Adding in the missing Transceiver52M directory

git-svn-id: http://wush.net/svn/range/software/public/openbts/trunk@2307 19bc5d8c-e614-43d4-8b26-e1612bc8e597
This commit is contained in:
dburgess 2011-10-12 07:44:40 +00:00
parent ec3d77d0ea
commit b3a0ca42db
23 changed files with 6516 additions and 0 deletions

267
Transceiver52M/Complex.h Normal file
View File

@ -0,0 +1,267 @@
/**@file templates for Complex classes
unlike the built-in complex<> templates, these inline most operations for speed
*/
/*
* Copyright 2008 Free Software Foundation, Inc.
*
* This software is distributed under multiple licenses; see the COPYING file in the main directory for licensing information for this specific distribuion.
*
* This use of this software may be subject to additional restrictions.
* See the LEGAL file in the main directory for details.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*/
#ifndef COMPLEXCPP_H
#define COMPLEXCPP_H
#include <math.h>
#include <ostream>
template<class Real> class Complex {
public:
Real r, i;
/**@name constructors */
//@{
/**@name from real */
//@{
Complex(Real real, Real imag) {r=real; i=imag;} // x=complex(a,b)
Complex(Real real) {r=real; i=0;} // x=complex(a)
//@}
/**@name from nothing */
//@{
Complex() {r=(Real)0; i=(Real)0;} // x=complex()
//@}
/**@name from other complex */
//@{
Complex(const Complex<float>& z) {r=z.r; i=z.i;} // x=complex(z)
Complex(const Complex<double>& z) {r=z.r; i=z.i;} // x=complex(z)
Complex(const Complex<long double>& z) {r=z.r; i=z.i;} // x=complex(z)
//@}
//@}
/**@name casting up from basic numeric types */
//@{
Complex& operator=(char a) { r=(Real)a; i=(Real)0; return *this; }
Complex& operator=(int a) { r=(Real)a; i=(Real)0; return *this; }
Complex& operator=(long int a) { r=(Real)a; i=(Real)0; return *this; }
Complex& operator=(short a) { r=(Real)a; i=(Real)0; return *this; }
Complex& operator=(float a) { r=(Real)a; i=(Real)0; return *this; }
Complex& operator=(double a) { r=(Real)a; i=(Real)0; return *this; }
Complex& operator=(long double a) { r=(Real)a; i=(Real)0; return *this; }
//@}
/**@name arithmetic */
//@{
/**@ binary operators */
//@{
Complex operator+(const Complex<Real>& a) const { return Complex<Real>(r+a.r, i+a.i); }
Complex operator+(Real a) const { return Complex<Real>(r+a,i); }
Complex operator-(const Complex<Real>& a) const { return Complex<Real>(r-a.r, i-a.i); }
Complex operator-(Real a) const { return Complex<Real>(r-a,i); }
Complex operator*(const Complex<Real>& a) const { return Complex<Real>(r*a.r-i*a.i, r*a.i+i*a.r); }
Complex operator*(Real a) const { return Complex<Real>(r*a, i*a); }
Complex operator/(const Complex<Real>& a) const { return operator*(a.inv()); }
Complex operator/(Real a) const { return Complex<Real>(r/a, i/a); }
//@}
/*@name component-wise product */
//@{
Complex operator&(const Complex<Real>& a) const { return Complex<Real>(r*a.r, i*a.i); }
//@}
/*@name inplace operations */
//@{
Complex& operator+=(const Complex<Real>&);
Complex& operator-=(const Complex<Real>&);
Complex& operator*=(const Complex<Real>&);
Complex& operator/=(const Complex<Real>&);
Complex& operator+=(Real);
Complex& operator-=(Real);
Complex& operator*=(Real);
Complex& operator/=(Real);
//@}
//@}
/**@name comparisons */
//@{
bool operator==(const Complex<Real>& a) const { return ((i==a.i)&&(r==a.r)); }
bool operator!=(const Complex<Real>& a) const { return ((i!=a.i)||(r!=a.r)); }
bool operator<(const Complex<Real>& a) const { return norm2()<a.norm2(); }
bool operator>(const Complex<Real>& a) const { return norm2()>a.norm2(); }
//@}
/// reciprocation
Complex inv() const;
// unary functions -- inlined
/**@name unary functions */
//@{
/**@name inlined */
//@{
Complex conj() const { return Complex<Real>(r,-i); }
Real norm2() const { return i*i+r*r; }
Complex flip() const { return Complex<Real>(i,r); }
Real real() const { return r;}
Real imag() const { return i;}
Complex neg() const { return Complex<Real>(-r, -i); }
bool isZero() const { return ((r==(Real)0) && (i==(Real)0)); }
//@}
/**@name not inlined due to outside calls */
//@{
Real abs() const { return ::sqrt(norm2()); }
Real arg() const { return ::atan2(i,r); }
float dB() const { return 10.0*log10(norm2()); }
Complex exp() const { return expj(i)*(::exp(r)); }
Complex unit() const; ///< unit phasor with same angle
Complex log() const { return Complex(::log(abs()),arg()); }
Complex pow(double n) const { return expj(arg()*n)*(::pow(abs(),n)); }
Complex sqrt() const { return pow(0.5); }
//@}
//@}
};
/**@name standard Complex manifestations */
//@{
typedef Complex<float> complex;
typedef Complex<double> dcomplex;
typedef Complex<short> complex16;
typedef Complex<long> complex32;
//@}
template<class Real> inline Complex<Real> Complex<Real>::inv() const
{
Real nVal;
nVal = norm2();
return Complex<Real>(r/nVal, -i/nVal);
}
template<class Real> Complex<Real>& Complex<Real>::operator+=(const Complex<Real>& a)
{
r += a.r;
i += a.i;
return *this;
}
template<class Real> Complex<Real>& Complex<Real>::operator*=(const Complex<Real>& a)
{
operator*(a);
return *this;
}
template<class Real> Complex<Real>& Complex<Real>::operator-=(const Complex<Real>& a)
{
r -= a.r;
i -= a.i;
return *this;
}
template<class Real> Complex<Real>& Complex<Real>::operator/=(const Complex<Real>& a)
{
operator/(a);
return *this;
}
/* op= style operations with reals */
template<class Real> Complex<Real>& Complex<Real>::operator+=(Real a)
{
r += a;
return *this;
}
template<class Real> Complex<Real>& Complex<Real>::operator*=(Real a)
{
r *=a;
i *=a;
return *this;
}
template<class Real> Complex<Real>& Complex<Real>::operator-=(Real a)
{
r -= a;
return *this;
}
template<class Real> Complex<Real>& Complex<Real>::operator/=(Real a)
{
r /= a;
i /= a;
return *this;
}
template<class Real> Complex<Real> Complex<Real>::unit() const
{
Real absVal = abs();
return (Complex<Real>(r/absVal, i/absVal));
}
/**@name complex functions outside of the Complex<> class. */
//@{
/** this allows type-commutative multiplication */
template<class Real> Complex<Real> operator*(Real a, const Complex<Real>& z)
{
return Complex<Real>(z.r*a, z.i*a);
}
/** this allows type-commutative addition */
template<class Real> Complex<Real> operator+(Real a, const Complex<Real>& z)
{
return Complex<Real>(z.r+a, z.i);
}
/** this allows type-commutative subtraction */
template<class Real> Complex<Real> operator-(Real a, const Complex<Real>& z)
{
return Complex<Real>(z.r-a, z.i);
}
/// e^jphi
template<class Real> Complex<Real> expj(Real phi)
{
return Complex<Real>(cos(phi),sin(phi));
}
/// phasor expression of a complex number
template<class Real> Complex<Real> phasor(Real C, Real phi)
{
return (expj(phi)*C);
}
/// formatted stream output
template<class Real> std::ostream& operator<<(std::ostream& os, const Complex<Real>& z)
{
os << z.r << ' ';
//os << z.r << ", ";
//if (z.i>=0) { os << "+"; }
os << z.i << "j";
os << "\n";
return os;
}
//@}
#endif

