, convolve_h_alloc, free);
h->setAligned(true);
h->isReal(true);
sum = 0.0;
itr = h->end();
for (int n = 0; n < h_len; n++) {
k = (float) n;
*--itr = (complex) sinc(M_PI_F *
(k - (float) h_len / 2.0 - (float) i / DELAYFILTS));
*itr *= a0 -
a1 * cos(2 * M_PI * n / (h_len - 1)) +
a2 * cos(4 * M_PI * n / (h_len - 1)) -
a3 * cos(6 * M_PI * n / (h_len - 1));
sum += itr->real();
}
itr = h->begin();
for (int n = 0; n < h_len; n++)
*itr++ /= sum;
delayFilters[i] = h;
}
}
signalVector *delayVector(const signalVector *in, signalVector *out, float delay)
{
int whole, index;
float frac;
signalVector *h, *shift, *fshift = NULL;
whole = floor(delay);
frac = delay - whole;
/* Sinc interpolated fractional shift (if allowable) */
if (fabs(frac) > 1e-2) {
index = floorf(frac * (float) DELAYFILTS);
h = delayFilters[index];
fshift = convolve(in, h, NULL, NO_DELAY);
if (!fshift)
return NULL;
}
if (!fshift)
shift = new signalVector(*in);
else
shift = fshift;
/* Integer sample shift */
if (whole < 0) {
whole = -whole;
signalVector::iterator wBurstItr = shift->begin();
signalVector::iterator shiftedItr = shift->begin() + whole;
while (shiftedItr < shift->end())
*wBurstItr++ = *shiftedItr++;
while (wBurstItr < shift->end())
*wBurstItr++ = 0.0;
} else if (whole >= 0) {
signalVector::iterator wBurstItr = shift->end() - 1;
signalVector::iterator shiftedItr = shift->end() - 1 - whole;
while (shiftedItr >= shift->begin())
*wBurstItr-- = *shiftedItr--;
while (wBurstItr >= shift->begin())
*wBurstItr-- = 0.0;
}
if (!out)
return shift;
out->clone(*shift);
delete shift;
return out;
}
static complex interpolatePoint(const signalVector &inSig, float ix)
{
int start = (int) (floor(ix) - 10);
if (start < 0) start = 0;
int end = (int) (floor(ix) + 11);
if ((unsigned) end > inSig.size()-1) end = inSig.size()-1;
complex pVal = 0.0;
if (!inSig.isReal()) {
for (int i = start; i < end; i++)
pVal += inSig[i] * sinc(M_PI_F*(i-ix));
}
else {
for (int i = start; i < end; i++)
pVal += inSig[i].real() * sinc(M_PI_F*(i-ix));
}
return pVal;
}
static complex fastPeakDetect(const signalVector &rxBurst, float *index)
{
float val, max = 0.0f;
complex amp;
int _index = -1;
for (size_t i = 0; i < rxBurst.size(); i++) {
val = rxBurst[i].norm2();
if (val > max) {
max = val;
_index = i;
amp = rxBurst[i];
}
}
if (index)
*index = (float) _index;
return amp;
}
static complex peakDetect(const signalVector &rxBurst,
float *peakIndex, float *avgPwr)
{
complex maxVal = 0.0;
float maxIndex = -1;
float sumPower = 0.0;
for (unsigned int i = 0; i < rxBurst.size(); i++) {
float samplePower = rxBurst[i].norm2();
if (samplePower > maxVal.real()) {
maxVal = samplePower;
maxIndex = i;
}
sumPower += samplePower;
}
// interpolate around the peak
// to save computation, we'll use early-late balancing
float earlyIndex = maxIndex-1;
float lateIndex = maxIndex+1;
float incr = 0.5;
while (incr > 1.0/1024.0) {
complex earlyP = interpolatePoint(rxBurst,earlyIndex);
complex lateP = interpolatePoint(rxBurst,lateIndex);
if (earlyP < lateP)
earlyIndex += incr;
else if (earlyP > lateP)
earlyIndex -= incr;
else break;
incr /= 2.0;
lateIndex = earlyIndex + 2.0;
}
maxIndex = earlyIndex + 1.0;
maxVal = interpolatePoint(rxBurst,maxIndex);
if (peakIndex!=NULL)
*peakIndex = maxIndex;
if (avgPwr!=NULL)
*avgPwr = (sumPower-maxVal.norm2()) / (rxBurst.size()-1);
return maxVal;
}
void scaleVector(signalVector &x,
complex scale)
{
#ifdef HAVE_NEON
int len = x.size();
scale_complex((float *) x.begin(),
(float *) x.begin(),
(float *) &scale, len);
#else
signalVector::iterator xP = x.begin();
signalVector::iterator xPEnd = x.end();
if (!x.isReal()) {
while (xP < xPEnd) {
*xP = *xP * scale;
xP++;
}
}
else {
while (xP < xPEnd) {
*xP = xP->real() * scale;
xP++;
}
}
#endif
}
/** in-place conjugation */