View File

@ -0,0 +1,146 @@
/*
* Copyright 2008, 2009 Free Software Foundation, Inc.
*
* This software is distributed under the terms of the GNU Public License.
* See the COPYING file in the main directory for details.
*
* This use of this software may be subject to additional restrictions.
* See the LEGAL file in the main directory for details.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
Compilation Flags
SWLOOPBACK compile for software loopback testing
*/
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include "Threads.h"
#include "DummyLoad.h"
#include <Logger.h>
using namespace std;
int DummyLoad::loadBurst(short *wDummyBurst, int len) {
dummyBurst = wDummyBurst;
dummyBurstSz = len;
}
DummyLoad::DummyLoad (double _desiredSampleRate)
{
LOG(INFO) << "creating USRP device...";
sampleRate = _desiredSampleRate;
}
void DummyLoad::updateTime(void) {
gettimeofday(&currTime,NULL);
double timeElapsed = (currTime.tv_sec - startTime.tv_sec)*1.0e6 +
(currTime.tv_usec - startTime.tv_usec);
currstamp = (TIMESTAMP) floor(timeElapsed/(1.0e6/sampleRate));
}
bool DummyLoad::make(bool wSkipRx)
{
samplesRead = 0;
samplesWritten = 0;
return true;
}
bool DummyLoad::start()
{
LOG(INFO) << "starting USRP...";
underrun = false;
gettimeofday(&startTime,NULL);
dummyBurstCursor = 0;
return true;
}
bool DummyLoad::stop()
{
return true;
}
// NOTE: Assumes sequential reads
int DummyLoad::readSamples(short *buf, int len, bool *overrun,
TIMESTAMP timestamp,
bool *wUnderrun,
unsigned *RSSI)
{
updateTime();
underrunLock.lock();
*wUnderrun = underrun;
underrunLock.unlock();
if (currstamp+len < timestamp) {
usleep(100);
return NULL;
}
else if (currstamp < timestamp) {
usleep(100);
return NULL;
}
else if (timestamp+len < currstamp) {
memcpy(buf,dummyBurst+dummyBurstCursor*2,sizeof(short)*2*(dummyBurstSz-dummyBurstCursor));
int retVal = dummyBurstSz-dummyBurstCursor;
dummyBurstCursor = 0;
return retVal;
}
else if (timestamp + len > currstamp) {
int amount = timestamp + len - currstamp;
if (amount < dummyBurstSz-dummyBurstCursor) {
memcpy(buf,dummyBurst+dummyBurstCursor*2,sizeof(short)*2*amount);
dummyBurstCursor += amount;
return amount;
}
else {
memcpy(buf,dummyBurst+dummyBurstCursor*2,sizeof(short)*2*(dummyBurstSz-dummyBurstCursor));
int retVal = dummyBurstSz-dummyBurstCursor;
dummyBurstCursor = 0;
return retVal;
}
}
return 0;
}
int DummyLoad::writeSamples(short *buf, int len, bool *wUnderrun,
unsigned long long timestamp,
bool isControl)
{
updateTime();
underrunLock.lock();
underrun |= (currstamp+len < timestamp);
underrunLock.unlock();
return len;
}
bool DummyLoad::updateAlignment(TIMESTAMP timestamp)
{
return true;
}
bool DummyLoad::setTxFreq(double wFreq) { return true;};
bool DummyLoad::setRxFreq(double wFreq) { return true;};

132
Transceiver52M/DummyLoad.h Normal file
View File

@ -0,0 +1,132 @@
/*
* Copyright 2008 Free Software Foundation, Inc.
*
* This software is distributed under the terms of the GNU Public License.
* See the COPYING file in the main directory for details.
*
* This use of this software may be subject to additional restrictions.
* See the LEGAL file in the main directory for details.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "radioDevice.h"
#include <sys/time.h>
#include <math.h>
#include <string>
#include <iostream>
/** A class to handle a USRP rev 4, with a two RFX900 daughterboards */
class DummyLoad: public RadioDevice {
private:
double sampleRate; ///< the desired sampling rate
unsigned long long samplesRead; ///< number of samples read from USRP
unsigned long long samplesWritten; ///< number of samples sent to USRP
Mutex underrunLock;
struct timeval startTime, currTime;
TIMESTAMP currstamp;
short *dummyBurst;
int dummyBurstSz;
int dummyBurstCursor;
bool underrun;
void updateTime(void);
public:
/** Object constructor */
DummyLoad (double _desiredSampleRate);
int loadBurst(short *wDummyBurst, int len);
/** Instantiate the USRP */
bool make(bool skipRx = false);
/** Start the USRP */
bool start();
/** Stop the USRP */
bool stop();
/**
Read samples from the USRP.
@param buf preallocated buf to contain read result
@param len number of samples desired
@param overrun Set if read buffer has been overrun, e.g. data not being read fast enough
@param timestamp The timestamp of the first samples to be read
@param underrun Set if USRP does not have data to transmit, e.g. data not being sent fast enough
@param RSSI The received signal strength of the read result
@return The number of samples actually read
*/
int readSamples(short *buf, int len, bool *overrun,
TIMESTAMP timestamp = 0xffffffff,
bool *underrun = NULL,
unsigned *RSSI = NULL);
/**
Write samples to the USRP.
@param buf Contains the data to be written.
@param len number of samples to write.
@param underrun Set if USRP does not have data to transmit, e.g. data not being sent fast enough
@param timestamp The timestamp of the first sample of the data buffer.
@param isControl Set if data is a control packet, e.g. a ping command
@return The number of samples actually written
*/
int writeSamples(short *buf, int len, bool *underrun,
TIMESTAMP timestamp = 0xffffffff,
bool isControl = false);
/** Update the alignment between the read and write timestamps */
bool updateAlignment(TIMESTAMP timestamp);
/** Set the transmitter frequency */
bool setTxFreq(double wFreq);
/** Set the receiver frequency */
bool setRxFreq(double wFreq);
/** Returns the starting write Timestamp*/
TIMESTAMP initialWriteTimestamp(void) { return 20000;}
/** Returns the starting read Timestamp*/
TIMESTAMP initialReadTimestamp(void) { return 20000;}
/** returns the full-scale transmit amplitude **/
double fullScaleInputValue() {return 13500.0;}
/** returns the full-scale receive amplitude **/
double fullScaleOutputValue() {return 9450.0;}
/** Return internal status values */
inline double getTxFreq() { return 0;}
inline double getRxFreq() { return 0;}
inline double getSampleRate() {return sampleRate;}
inline double numberRead() { return samplesRead; }
inline double numberWritten() { return samplesWritten;}
};