static void conjugateVector(signalVector &x)
{
if (x.isReal()) return;
signalVector::iterator xP = x.begin();
signalVector::iterator xPEnd = x.end();
while (xP < xPEnd) {
*xP = xP->conj();
xP++;
}
}
static bool generateMidamble(int sps, int tsc)
{
bool status = true;
float toa;
complex *data = NULL;
signalVector *autocorr = NULL, *midamble = NULL;
signalVector *midMidamble = NULL, *_midMidamble = NULL;
if ((tsc < 0) || (tsc > 7))
return false;
delete gMidambles[tsc];
/* Use middle 16 bits of each TSC. Correlation sequence is not pulse shaped */
midMidamble = modulateBurst(gTrainingSequence[tsc].segment(5,16), 0, sps, true);
if (!midMidamble)
return false;
/* Simulated receive sequence is pulse shaped */
midamble = modulateBurst(gTrainingSequence[tsc], 0, sps, false);
if (!midamble) {
status = false;
goto release;
}
// NOTE: Because ideal TSC 16-bit midamble is 66 symbols into burst,
// the ideal TSC has an + 180 degree phase shift,
// due to the pi/2 frequency shift, that
// needs to be accounted for.
// 26-midamble is 61 symbols into burst, has +90 degree phase shift.
scaleVector(*midMidamble, complex(-1.0, 0.0));
scaleVector(*midamble, complex(0.0, 1.0));
conjugateVector(*midMidamble);
/* For SSE alignment, reallocate the midamble sequence on 16-byte boundary */
data = (complex *) convolve_h_alloc(midMidamble->size());
SigProcLib: Improve Vector buffer allocation mess Original issue: In order to use SSE instructions, 16-byte aligned memory chunks are needed, and C++ version < C++11 doesn't provide for a native new/delete store. For that reason, memalign() must be used in the implementation of convolve_h_alloc() for some buffers. On the other side, The C++ code relies on C++ "new T[]" operator to allocate a chunk of memory containing an array of class instances. As classes are complex types, they cannot be allocated through C structures (calling malloc). Experimentally can be seen too that it's unreliable and the process will crash during startup if malloc() is used and then a Complex<> deferred from it. Previous implementation allowed for use of convolve_h_alloc or new[] based on how the (signal)Vector is called, because then the buffer is not going to be managed internally. But that's unreliable since resize() calling resize() on it could use "delete" operator on a malloc'ed buffer, and end up having a new new[] allocated buffer. It was also found that some of the callers were actually leaking memory through ASan (because the buffer is not managed by the Vector instance). IMHO best option would be to rewrite all this code using C structures and malloc/free exclusively, since it would make all this cod eeasier to maintain. But for now, let's extend the Vector class to allow specifying an external alloc/free function and let the Vector instance take care of the ownership of the buffer in all scenarios. Change-Id: Ie484a4762a7f77fe1b105188ea03a6f025730b82
2018-12-03 16:46:04 +00:00
_midMidamble = new signalVector(data, 0, midMidamble->size(), convolve_h_alloc, free);
_midMidamble->setAligned(true);
midMidamble->copyTo(*_midMidamble);
autocorr = convolve(midamble, _midMidamble, NULL, NO_DELAY);
if (!autocorr) {
status = false;
goto release;
}
gMidambles[tsc] = new CorrelationSequence;
gMidambles[tsc]->sequence = _midMidamble;
gMidambles[tsc]->gain = peakDetect(*autocorr, &toa, NULL);
/* For 1 sps only
* (Half of correlation length - 1) + midpoint of pulse shape + remainder
* 13.5 = (16 / 2 - 1) + 1.5 + (26 - 10) / 2
*/
if (sps == 1)
gMidambles[tsc]->toa = toa - 13.5;
else
gMidambles[tsc]->toa = 0;
release:
delete autocorr;
delete midamble;
delete midMidamble;
if (!status) {
delete _midMidamble;
free(data);
gMidambles[tsc] = NULL;
}
return status;
}
static CorrelationSequence *generateEdgeMidamble(int tsc)