661
Transceiver52M/Makefile Normal file
View File

@ -0,0 +1,661 @@
# Makefile.in generated by automake 1.11.1 from Makefile.am.
# Transceiver52M/Makefile. Generated from Makefile.in by configure.
# Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
# 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation,
# Inc.
# This Makefile.in is free software; the Free Software Foundation
# gives unlimited permission to copy and/or distribute it,
# with or without modifications, as long as this notice is preserved.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY, to the extent permitted by law; without
# even the implied warranty of MERCHANTABILITY or FITNESS FOR A
# PARTICULAR PURPOSE.
#
# Copyright 2008 Free Software Foundation, Inc.
# Copyright 2010 Range Networks, Inc.
#
# This software is distributed under the terms of the GNU Public License.
# See the COPYING file in the main directory for details.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
#
# Copyright 2008 Free Software Foundation, Inc.
#
# This software is distributed under the terms of the GNU Public License.
# See the COPYING file in the main directory for details.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
pkgdatadir = $(datadir)/openbts
pkgincludedir = $(includedir)/openbts
pkglibdir = $(libdir)/openbts
pkglibexecdir = $(libexecdir)/openbts
am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd
install_sh_DATA = $(install_sh) -c -m 644
install_sh_PROGRAM = $(install_sh) -c
install_sh_SCRIPT = $(install_sh) -c
INSTALL_HEADER = $(INSTALL_DATA)
transform = $(program_transform_name)
NORMAL_INSTALL = :
PRE_INSTALL = :
POST_INSTALL = :
NORMAL_UNINSTALL = :
PRE_UNINSTALL = :
POST_UNINSTALL = :
build_triplet = i686-pc-linux-gnu
host_triplet = i686-pc-linux-gnu
target_triplet = i686-pc-linux-gnu
DIST_COMMON = README $(noinst_HEADERS) $(srcdir)/Makefile.am \
$(srcdir)/Makefile.in $(top_srcdir)/Makefile.common
noinst_PROGRAMS = USRPping$(EXEEXT) transceiver$(EXEEXT) \
sigProcLibTest$(EXEEXT)
subdir = Transceiver52M
ACLOCAL_M4 = $(top_srcdir)/aclocal.m4
am__aclocal_m4_deps = $(top_srcdir)/configure.ac
am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \
$(ACLOCAL_M4)
mkinstalldirs = $(install_sh) -d
CONFIG_HEADER = $(top_builddir)/config.h
CONFIG_CLEAN_FILES =
CONFIG_CLEAN_VPATH_FILES =
LTLIBRARIES = $(noinst_LTLIBRARIES)
libtransceiver_la_LIBADD =
am_libtransceiver_la_OBJECTS = radioInterface.lo sigProcLib.lo \
Transceiver.lo USRPDevice.lo DummyLoad.lo
libtransceiver_la_OBJECTS = $(am_libtransceiver_la_OBJECTS)
PROGRAMS = $(noinst_PROGRAMS)
am_USRPping_OBJECTS = USRPping.$(OBJEXT)
USRPping_OBJECTS = $(am_USRPping_OBJECTS)
USRPping_DEPENDENCIES = libtransceiver.la $(COMMON_LA) $(SQLITE_LA)
am_sigProcLibTest_OBJECTS = sigProcLibTest.$(OBJEXT)
sigProcLibTest_OBJECTS = $(am_sigProcLibTest_OBJECTS)
sigProcLibTest_DEPENDENCIES = libtransceiver.la $(GSM_LA) $(COMMON_LA) \
$(SQLITE_LA)
am_transceiver_OBJECTS = runTransceiver.$(OBJEXT)
transceiver_OBJECTS = $(am_transceiver_OBJECTS)
transceiver_DEPENDENCIES = libtransceiver.la $(GSM_LA) $(COMMON_LA) \
$(SQLITE_LA)
DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir)
depcomp = $(SHELL) $(top_srcdir)/depcomp
am__depfiles_maybe = depfiles
am__mv = mv -f
CXXCOMPILE = $(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) \
$(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CXXFLAGS) $(CXXFLAGS)
LTCXXCOMPILE = $(LIBTOOL) --tag=CXX $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) \
--mode=compile $(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) \
$(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CXXFLAGS) $(CXXFLAGS)
CXXLD = $(CXX)
CXXLINK = $(LIBTOOL) --tag=CXX $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) \
--mode=link $(CXXLD) $(AM_CXXFLAGS) $(CXXFLAGS) $(AM_LDFLAGS) \
$(LDFLAGS) -o $@
SOURCES = $(libtransceiver_la_SOURCES) $(USRPping_SOURCES) \
$(sigProcLibTest_SOURCES) $(transceiver_SOURCES)
DIST_SOURCES = $(libtransceiver_la_SOURCES) $(USRPping_SOURCES) \
$(sigProcLibTest_SOURCES) $(transceiver_SOURCES)
HEADERS = $(noinst_HEADERS)
ETAGS = etags
CTAGS = ctags
DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST)
ACLOCAL = ${SHELL} /home/openbts/range/software/public/openbts/trunk/missing --run aclocal-1.9
AMTAR = ${SHELL} /home/openbts/range/software/public/openbts/trunk/missing --run tar
AR = ar
AS = as
AUTOCONF = ${SHELL} /home/openbts/range/software/public/openbts/trunk/missing --run autoconf
AUTOHEADER = ${SHELL} /home/openbts/range/software/public/openbts/trunk/missing --run autoheader
AUTOMAKE = ${SHELL} /home/openbts/range/software/public/openbts/trunk/missing --run automake-1.9
AWK = mawk
CC = gcc
CCAS = gcc
CCASDEPMODE = @CCASDEPMODE@
CCASFLAGS = -g -O2
CCDEPMODE = depmode=gcc3
CFLAGS = -g -O2
CPP = gcc -E
CPPFLAGS =
CXX = g++
CXXCPP = g++ -E
CXXDEPMODE = depmode=gcc3
CXXFLAGS = -g -O2
CYGPATH_W = echo
DEFS = -DHAVE_CONFIG_H
DEPDIR = .deps
DLLTOOL = dlltool
DSYMUTIL = @DSYMUTIL@
DUMPBIN = @DUMPBIN@
ECHO_C =
ECHO_N = -n
ECHO_T =
EGREP = /bin/grep -E
EXEEXT =
FGREP = @FGREP@
GREP = /bin/grep
INSTALL = /usr/bin/install -c
INSTALL_DATA = ${INSTALL} -m 644
INSTALL_PROGRAM = ${INSTALL}
INSTALL_SCRIPT = ${INSTALL}
INSTALL_STRIP_PROGRAM = ${SHELL} $(install_sh) -c -s
LD = @LD@
LDFLAGS =
LIBOBJS =
LIBS =
LIBTOOL = $(SHELL) $(top_builddir)/libtool
LIBUSB_CFLAGS = -I/usr/local/include/libusb-1.0
LIBUSB_LIBS = -L/usr/local/lib -lusb-1.0
LIPO = @LIPO@
LN_S = ln -s
LTLIBOBJS =
MAKEINFO = ${SHELL} /home/openbts/range/software/public/openbts/trunk/missing --run makeinfo
MKDIR_P = @MKDIR_P@
NM = @NM@
NMEDIT = @NMEDIT@
OBJDUMP = objdump
OBJEXT = o
ORTP_CFLAGS = -D_REENTRANT -DORTP_INET6 -I/usr/local/include
ORTP_LIBS = -L/usr/local/lib -lortp -lpthread
OSIP_CFLAGS = -DOSIP_MT -I/usr/local/include
OSIP_LIBS = -L/usr/local/lib -losipparser2 -losip2
OTOOL = @OTOOL@
OTOOL64 = @OTOOL64@
PACKAGE = openbts
PACKAGE_BUGREPORT =
PACKAGE_NAME = openbts
PACKAGE_STRING = openbts P2.8TRUNK
PACKAGE_TARNAME = openbts
PACKAGE_URL =
PACKAGE_VERSION = P2.8TRUNK
PATH_SEPARATOR = :
PKG_CONFIG = /usr/bin/pkg-config
RANLIB = ranlib
RM_PROG = /bin/rm
SED = @SED@
SET_MAKE =
SHELL = /bin/bash
STRIP = strip
VERSION = P2.8TRUNK
abs_builddir = /home/openbts/range/software/public/openbts/trunk/Transceiver52M
abs_srcdir = /home/openbts/range/software/public/openbts/trunk/Transceiver52M
abs_top_builddir = /home/openbts/range/software/public/openbts/trunk
abs_top_srcdir = /home/openbts/range/software/public/openbts/trunk
ac_ct_CC = gcc
ac_ct_CXX = g++
ac_ct_DUMPBIN = @ac_ct_DUMPBIN@
am__include = include
am__leading_dot = .
am__quote =
am__tar = ${AMTAR} chof - "$$tardir"
am__untar = ${AMTAR} xf -
bindir = ${exec_prefix}/bin
build = i686-pc-linux-gnu
build_alias =
build_cpu = i686
build_os = linux-gnu
build_vendor = pc
builddir = .
datadir = ${datarootdir}
datarootdir = ${prefix}/share
docdir = ${datarootdir}/doc/${PACKAGE_TARNAME}
dvidir = ${docdir}
exec_prefix = ${prefix}
host = i686-pc-linux-gnu
host_alias =
host_cpu = i686
host_os = linux-gnu
host_vendor = pc
htmldir = ${docdir}
includedir = ${prefix}/include
infodir = ${datarootdir}/info
install_sh = /home/openbts/range/software/public/openbts/trunk/install-sh
libdir = ${exec_prefix}/lib
libexecdir = ${exec_prefix}/libexec
localedir = ${datarootdir}/locale
localstatedir = ${prefix}/var
lt_ECHO = @lt_ECHO@
mandir = ${datarootdir}/man
mkdir_p = mkdir -p --
oldincludedir = /usr/include
pdfdir = ${docdir}
prefix = /usr/local
program_transform_name = s,x,x,
psdir = ${docdir}
sbindir = ${exec_prefix}/sbin
sharedstatedir = ${prefix}/com
srcdir = .
sysconfdir = ${prefix}/etc
target = i686-pc-linux-gnu
target_alias =
target_cpu = i686
target_os = linux-gnu
target_vendor = pc
top_build_prefix = ../
top_builddir = ..
top_srcdir = ..
COMMON_INCLUDEDIR = $(top_srcdir)/CommonLibs
CONTROL_INCLUDEDIR = $(top_srcdir)/Control
GSM_INCLUDEDIR = $(top_srcdir)/GSM
SIP_INCLUDEDIR = $(top_srcdir)/SIP
SMS_INCLUDEDIR = $(top_srcdir)/SMS
TRX_INCLUDEDIR = $(top_srcdir)/TRXManager
GLOBALS_INCLUDEDIR = $(top_srcdir)/Globals
CLI_INCLUDEDIR = $(top_srcdir)/CLI
SQLITE_INCLUDEDIR = $(top_srcdir)/sqlite3
SR_INCLUDEDIR = $(top_srcdir)/SR
STD_DEFINES_AND_INCLUDES = \
-I$(COMMON_INCLUDEDIR) \
-I$(CONTROL_INCLUDEDIR) \
-I$(GSM_INCLUDEDIR) \
-I$(SIP_INCLUDEDIR) \
-I$(SMS_INCLUDEDIR) \
-I$(TRX_INCLUDEDIR) \
-I$(GLOBALS_INCLUDEDIR) \
-I$(CLI_INCLUDEDIR) \
-I$(SR_INCLUDEDIR) \
-I$(SQLITE_INCLUDEDIR)
COMMON_LA = $(top_builddir)/CommonLibs/libcommon.la
GSM_LA = $(top_builddir)/GSM/libGSM.la
SIP_LA = $(top_builddir)/SIP/libSIP.la
SMS_LA = $(top_builddir)/SMS/libSMS.la
TRX_LA = $(top_builddir)/TRXManager/libtrxmanager.la
CONTROL_LA = $(top_builddir)/Control/libcontrol.la
GLOBALS_LA = $(top_builddir)/Globals/libglobals.la
CLI_LA = $(top_builddir)/CLI/libcli.la
SR_LA = $(top_builddir)/SR/libSR.la
SQLITE_LA = $(top_builddir)/sqlite3/libsqlite.la
MOSTLYCLEANFILES = *~
AM_CPPFLAGS = $(STD_DEFINES_AND_INCLUDES) $(USRP_CFLAGS)
AM_CXXFLAGS = -ldl -lpthread
#rev2dir = $(datadir)/usrp/rev2
#rev4dir = $(datadir)/usrp/rev4
#dist_rev2_DATA = std_inband.rbf
#dist_rev4_DATA = std_inband.rbf
EXTRA_DIST = \
README \
README.Talgorithm
noinst_LTLIBRARIES = libtransceiver.la
libtransceiver_la_SOURCES = \
radioInterface.cpp \
sigProcLib.cpp \
Transceiver.cpp \
USRPDevice.cpp \
DummyLoad.cpp
noinst_HEADERS = \
Complex.h \
radioInterface.h \
radioDevice.h \
sigProcLib.h \
Transceiver.h \
USRPDevice.h \
DummyLoad.h
USRPping_SOURCES = USRPping.cpp
USRPping_LDADD = \
libtransceiver.la \
$(COMMON_LA) $(SQLITE_LA) \
$(USRP_LIBS)
transceiver_SOURCES = runTransceiver.cpp
transceiver_LDADD = \
libtransceiver.la \
$(GSM_LA) \
$(COMMON_LA) $(SQLITE_LA) \
$(USRP_LIBS)
sigProcLibTest_SOURCES = sigProcLibTest.cpp
sigProcLibTest_LDADD = \
libtransceiver.la \
$(GSM_LA) \
$(COMMON_LA) $(SQLITE_LA) \
$(USRP_LIBS)
all: all-am
.SUFFIXES:
.SUFFIXES: .cpp .lo .o .obj
$(srcdir)/Makefile.in: $(srcdir)/Makefile.am $(top_srcdir)/Makefile.common $(am__configure_deps)
@for dep in $?; do \
case '$(am__configure_deps)' in \
*$$dep*) \
( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \
&& { if test -f $@; then exit 0; else break; fi; }; \
exit 1;; \
esac; \
done; \
echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu Transceiver52M/Makefile'; \
$(am__cd) $(top_srcdir) && \
$(AUTOMAKE) --gnu Transceiver52M/Makefile
.PRECIOUS: Makefile
Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status
@case '$?' in \
*config.status*) \
cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \
*) \
echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \
cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \
esac;
$(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES)
cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh
$(top_srcdir)/configure: $(am__configure_deps)
cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh
$(ACLOCAL_M4): $(am__aclocal_m4_deps)
cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh
$(am__aclocal_m4_deps):
clean-noinstLTLIBRARIES:
-test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES)
@list='$(noinst_LTLIBRARIES)'; for p in $$list; do \
dir="`echo $$p | sed -e 's|/[^/]*$$||'`"; \
test "$$dir" != "$$p" || dir=.; \
echo "rm -f \"$${dir}/so_locations\""; \
rm -f "$${dir}/so_locations"; \
done
libtransceiver.la: $(libtransceiver_la_OBJECTS) $(libtransceiver_la_DEPENDENCIES)
$(CXXLINK) $(libtransceiver_la_OBJECTS) $(libtransceiver_la_LIBADD) $(LIBS)
clean-noinstPROGRAMS:
@list='$(noinst_PROGRAMS)'; test -n "$$list" || exit 0; \
echo " rm -f" $$list; \
rm -f $$list || exit $$?; \
test -n "$(EXEEXT)" || exit 0; \
list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \
echo " rm -f" $$list; \
rm -f $$list
USRPping$(EXEEXT): $(USRPping_OBJECTS) $(USRPping_DEPENDENCIES)
@rm -f USRPping$(EXEEXT)
$(CXXLINK) $(USRPping_OBJECTS) $(USRPping_LDADD) $(LIBS)
sigProcLibTest$(EXEEXT): $(sigProcLibTest_OBJECTS) $(sigProcLibTest_DEPENDENCIES)
@rm -f sigProcLibTest$(EXEEXT)
$(CXXLINK) $(sigProcLibTest_OBJECTS) $(sigProcLibTest_LDADD) $(LIBS)
transceiver$(EXEEXT): $(transceiver_OBJECTS) $(transceiver_DEPENDENCIES)
@rm -f transceiver$(EXEEXT)
$(CXXLINK) $(transceiver_OBJECTS) $(transceiver_LDADD) $(LIBS)
mostlyclean-compile:
-rm -f *.$(OBJEXT)
distclean-compile:
-rm -f *.tab.c
include ./$(DEPDIR)/DummyLoad.Plo
include ./$(DEPDIR)/Transceiver.Plo
include ./$(DEPDIR)/USRPDevice.Plo
include ./$(DEPDIR)/USRPping.Po
include ./$(DEPDIR)/radioInterface.Plo
include ./$(DEPDIR)/runTransceiver.Po
include ./$(DEPDIR)/sigProcLib.Plo
include ./$(DEPDIR)/sigProcLibTest.Po
.cpp.o:
$(CXXCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $<
$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po
# source='$<' object='$@' libtool=no \
# DEPDIR=$(DEPDIR) $(CXXDEPMODE) $(depcomp) \
# $(CXXCOMPILE) -c -o $@ $<
.cpp.obj:
$(CXXCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'`
$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po
# source='$<' object='$@' libtool=no \
# DEPDIR=$(DEPDIR) $(CXXDEPMODE) $(depcomp) \
# $(CXXCOMPILE) -c -o $@ `$(CYGPATH_W) '$<'`
.cpp.lo:
$(LTCXXCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $<
$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo
# source='$<' object='$@' libtool=yes \
# DEPDIR=$(DEPDIR) $(CXXDEPMODE) $(depcomp) \
# $(LTCXXCOMPILE) -c -o $@ $<
mostlyclean-libtool:
-rm -f *.lo
clean-libtool:
-rm -rf .libs _libs
ID: $(HEADERS) $(SOURCES) $(LISP) $(TAGS_FILES)
list='$(SOURCES) $(HEADERS) $(LISP) $(TAGS_FILES)'; \
unique=`for i in $$list; do \
if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \
done | \
$(AWK) '{ files[$$0] = 1; nonempty = 1; } \
END { if (nonempty) { for (i in files) print i; }; }'`; \
mkid -fID $$unique
tags: TAGS
TAGS: $(HEADERS) $(SOURCES) $(TAGS_DEPENDENCIES) \
$(TAGS_FILES) $(LISP)
set x; \
here=`pwd`; \
list='$(SOURCES) $(HEADERS) $(LISP) $(TAGS_FILES)'; \
unique=`for i in $$list; do \
if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \
done | \
$(AWK) '{ files[$$0] = 1; nonempty = 1; } \
END { if (nonempty) { for (i in files) print i; }; }'`; \
shift; \
if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \
test -n "$$unique" || unique=$$empty_fix; \
if test $$# -gt 0; then \
$(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \
"$$@" $$unique; \
else \
$(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \
$$unique; \
fi; \
fi
ctags: CTAGS
CTAGS: $(HEADERS) $(SOURCES) $(TAGS_DEPENDENCIES) \
$(TAGS_FILES) $(LISP)
list='$(SOURCES) $(HEADERS) $(LISP) $(TAGS_FILES)'; \
unique=`for i in $$list; do \
if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \
done | \
$(AWK) '{ files[$$0] = 1; nonempty = 1; } \
END { if (nonempty) { for (i in files) print i; }; }'`; \
test -z "$(CTAGS_ARGS)$$unique" \
|| $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \
$$unique
GTAGS:
here=`$(am__cd) $(top_builddir) && pwd` \
&& $(am__cd) $(top_srcdir) \
&& gtags -i $(GTAGS_ARGS) "$$here"
distclean-tags:
-rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags
distdir: $(DISTFILES)
@srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \
topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \
list='$(DISTFILES)'; \
dist_files=`for file in $$list; do echo $$file; done | \
sed -e "s|^$$srcdirstrip/||;t" \
-e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \
case $$dist_files in \
*/*) $(MKDIR_P) `echo "$$dist_files" | \
sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \
sort -u` ;; \
esac; \
for file in $$dist_files; do \
if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \
if test -d $$d/$$file; then \
dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \
if test -d "$(distdir)/$$file"; then \
find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \
fi; \
if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \
cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \
find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \
fi; \
cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \
else \
test -f "$(distdir)/$$file" \
|| cp -p $$d/$$file "$(distdir)/$$file" \
|| exit 1; \
fi; \
done
check-am: all-am
check: check-am
all-am: Makefile $(LTLIBRARIES) $(PROGRAMS) $(HEADERS)
installdirs:
install: install-am
install-exec: install-exec-am
install-data: install-data-am
uninstall: uninstall-am
install-am: all-am
@$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am
installcheck: installcheck-am
install-strip:
$(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \
install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \
`test -z '$(STRIP)' || \
echo "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'"` install
mostlyclean-generic:
-test -z "$(MOSTLYCLEANFILES)" || rm -f $(MOSTLYCLEANFILES)
clean-generic:
distclean-generic:
-test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES)
-test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES)
maintainer-clean-generic:
@echo "This command is intended for maintainers to use"
@echo "it deletes files that may require special tools to rebuild."
clean: clean-am
clean-am: clean-generic clean-libtool clean-noinstLTLIBRARIES \
clean-noinstPROGRAMS mostlyclean-am
distclean: distclean-am
-rm -rf ./$(DEPDIR)
-rm -f Makefile
distclean-am: clean-am distclean-compile distclean-generic \
distclean-tags
dvi: dvi-am
dvi-am:
html: html-am
html-am:
info: info-am
info-am:
install-data-am:
install-dvi: install-dvi-am
install-dvi-am:
install-exec-am:
install-html: install-html-am
install-html-am:
install-info: install-info-am
install-info-am:
install-man:
install-pdf: install-pdf-am
install-pdf-am:
install-ps: install-ps-am
install-ps-am:
installcheck-am:
maintainer-clean: maintainer-clean-am
-rm -rf ./$(DEPDIR)
-rm -f Makefile
maintainer-clean-am: distclean-am maintainer-clean-generic
mostlyclean: mostlyclean-am
mostlyclean-am: mostlyclean-compile mostlyclean-generic \
mostlyclean-libtool
pdf: pdf-am
pdf-am:
ps: ps-am
ps-am:
uninstall-am:
.MAKE: install-am install-strip
.PHONY: CTAGS GTAGS all all-am check check-am clean clean-generic \
clean-libtool clean-noinstLTLIBRARIES clean-noinstPROGRAMS \
ctags distclean distclean-compile distclean-generic \
distclean-libtool distclean-tags distdir dvi dvi-am html \
html-am info info-am install install-am install-data \
install-data-am install-dvi install-dvi-am install-exec \
install-exec-am install-html install-html-am install-info \
install-info-am install-man install-pdf install-pdf-am \
install-ps install-ps-am install-strip installcheck \
installcheck-am installdirs maintainer-clean \
maintainer-clean-generic mostlyclean mostlyclean-compile \
mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \
tags uninstall uninstall-am
#radioInterface.cpp
#ComplexTest.cpp
#sigProcLibTest.cpp
#sweepGenerator.cpp
#testRadio.cpp
# Tell versions [3.59,3.63) of GNU make to not export all variables.
# Otherwise a system limit (for SysV at least) may be exceeded.
.NOEXPORT:

View File

@ -0,0 +1,88 @@
#
# Copyright 2008 Free Software Foundation, Inc.
# Copyright 2010 Range Networks, Inc.
#
# This software is distributed under the terms of the GNU Public License.
# See the COPYING file in the main directory for details.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
include $(top_srcdir)/Makefile.common
AM_CPPFLAGS = $(STD_DEFINES_AND_INCLUDES) $(USRP_CFLAGS)
AM_CXXFLAGS = -ldl -lpthread
#rev2dir = $(datadir)/usrp/rev2
#rev4dir = $(datadir)/usrp/rev4
#dist_rev2_DATA = std_inband.rbf
#dist_rev4_DATA = std_inband.rbf
EXTRA_DIST = \
README \
README.Talgorithm
noinst_LTLIBRARIES = libtransceiver.la
libtransceiver_la_SOURCES = \
radioInterface.cpp \
sigProcLib.cpp \
Transceiver.cpp \
USRPDevice.cpp \
DummyLoad.cpp
noinst_PROGRAMS = \
USRPping \
transceiver \
sigProcLibTest
noinst_HEADERS = \
Complex.h \
radioInterface.h \
radioDevice.h \
sigProcLib.h \
Transceiver.h \
USRPDevice.h \
DummyLoad.h
USRPping_SOURCES = USRPping.cpp
USRPping_LDADD = \
libtransceiver.la \
$(COMMON_LA) $(SQLITE_LA) \
$(USRP_LIBS)
transceiver_SOURCES = runTransceiver.cpp
transceiver_LDADD = \
libtransceiver.la \
$(GSM_LA) \
$(COMMON_LA) $(SQLITE_LA) \
$(USRP_LIBS)
sigProcLibTest_SOURCES = sigProcLibTest.cpp
sigProcLibTest_LDADD = \
libtransceiver.la \
$(GSM_LA) \
$(COMMON_LA) $(SQLITE_LA) \
$(USRP_LIBS)
MOSTLYCLEANFILES +=
#radioInterface.cpp
#ComplexTest.cpp
#sigProcLibTest.cpp
#sweepGenerator.cpp
#testRadio.cpp

35
Transceiver52M/README Normal file
View File

@ -0,0 +1,35 @@
The Transceiver
The transceiver consists of three modules:
--- transceiver
--- radioInterface
--- USRPDevice
The USRPDevice module is basically a driver that reads/writes
packets to a USRP with two RFX900 daughterboards, board
A is the Tx chain and board B is the Rx chain.
The radioInterface module is basically an interface b/w the
transceiver and the USRP. It operates the basestation clock
based upon the sample count of received USRP samples. Packets
from the USRP are queued and segmented into GSM bursts that are
passed up to the transceiver; bursts from the transceiver are
passed down to the USRP.
The transceiver basically operates "layer 0" of the GSM stack,
performing the modulation, detection, and demodulation of GSM
bursts. It communicates with the GSM stack via three UDP sockets,
one socket for data, one for control messages, and one socket to
pass clocking information. The transceiver contains a priority
queue to sort to-be-transmitted bursts, and a filler table to fill
in timeslots that do not have bursts in the priority queue. The
transceiver tries to stay ahead of the basestation clock, adapting
its latency when underruns are reported by the radioInterface/USRP.
Received bursts (from the radioInterface) pass through a simple
energy detector, a RACH or midamble correlator, and a DFE-based demodulator.
NOTE: There's a SWLOOPBACK #define statement, where the USRP is replaced
with a memory buffer. In this mode, data written to the USRP is actually stored
in a buffer, and read commands to the USRP simply pull data from this buffer.
This was very useful in early testing, and still may be useful in testing basic
Transceiver and radioInterface functionality.