{
complex *data = NULL;
signalVector *midamble = NULL, *_midamble = NULL;
CorrelationSequence *seq;
if ((tsc < 0) || (tsc > 7))
return NULL;
/* Use middle 48 bits of each TSC. Correlation sequence is not pulse shaped */
const BitVector *bits = &gEdgeTrainingSequence[tsc];
midamble = modulateEdgeBurst(bits->segment(15, 48), 1, true);
if (!midamble)
return NULL;
conjugateVector(*midamble);
data = (complex *) convolve_h_alloc(midamble->size());
SigProcLib: Improve Vector buffer allocation mess Original issue: In order to use SSE instructions, 16-byte aligned memory chunks are needed, and C++ version < C++11 doesn't provide for a native new/delete store. For that reason, memalign() must be used in the implementation of convolve_h_alloc() for some buffers. On the other side, The C++ code relies on C++ "new T[]" operator to allocate a chunk of memory containing an array of class instances. As classes are complex types, they cannot be allocated through C structures (calling malloc). Experimentally can be seen too that it's unreliable and the process will crash during startup if malloc() is used and then a Complex<> deferred from it. Previous implementation allowed for use of convolve_h_alloc or new[] based on how the (signal)Vector is called, because then the buffer is not going to be managed internally. But that's unreliable since resize() calling resize() on it could use "delete" operator on a malloc'ed buffer, and end up having a new new[] allocated buffer. It was also found that some of the callers were actually leaking memory through ASan (because the buffer is not managed by the Vector instance). IMHO best option would be to rewrite all this code using C structures and malloc/free exclusively, since it would make all this cod eeasier to maintain. But for now, let's extend the Vector class to allow specifying an external alloc/free function and let the Vector instance take care of the ownership of the buffer in all scenarios. Change-Id: Ie484a4762a7f77fe1b105188ea03a6f025730b82
2018-12-03 16:46:04 +00:00
_midamble = new signalVector(data, 0, midamble->size(), convolve_h_alloc, free);
_midamble->setAligned(true);
midamble->copyTo(*_midamble);
/* Channel gain is an empirically measured value */
seq = new CorrelationSequence;
seq->sequence = _midamble;
seq->gain = Complex<float>(-19.6432, 19.5006) / 1.18;
seq->toa = 0;
delete midamble;
return seq;
}
static bool generateRACHSequence(CorrelationSequence **seq, const BitVector &bv, int sps)
{
bool status = true;
float toa;
complex *data = NULL;
signalVector *autocorr = NULL;
signalVector *seq0 = NULL, *seq1 = NULL, *_seq1 = NULL;
if (*seq != NULL)
delete *seq;
seq0 = modulateBurst(bv, 0, sps, false);
if (!seq0)
return false;
seq1 = modulateBurst(bv.segment(0, 40), 0, sps, true);
if (!seq1) {
status = false;
goto release;
}
conjugateVector(*seq1);
/* For SSE alignment, reallocate the midamble sequence on 16-byte boundary */
data = (complex *) convolve_h_alloc(seq1->size());
SigProcLib: Improve Vector buffer allocation mess Original issue: In order to use SSE instructions, 16-byte aligned memory chunks are needed, and C++ version < C++11 doesn't provide for a native new/delete store. For that reason, memalign() must be used in the implementation of convolve_h_alloc() for some buffers. On the other side, The C++ code relies on C++ "new T[]" operator to allocate a chunk of memory containing an array of class instances. As classes are complex types, they cannot be allocated through C structures (calling malloc). Experimentally can be seen too that it's unreliable and the process will crash during startup if malloc() is used and then a Complex<> deferred from it. Previous implementation allowed for use of convolve_h_alloc or new[] based on how the (signal)Vector is called, because then the buffer is not going to be managed internally. But that's unreliable since resize() calling resize() on it could use "delete" operator on a malloc'ed buffer, and end up having a new new[] allocated buffer. It was also found that some of the callers were actually leaking memory through ASan (because the buffer is not managed by the Vector instance). IMHO best option would be to rewrite all this code using C structures and malloc/free exclusively, since it would make all this cod eeasier to maintain. But for now, let's extend the Vector class to allow specifying an external alloc/free function and let the Vector instance take care of the ownership of the buffer in all scenarios. Change-Id: Ie484a4762a7f77fe1b105188ea03a6f025730b82
2018-12-03 16:46:04 +00:00
_seq1 = new signalVector(data, 0, seq1->size(), convolve_h_alloc, free);
_seq1->setAligned(true);
seq1->copyTo(*_seq1);
autocorr = convolve(seq0, _seq1, autocorr, NO_DELAY);
if (!autocorr) {
status = false;
goto release;
}
*seq = new CorrelationSequence;
(*seq)->sequence = _seq1;
(*seq)->gain = peakDetect(*autocorr, &toa, NULL);
/* For 1 sps only
* (Half of correlation length - 1) + midpoint of pulse shaping filer
* 20.5 = (40 / 2 - 1) + 1.5
*/
if (sps == 1)
(*seq)->toa = toa - 20.5;
else
(*seq)->toa = 0.0;
release:
delete autocorr;
delete seq0;
delete seq1;
if (!status) {
delete _seq1;
free(data);
*seq = NULL;
}
return status;
}
/*
* Peak-to-average computation +/- range from peak in symbols
*/
#define COMPUTE_PEAK_MIN 2
#define COMPUTE_PEAK_MAX 5
/*
* Minimum number of values needed to compute peak-to-average
*/
#define COMPUTE_PEAK_CNT 5
static float computePeakRatio(signalVector *corr,
int sps, float toa, complex amp)
{
int num = 0;
complex *peak;
float rms, avg = 0.0;
/* Check for bogus results */
if ((toa < 0.0) || (toa > corr->size()))
return 0.0;
peak = corr->begin() + (int) rint(toa);
for (int i = COMPUTE_PEAK_MIN * sps; i <= COMPUTE_PEAK_MAX * sps; i++) {
if (peak - i >= corr->begin()) {
avg += (peak - i)->norm2();
num++;
}
if (peak + i < corr->end()) {
avg += (peak + i)->norm2();
num++;
}
}
if (num < COMPUTE_PEAK_CNT)
return 0.0;
rms = sqrtf(avg / (float) num) + 0.00001;
return (amp.abs()) / rms;
}
float energyDetect(const signalVector &rxBurst, unsigned windowLength)
{
signalVector::const_iterator windowItr = rxBurst.begin(); //+rxBurst.size()/2 - 5*windowLength/2;
float energy = 0.0;
if (windowLength == 0) return 0.0;
if (windowLength > rxBurst.size()) windowLength = rxBurst.size();
for (unsigned i = 0; i < windowLength; i++) {
energy += windowItr->norm2();
windowItr+=4;
}
return energy/windowLength;
}
static signalVector *downsampleBurst(const signalVector &burst)
{
signalVector in(DOWNSAMPLE_IN_LEN, dnsampler->len());
signalVector *out = new signalVector(DOWNSAMPLE_OUT_LEN);
burst.copyToSegment(in, 0, DOWNSAMPLE_IN_LEN);
if (dnsampler->rotate((float *) in.begin(), DOWNSAMPLE_IN_LEN,
(float *) out->begin(), DOWNSAMPLE_OUT_LEN) < 0) {
delete out;
out = NULL;
}
return out;
};
/*
* Computes C/I (Carrier-to-Interference ratio) in dB (deciBels).
* It is computed from the training sequence of each received burst,
* by comparing the "ideal" training sequence with the actual one.
*/
static float computeCI(const signalVector *burst, const CorrelationSequence *sync,
float toa, int start, const complex &xcorr)
{
const int N = sync->sequence->size();
float S, C;
/* Integer position where the sequence starts */
const int ps = start + 1 - N + (int)roundf(toa);
/* Estimate Signal power */
S = 0.0f;
for (int i=0, j=ps; i<(int)N; i++,j++)
S += (*burst)[j].norm2();
S /= N;
/* Esimate Carrier power */
C = xcorr.norm2() / ((N - 1) * sync->gain.abs());
/* Interference = Signal - Carrier, so C/I = C / (S - C).