View File

@ -0,0 +1,14 @@
signalVectors G0, G1. i.e. G0(D) = 1 +2D + 3D^2 = [1 2 3]
G0(D) = 1/sqrt(SNR).
G1(D) = [h0 h1D .. h_(N-1)D^(N-1)]
for i = 0,1,...,N_f-1,
d = |G0(0)|^2+|G1(0)|^2
l_i(D) = D^i ( G0(D)*G0'(0) + G1(D)*G1'(0) )/d
k = G1(0)/G0(0)
G0n(D) = G0(D)+k'*G1(D)
G1n(D) = (-G0(D)*k+G1(D))/D
G0(D) = G0n(D)/sqrt(1+k*k')
G1(D) = G1n(D)/sqrt(1+k*k')
end

View File

@ -0,0 +1,15 @@
Basic model:
Have channel H = {h_0, h_1, ..., h_{K-1}}.
Have received sequence Y = {y_0, ..., y_{K+N}}.
Have transmitted sequence X = {x_0, ..., x_{N-1}}.
Denote state S_n = {x_n, x_{n-1}, ..., x_{n-L}}.
Define a bag as an unordered collection with two operations, add and take.
We have three bags:
S: a bag of survivors.
F: a bag of available data structures.
At time n, start with a non-empty bag S of survivors from time n-1.
Take a member out of S, and create all possible branches and their corresponding metrics. If metric ratio is above T, discard branch. Otherwise, check branch against entry in pruning table P. If branch metric is smaller than the existing entry's metric in P, then replace entry with branch. Otherwise, discard branch.
Once all possible branches of S have been created and pruned, S should be empty.Empty pruning table back into S, thus P is now empty. Repeat.

View File

@ -0,0 +1,798 @@
/*
* Copyright 2008, 2009, 2010 Free Software Foundation, Inc.
*
* This software is distributed under the terms of the GNU Public License.
* See the COPYING file in the main directory for details.
*
* This use of this software may be subject to additional restrictions.
* See the LEGAL file in the main directory for details.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
Compilation switches
TRANSMIT_LOGGING write every burst on the given slot to a log
*/
#include <stdio.h>
#include "Transceiver.h"
#include <Logger.h>
Transceiver::Transceiver(int wBasePort,
const char *TRXAddress,
int wSamplesPerSymbol,
GSM::Time wTransmitLatency,
RadioInterface *wRadioInterface)
:mDataSocket(wBasePort+2,TRXAddress,wBasePort+102),
mControlSocket(wBasePort+1,TRXAddress,wBasePort+101),
mClockSocket(wBasePort,TRXAddress,wBasePort+100)
{
//GSM::Time startTime(0,0);
//GSM::Time startTime(gHyperframe/2 - 4*216*60,0);
GSM::Time startTime(random() % gHyperframe,0);
mFIFOServiceLoopThread = new Thread(32768); ///< thread to push bursts into transmit FIFO
mControlServiceLoopThread = new Thread(32768); ///< thread to process control messages from GSM core
mTransmitPriorityQueueServiceLoopThread = new Thread(32768);///< thread to process transmit bursts from GSM core
mSamplesPerSymbol = wSamplesPerSymbol;
mRadioInterface = wRadioInterface;
mTransmitLatency = wTransmitLatency;
mTransmitDeadlineClock = startTime;
mLastClockUpdateTime = startTime;
mLatencyUpdateTime = startTime;
mRadioInterface->getClock()->set(startTime);
mMaxExpectedDelay = 0;
// generate pulse and setup up signal processing library
gsmPulse = generateGSMPulse(2,mSamplesPerSymbol);
LOG(DEBUG) << "gsmPulse: " << *gsmPulse;
sigProcLibSetup(mSamplesPerSymbol);
txFullScale = mRadioInterface->fullScaleInputValue();
rxFullScale = mRadioInterface->fullScaleOutputValue();
// initialize filler tables with dummy bursts, initialize other per-timeslot variables
for (int i = 0; i < 8; i++) {
signalVector* modBurst = modulateBurst(gDummyBurst,*gsmPulse,
8 + (i % 4 == 0),
mSamplesPerSymbol);
scaleVector(*modBurst,txFullScale);
fillerModulus[i]=26;
for (int j = 0; j < 102; j++) {
fillerTable[j][i] = new signalVector(*modBurst);
}
delete modBurst;
mChanType[i] = NONE;
channelResponse[i] = NULL;
DFEForward[i] = NULL;
DFEFeedback[i] = NULL;
channelEstimateTime[i] = startTime;
}
mOn = false;
mTxFreq = 0.0;
mRxFreq = 0.0;
mPower = -10;
mEnergyThreshold = 5.0; // based on empirical data
prevFalseDetectionTime = startTime;
}
Transceiver::~Transceiver()
{
delete gsmPulse;
sigProcLibDestroy();
mTransmitPriorityQueue.clear();
}
void Transceiver::addRadioVector(BitVector &burst,
int RSSI,
GSM::Time &wTime)
{
// modulate and stick into queue
signalVector* modBurst = modulateBurst(burst,*gsmPulse,
8 + (wTime.TN() % 4 == 0),
mSamplesPerSymbol);
scaleVector(*modBurst,txFullScale * pow(10,-RSSI/10));
radioVector *newVec = new radioVector(*modBurst,wTime);
mTransmitPriorityQueue.write(newVec);
delete modBurst;
}
#ifdef TRANSMIT_LOGGING
void Transceiver::unModulateVector(signalVector wVector)
{
SoftVector *burst = demodulateBurst(wVector,
*gsmPulse,
mSamplesPerSymbol,
1.0,0.0);
LOG(DEBUG) << "LOGGED BURST: " << *burst;
/*
unsigned char burstStr[gSlotLen+1];
SoftVector::iterator burstItr = burst->begin();
for (int i = 0; i < gSlotLen; i++) {
// FIXME: Demod bits are inverted!
burstStr[i] = (unsigned char) ((*burstItr++)*255.0);
}
burstStr[gSlotLen]='\0';
LOG(DEBUG) << "LOGGED BURST: " << burstStr;
*/
delete burst;
}
#endif
void Transceiver::pushRadioVector(GSM::Time &nowTime)
{
// dump stale bursts, if any
while (radioVector* staleBurst = mTransmitPriorityQueue.getStaleBurst(nowTime)) {
// Even if the burst is stale, put it in the fillter table.
// (It might be an idle pattern.)
LOG(NOTICE) << "dumping STALE burst in TRX->USRP interface";
const GSM::Time& nextTime = staleBurst->time();
int TN = nextTime.TN();
int modFN = nextTime.FN() % fillerModulus[TN];
delete fillerTable[modFN][TN];
fillerTable[modFN][TN] = staleBurst;
}
int TN = nowTime.TN();
int modFN = nowTime.FN() % fillerModulus[nowTime.TN()];
// if queue contains data at the desired timestamp, stick it into FIFO
if (radioVector *next = (radioVector*) mTransmitPriorityQueue.getCurrentBurst(nowTime)) {
LOG(DEBUG) << "transmitFIFO: wrote burst " << next << " at time: " << nowTime;
delete fillerTable[modFN][TN];
fillerTable[modFN][TN] = new signalVector(*(next));
mRadioInterface->driveTransmitRadio(*(next),(mChanType[TN]==NONE)); //fillerTable[modFN][TN]));
delete next;
#ifdef TRANSMIT_LOGGING
if (nowTime.TN()==TRANSMIT_LOGGING) {
unModulateVector(*(fillerTable[modFN][TN]));
}
#endif
return;
}
// otherwise, pull filler data, and push to radio FIFO
mRadioInterface->driveTransmitRadio(*(fillerTable[modFN][TN]),(mChanType[TN]==NONE));
#ifdef TRANSMIT_LOGGING
if (nowTime.TN()==TRANSMIT_LOGGING)
unModulateVector(*fillerTable[modFN][TN]);
#endif
}
void Transceiver::setModulus(int timeslot)
{
switch (mChanType[timeslot]) {
case NONE:
case I:
case II:
case III:
case FILL:
fillerModulus[timeslot] = 26;
break;
case IV:
case VI:
case V:
fillerModulus[timeslot] = 51;
break;
//case V:
case VII:
fillerModulus[timeslot] = 102;
break;
default:
break;
}
}
Transceiver::CorrType Transceiver::expectedCorrType(GSM::Time currTime)
{
unsigned burstTN = currTime.TN();
unsigned burstFN = currTime.FN();
switch (mChanType[burstTN]) {
case NONE:
return OFF;
break;
case FILL:
return IDLE;
break;
case I:
return TSC;
/*if (burstFN % 26 == 25)
return IDLE;
else
return TSC;*/
break;
case II:
if (burstFN % 2 == 1)
return IDLE;
else
return TSC;
break;
case III:
return TSC;
break;
case IV:
case VI:
return RACH;
break;
case V: {
int mod51 = burstFN % 51;
if ((mod51 <= 36) && (mod51 >= 14))
return RACH;
else if ((mod51 == 4) || (mod51 == 5))
return RACH;
else if ((mod51 == 45) || (mod51 == 46))
return RACH;
else
return TSC;
break;
}
case VII:
if ((burstFN % 51 <= 14) && (burstFN % 51 >= 12))
return IDLE;
else
return TSC;
break;
case LOOPBACK:
if ((burstFN % 51 <= 50) && (burstFN % 51 >=48))
return IDLE;
else
return TSC;
break;
default:
return OFF;
break;
}
}
SoftVector *Transceiver::pullRadioVector(GSM::Time &wTime,
int &RSSI,
int &timingOffset)
{
bool needDFE = (mMaxExpectedDelay > 1);
radioVector *rxBurst = (radioVector *) mReceiveFIFO->get();
if (!rxBurst) return NULL;
LOG(DEBUG) << "receiveFIFO: read radio vector at time: " << rxBurst->time() << ", new size: " << mReceiveFIFO->size();
int timeslot = rxBurst->time().TN();
CorrType corrType = expectedCorrType(rxBurst->time());
if ((corrType==OFF) || (corrType==IDLE)) {
delete rxBurst;
return NULL;
}
// check to see if received burst has sufficient
signalVector *vectorBurst = rxBurst;
complex amplitude = 0.0;
float TOA = 0.0;
float avgPwr = 0.0;
if (!energyDetect(*vectorBurst,20*mSamplesPerSymbol,mEnergyThreshold,&avgPwr)) {
LOG(DEBUG) << "Estimated Energy: " << sqrt(avgPwr) << ", at time " << rxBurst->time();
double framesElapsed = rxBurst->time()-prevFalseDetectionTime;
if (framesElapsed > 50) { // if we haven't had any false detections for a while, lower threshold
mEnergyThreshold -= 10.0/10.0;
prevFalseDetectionTime = rxBurst->time();
}
delete rxBurst;
return NULL;
}
LOG(DEBUG) << "Estimated Energy: " << sqrt(avgPwr) << ", at time " << rxBurst->time();
// run the proper correlator
bool success = false;
if (corrType==TSC) {
LOG(DEBUG) << "looking for TSC at time: " << rxBurst->time();
signalVector *channelResp;
double framesElapsed = rxBurst->time()-channelEstimateTime[timeslot];
bool estimateChannel = false;
if ((framesElapsed > 50) || (channelResponse[timeslot]==NULL)) {
if (channelResponse[timeslot]) delete channelResponse[timeslot];
if (DFEForward[timeslot]) delete DFEForward[timeslot];
if (DFEFeedback[timeslot]) delete DFEFeedback[timeslot];
channelResponse[timeslot] = NULL;
DFEForward[timeslot] = NULL;
DFEFeedback[timeslot] = NULL;
estimateChannel = true;
}
if (!needDFE) estimateChannel = false;
float chanOffset;
success = analyzeTrafficBurst(*vectorBurst,
mTSC,
3.0,
mSamplesPerSymbol,
&amplitude,
&TOA,
mMaxExpectedDelay,
estimateChannel,
&channelResp,
&chanOffset);
if (success) {
LOG(DEBUG) << "FOUND TSC!!!!!! " << amplitude << " " << TOA;
mEnergyThreshold -= 1.0F/10.0F;
if (mEnergyThreshold < 0.0) mEnergyThreshold = 0.0;