* Calculated in dB:
* C/I_dB = 10 * log10(C/I)
* C/I_dB = 10 * (1/log2(10)) * log2(C/I)
* C/I_dB = 10 * 0.30103 * log2(C/I)
* C/I_dB = 3.0103 * log2(C/I)
*/
return 3.0103f * log2f(C / (S - C));
}
/*
* Detect a burst based on correlation and peak-to-average ratio
*
* For one sampler-per-symbol, perform fast peak detection (no interpolation)
* for initial gating. We do this because energy detection should be disabled.
* For higher oversampling values, we assume the energy detector is in place
* and we run full interpolating peak detection.
*/
static int detectBurst(const signalVector &burst,
signalVector &corr, const CorrelationSequence *sync,
float thresh, int sps, int start, int len,
struct estim_burst_params *ebp)
{
const signalVector *corr_in;
signalVector *dec = NULL;
complex xcorr;
int rc = 1;
switch (sps) {
case 1:
corr_in = &burst;
break;
case 4:
dec = downsampleBurst(burst);
/* Running at the downsampled rate at this point: */
corr_in = dec;
sps = 1;
break;
default:
osmo_panic("%s:%d SPS %d not supported! Only 1 or 4 supported", __FILE__, __LINE__, sps);
}
/* Correlate */
if (!convolve(corr_in, sync->sequence, &corr,
CUSTOM, start, len)) {
rc = -1;
goto del_ret;
}
/* Peak detection - place restrictions at correlation edges */
ebp->amp = fastPeakDetect(corr, &ebp->toa);
if ((ebp->toa < 3 * sps) || (ebp->toa > len - 3 * sps)) {
rc = 0;
goto del_ret;
}
/* Peak-to-average ratio */
if (computePeakRatio(&corr, sps, ebp->toa, ebp->amp) < thresh) {
rc = 0;
goto del_ret;
}
/* Refine TOA and correlation value */
xcorr = peakDetect(corr, &ebp->toa, NULL);
/* Compute C/I */
ebp->ci = computeCI(corr_in, sync, ebp->toa, start, xcorr);
/* Normalize our channel gain */
ebp->amp = xcorr / sync->gain;
/* Compensate for residuate time lag */
ebp->toa = ebp->toa - sync->toa;
del_ret:
delete dec;
return rc;
}
static float maxAmplitude(const signalVector &burst)
{
float max = 0.0;
for (size_t i = 0; i < burst.size(); i++) {
if (fabs(burst[i].real()) > max)
max = fabs(burst[i].real());
if (fabs(burst[i].imag()) > max)
max = fabs(burst[i].imag());
}
return max;
}
/*
* RACH/Normal burst detection with clipping detection
*
* Correlation window parameters:
* target: Tail bits + burst length
* head: Search symbols before target
* tail: Search symbols after target
*/
static int detectGeneralBurst(const signalVector &rxBurst, float thresh, int sps,
int target, int head, int tail,
CorrelationSequence *sync,
struct estim_burst_params *ebp)
{
int rc, start, len;
bool clipping = false;
if ((sps != 1) && (sps != 4))
return -SIGERR_UNSUPPORTED;
// Detect potential clipping
// We still may be able to demod the burst, so we'll give it a try
// and only report clipping if we can't demod.
float maxAmpl = maxAmplitude(rxBurst);
if (maxAmpl > CLIP_THRESH) {
LOG(INFO) << "max burst amplitude: " << maxAmpl << " is above the clipping threshold: " << CLIP_THRESH << std::endl;
clipping = true;
}
start = target - head - 1;
len = head + tail;
signalVector corr(len);
rc = detectBurst(rxBurst, corr, sync,
thresh, sps, start, len, ebp);
if (rc < 0) {
return -SIGERR_INTERNAL;
} else if (!rc) {
ebp->amp = 0.0f;
ebp->toa = 0.0f;
ebp->ci = 0.0f;
return clipping?-SIGERR_CLIP:SIGERR_NONE;
}
/* Subtract forward search bits from delay */
ebp->toa -= head;
return 1;
}
/*
* RACH burst detection
*
* Correlation window parameters:
* target: Tail bits + RACH length (reduced from 41 to a multiple of 4)
* head: Search 8 symbols before target
* tail: Search 8 symbols + maximum expected delay
*/
static int detectRACHBurst(const signalVector &burst, float threshold, int sps,
unsigned max_toa, bool ext, struct estim_burst_params *ebp)
{
int rc, target, head, tail;
int i, num_seq;
target = 8 + 40;
head = 8;
tail = 8 + max_toa;
num_seq = ext ? 3 : 1;
for (i = 0; i < num_seq; i++) {
rc = detectGeneralBurst(burst, threshold, sps, target, head, tail,
gRACHSequences[i], ebp);
if (rc > 0) {
ebp->tsc = i;
break;
}
}
return rc;
}
/*
* Normal burst detection
*
* Correlation window parameters:
* target: Tail + data + mid-midamble + 1/2 remaining midamblebits
* head: Search 6 symbols before target
* tail: Search 6 symbols + maximum expected delay
*/
static int analyzeTrafficBurst(const signalVector &burst, unsigned tsc, float threshold,
int sps, unsigned max_toa, struct estim_burst_params *ebp)
{
int rc, target, head, tail;
CorrelationSequence *sync;
if (tsc > 7)
return -SIGERR_UNSUPPORTED;
target = 3 + 58 + 16 + 5;
head = 6;
tail = 6 + max_toa;
sync = gMidambles[tsc];
ebp->tsc = tsc;
rc = detectGeneralBurst(burst, threshold, sps, target, head, tail, sync, ebp);
return rc;
}
static int detectEdgeBurst(const signalVector &burst, unsigned tsc, float threshold,
int sps, unsigned max_toa, struct estim_burst_params *ebp)
{
int rc, target, head, tail;
CorrelationSequence *sync;
if (tsc > 7)
return -SIGERR_UNSUPPORTED;
target = 3 + 58 + 16 + 5;
head = 6;
tail = 6 + max_toa;
sync = gEdgeMidambles[tsc];
ebp->tsc = tsc;
rc = detectGeneralBurst(burst, threshold, sps,
target, head, tail, sync, ebp);
return rc;
}
int detectAnyBurst(const signalVector &burst, unsigned tsc, float threshold,
int sps, CorrType type, unsigned max_toa,
struct estim_burst_params *ebp)
{
int rc = 0;
switch (type) {
case EDGE:
rc = detectEdgeBurst(burst, tsc, threshold, sps, max_toa, ebp);
if (rc > 0)
break;
else
type = TSC;
case TSC:
rc = analyzeTrafficBurst(burst, tsc, threshold, sps, max_toa, ebp);
break;
case EXT_RACH:
case RACH:
rc = detectRACHBurst(burst, threshold, sps, max_toa, type == EXT_RACH, ebp);
break;
default:
LOG(ERR) << "Invalid correlation type";
}
if (rc > 0)
return type;
return rc;
}
/*
* Soft 8-PSK decoding using Manhattan distance metric
*/
static SoftVector *softSliceEdgeBurst(signalVector &burst)
{
size_t nsyms = 148;
if (burst.size() < nsyms)
return NULL;
signalVector::iterator itr;
SoftVector *bits = new SoftVector(nsyms * 3);
/*
* Bits 0 and 1 - First and second bits of the symbol respectively
*/
rotateBurst2(burst, -M_PI / 8.0);
itr = burst.begin();
for (size_t i = 0; i < nsyms; i++) {
(*bits)[3 * i + 0] = -itr->imag();
(*bits)[3 * i + 1] = itr->real();
itr++;
}
/*
* Bit 2 - Collapse symbols into quadrant 0 (positive X and Y).
* Decision area is then simplified to X=Y axis. Rotate again to
* place decision boundary on X-axis.
*/
itr = burst.begin();
for (size_t i = 0; i < burst.size(); i++) {
burst[i] = Complex<float>(fabs(itr->real()), fabs(itr->imag()));
itr++;
}
rotateBurst2(burst, -M_PI / 4.0);
itr = burst.begin();
for (size_t i = 0; i < nsyms; i++) {
(*bits)[3 * i + 2] = -itr->imag();
itr++;
}
signalVector soft(bits->size());
for (size_t i = 0; i < bits->size(); i++)
soft[i] = (*bits)[i];
return bits;
}
/*
* Convert signalVector to SoftVector by taking real part of the signal.
*/
static SoftVector *signalToSoftVector(signalVector *dec)
{
SoftVector *bits = new SoftVector(dec->size());
SoftVector::iterator bit_itr = bits->begin();
signalVector::iterator burst_itr = dec->begin();
for (; burst_itr < dec->end(); burst_itr++)
*bit_itr++ = burst_itr->real();
return bits;
}
/*
* Shared portion of GMSK and EDGE demodulators consisting of timing
* recovery and single tap channel correction. For 4 SPS (if activated),
* the output is downsampled prior to the 1 SPS modulation specific
* stages.
*/
static signalVector *demodCommon(const signalVector &burst, int sps,
const struct estim_burst_params *ebp)
{
signalVector *delay, *dec;
if ((sps != 1) && (sps != 4))
return NULL;
delay = delayVector(&burst, NULL, -ebp->toa * (float) sps);
scaleVector(*delay, (complex) 1.0 / ebp->amp);
if (sps == 1)
return delay;
dec = downsampleBurst(*delay);
delete delay;
return dec;
}
/*
* Demodulate GSMK burst. Prior to symbol rotation, operate at
* 4 SPS (if activated) to minimize distortion through the fractional
* delay filters. Symbol rotation and after always operates at 1 SPS.
*/
static SoftVector *demodGmskBurst(const signalVector &rxBurst, int sps,
const struct estim_burst_params *ebp)
{
SoftVector *bits;
signalVector *dec;
dec = demodCommon(rxBurst, sps, ebp);
if (!dec)
return NULL;
/* Shift up by a quarter of a frequency */
GMSKReverseRotate(*dec, 1);
/* Take real part of the signal */
bits = signalToSoftVector(dec);
delete dec;
return bits;
}
static float computeEdgeCI(const signalVector *rot)
{
float err_pwr = 0.0f;
float step = 2.0f * M_PI_F / 8.0f;
for (size_t i = 8; i < rot->size() - 8; i++) {
/* Compute the ideal symbol */
complex sym = (*rot)[i];
float phase = step * roundf(sym.arg() / step);
complex ideal = complex(cos(phase), sin(phase));
/* Compute the error vector */
complex err = ideal - sym;
/* Accumulate power */
err_pwr += err.norm2();
}
return 3.0103f * log2f(1.0f * (rot->size() - 16) / err_pwr);
}
/*
* Demodulate an 8-PSK burst. Prior to symbol rotation, operate at
* 4 SPS (if activated) to minimize distortion through the fractional
* delay filters. Symbol rotation and after always operates at 1 SPS.
*
* Allow 1 SPS demodulation here, but note that other parts of the
* transceiver restrict EDGE operation to 4 SPS - 8-PSK distortion
* through the fractional delay filters at 1 SPS renders signal
* nearly unrecoverable.
*/
static SoftVector *demodEdgeBurst(const signalVector &burst, int sps,
struct estim_burst_params *ebp)
{
SoftVector *bits;
signalVector *dec, *rot, *eq;
dec = demodCommon(burst, sps, ebp);
if (!dec)
return NULL;
/* Equalize and derotate */
eq = convolve(dec, GSMPulse4->c0_inv, NULL, NO_DELAY);
rot = derotateEdgeBurst(*eq, 1);
ebp->ci = computeEdgeCI(rot);
/* Soft slice and normalize */
bits = softSliceEdgeBurst(*rot);
delete dec;
delete eq;
delete rot;
return bits;
}
SoftVector *demodAnyBurst(const signalVector &burst, CorrType type,
int sps, struct estim_burst_params *ebp)
{
if (type == EDGE)
return demodEdgeBurst(burst, sps, ebp);
else
return demodGmskBurst(burst, sps, ebp);
}
bool sigProcLibSetup()
{
generateSincTable();
initGMSKRotationTables();
GSMPulse1 = generateGSMPulse(1);
GSMPulse4 = generateGSMPulse(4);
generateRACHSequence(&gRACHSequences[0], gRACHSynchSequenceTS0, 1);
generateRACHSequence(&gRACHSequences[1], gRACHSynchSequenceTS1, 1);
generateRACHSequence(&gRACHSequences[2], gRACHSynchSequenceTS2, 1);
for (int tsc = 0; tsc < 8; tsc++) {
generateMidamble(1, tsc);
gEdgeMidambles[tsc] = generateEdgeMidamble(tsc);
}
generateDelayFilters();
dnsampler = new Resampler(1, 4);
if (!dnsampler->init()) {
LOG(ALERT) << "Rx resampler failed to initialize";
goto fail;
}
return true;
fail:
sigProcLibDestroy();
return false;
}