SNRestimate[timeslot] = amplitude.norm2()/(mEnergyThreshold*mEnergyThreshold+1.0); // this is not highly accurate
if (estimateChannel) {
LOG(DEBUG) << "estimating channel...";
channelResponse[timeslot] = channelResp;
chanRespOffset[timeslot] = chanOffset;
chanRespAmplitude[timeslot] = amplitude;
scaleVector(*channelResp, complex(1.0,0.0)/amplitude);
designDFE(*channelResp, SNRestimate[timeslot], 7, &DFEForward[timeslot], &DFEFeedback[timeslot]);
channelEstimateTime[timeslot] = rxBurst->time();
LOG(DEBUG) << "SNR: " << SNRestimate[timeslot] << ", DFE forward: " << *DFEForward[timeslot] << ", DFE backward: " << *DFEFeedback[timeslot];
}
}
else {
double framesElapsed = rxBurst->time()-prevFalseDetectionTime;
LOG(DEBUG) << "wTime: " << rxBurst->time() << ", pTime: " << prevFalseDetectionTime << ", fElapsed: " << framesElapsed;
mEnergyThreshold += 10.0F/10.0F*exp(-framesElapsed);
prevFalseDetectionTime = rxBurst->time();
channelResponse[timeslot] = NULL;
}
}
else {
// RACH burst
success = detectRACHBurst(*vectorBurst,
5.0, // detection threshold
mSamplesPerSymbol,
&amplitude,
&TOA);
if (success) {
LOG(DEBUG) << "FOUND RACH!!!!!! " << amplitude << " " << TOA;
mEnergyThreshold -= (1.0F/10.0F);
if (mEnergyThreshold < 0.0) mEnergyThreshold = 0.0;
channelResponse[timeslot] = NULL;
}
else {
double framesElapsed = rxBurst->time()-prevFalseDetectionTime;
mEnergyThreshold += (1.0F/10.0F)*exp(-framesElapsed);
prevFalseDetectionTime = rxBurst->time();
}
}
LOG(DEBUG) << "energy Threshold = " << mEnergyThreshold;
// demodulate burst
SoftVector *burst = NULL;
if ((rxBurst) && (success)) {
if ((corrType==RACH) || (!needDFE)) {
burst = demodulateBurst(*vectorBurst,
*gsmPulse,
mSamplesPerSymbol,
amplitude,TOA);
}
else { // TSC
scaleVector(*vectorBurst,complex(1.0,0.0)/amplitude);
burst = equalizeBurst(*vectorBurst,
TOA-chanRespOffset[timeslot],
mSamplesPerSymbol,
*DFEForward[timeslot],
*DFEFeedback[timeslot]);
}
wTime = rxBurst->time();
// FIXME: what is full scale for the USRP? we get more that 12 bits of resolution...
RSSI = (int) floor(20.0*log10(rxFullScale/amplitude.abs()));
LOG(DEBUG) << "RSSI: " << RSSI;
timingOffset = (int) round(TOA*256.0/mSamplesPerSymbol);
}
//if (burst) LOG(DEBUG) << "burst: " << *burst << '\n';
delete rxBurst;
return burst;
}
void Transceiver::start()
{
mControlServiceLoopThread->start((void * (*)(void*))ControlServiceLoopAdapter,(void*) this);
}
void Transceiver::reset()
{
mTransmitPriorityQueue.clear();
//mTransmitFIFO->clear();
//mReceiveFIFO->clear();
}
void Transceiver::driveControl()
{
int MAX_PACKET_LENGTH = 100;
// check control socket
char buffer[MAX_PACKET_LENGTH];
int msgLen = -1;
buffer[0] = '\0';
msgLen = mControlSocket.read(buffer);
if (msgLen < 1) {
return;
}
char cmdcheck[4];
char command[MAX_PACKET_LENGTH];
char response[MAX_PACKET_LENGTH];
sscanf(buffer,"%3s %s",cmdcheck,command);
writeClockInterface();
if (strcmp(cmdcheck,"CMD")!=0) {
LOG(WARNING) << "bogus message on control interface";
return;
}
LOG(INFO) << "command is " << buffer;
if (strcmp(command,"POWEROFF")==0) {
// turn off transmitter/demod
sprintf(response,"RSP POWEROFF 0");
}
else if (strcmp(command,"POWERON")==0) {
// turn on transmitter/demod
if (!mTxFreq || !mRxFreq)
sprintf(response,"RSP POWERON 1");
else {
sprintf(response,"RSP POWERON 0");
if (!mOn) {
// Prepare for thread start
mPower = -20;
mRadioInterface->start();
generateRACHSequence(*gsmPulse,mSamplesPerSymbol);
// Start radio interface threads.
mFIFOServiceLoopThread->start((void * (*)(void*))FIFOServiceLoopAdapter,(void*) this);
mTransmitPriorityQueueServiceLoopThread->start((void * (*)(void*))TransmitPriorityQueueServiceLoopAdapter,(void*) this);
writeClockInterface();
mOn = true;
}
}
}
else if (strcmp(command,"SETMAXDLY")==0) {
//set expected maximum time-of-arrival
int maxDelay;
sscanf(buffer,"%3s %s %d",cmdcheck,command,&maxDelay);
mMaxExpectedDelay = maxDelay; // 1 GSM symbol is approx. 1 km
sprintf(response,"RSP SETMAXDLY 0 %d",maxDelay);
}
else if (strcmp(command,"SETRXGAIN")==0) {
//set expected maximum time-of-arrival
int newGain;
sscanf(buffer,"%3s %s %d",cmdcheck,command,&newGain);
newGain = mRadioInterface->setRxGain(newGain);
sprintf(response,"RSP SETRXGAIN 0 %d",newGain);
}
else if (strcmp(command,"NOISELEV")==0) {
if (mOn) {
sprintf(response,"RSP NOISELEV 0 %d",
(int) round(20.0*log10(rxFullScale/mEnergyThreshold)));
}
else {
sprintf(response,"RSP NOISELEV 1 0");
}
}
else if (strcmp(command,"SETPOWER")==0) {
// set output power in dB
int dbPwr;
sscanf(buffer,"%3s %s %d",cmdcheck,command,&dbPwr);
if (!mOn)
sprintf(response,"RSP SETPOWER 1 %d",dbPwr);
else {
mPower = dbPwr;
mRadioInterface->setPowerAttenuation(pow(10.0,dbPwr/10.0));
sprintf(response,"RSP SETPOWER 0 %d",dbPwr);
}
}
else if (strcmp(command,"ADJPOWER")==0) {
// adjust power in dB steps
int dbStep;
sscanf(buffer,"%3s %s %d",cmdcheck,command,&dbStep);
if (!mOn)
sprintf(response,"RSP ADJPOWER 1 %d",mPower);
else {
mPower += dbStep;
sprintf(response,"RSP ADJPOWER 0 %d",mPower);
}
}
#define FREQOFFSET 0//11.2e3
else if (strcmp(command,"RXTUNE")==0) {
// tune receiver
int freqKhz;
sscanf(buffer,"%3s %s %d",cmdcheck,command,&freqKhz);
mRxFreq = freqKhz*1.0e3+FREQOFFSET;
if (!mRadioInterface->tuneRx(mRxFreq)) {
LOG(ALERT) << "RX failed to tune";
sprintf(response,"RSP RXTUNE 1 %d",freqKhz);
}
else
sprintf(response,"RSP RXTUNE 0 %d",freqKhz);
}
else if (strcmp(command,"TXTUNE")==0) {
// tune txmtr
int freqKhz;
sscanf(buffer,"%3s %s %d",cmdcheck,command,&freqKhz);
//freqKhz = 890e3;
mTxFreq = freqKhz*1.0e3+FREQOFFSET;
if (!mRadioInterface->tuneTx(mTxFreq)) {
LOG(ALERT) << "TX failed to tune";
sprintf(response,"RSP TXTUNE 1 %d",freqKhz);
}
else
sprintf(response,"RSP TXTUNE 0 %d",freqKhz);
}
else if (strcmp(command,"SETTSC")==0) {
// set TSC
int TSC;
sscanf(buffer,"%3s %s %d",cmdcheck,command,&TSC);
if (mOn)
sprintf(response,"RSP SETTSC 1 %d",TSC);
else {
mTSC = TSC;
generateMidamble(*gsmPulse,mSamplesPerSymbol,TSC);
sprintf(response,"RSP SETTSC 0 %d",TSC);
}
}
else if (strcmp(command,"SETSLOT")==0) {
// set TSC
int corrCode;
int timeslot;
sscanf(buffer,"%3s %s %d %d",cmdcheck,command,&timeslot,&corrCode);
if ((timeslot < 0) || (timeslot > 7)) {
LOG(WARNING) << "bogus message on control interface";
sprintf(response,"RSP SETSLOT 1 %d %d",timeslot,corrCode);
return;
}
mChanType[timeslot] = (ChannelCombination) corrCode;
setModulus(timeslot);
sprintf(response,"RSP SETSLOT 0 %d %d",timeslot,corrCode);
}
else {
LOG(WARNING) << "bogus command " << command << " on control interface.";
}
mControlSocket.write(response,strlen(response)+1);
}
bool Transceiver::driveTransmitPriorityQueue()
{
char buffer[gSlotLen+50];
// check data socket
size_t msgLen = mDataSocket.read(buffer);
if (msgLen!=gSlotLen+1+4+1) {
LOG(ERR) << "badly formatted packet on GSM->TRX interface";
return false;
}
int timeSlot = (int) buffer[0];
uint64_t frameNum = 0;
for (int i = 0; i < 4; i++)
frameNum = (frameNum << 8) | (0x0ff & buffer[i+1]);
/*
if (GSM::Time(frameNum,timeSlot) > mTransmitDeadlineClock + GSM::Time(51,0)) {
// stale burst
//LOG(DEBUG) << "FAST! "<< GSM::Time(frameNum,timeSlot);
//writeClockInterface();
}*/
/*
DAB -- Just let these go through the demod.
if (GSM::Time(frameNum,timeSlot) < mTransmitDeadlineClock) {
// stale burst from GSM core
LOG(NOTICE) << "STALE packet on GSM->TRX interface at time "<< GSM::Time(frameNum,timeSlot);
return false;
}
*/
// periodically update GSM core clock
LOG(DEBUG) << "mTransmitDeadlineClock " << mTransmitDeadlineClock
<< " mLastClockUpdateTime " << mLastClockUpdateTime;
if (mTransmitDeadlineClock > mLastClockUpdateTime + GSM::Time(216,0))
writeClockInterface();
LOG(DEBUG) << "rcvd. burst at: " << GSM::Time(frameNum,timeSlot);
int RSSI = (int) buffer[5];
static BitVector newBurst(gSlotLen);
BitVector::iterator itr = newBurst.begin();
char *bufferItr = buffer+6;
while (itr < newBurst.end())
*itr++ = *bufferItr++;
GSM::Time currTime = GSM::Time(frameNum,timeSlot);
addRadioVector(newBurst,RSSI,currTime);
LOG(DEBUG) "added burst - time: " << currTime << ", RSSI: " << RSSI; // << ", data: " << newBurst;
return true;
}
void Transceiver::driveReceiveFIFO()
{
SoftVector *rxBurst = NULL;
int RSSI;
int TOA; // in 1/256 of a symbol
GSM::Time burstTime;
mRadioInterface->driveReceiveRadio();
rxBurst = pullRadioVector(burstTime,RSSI,TOA);
if (rxBurst) {
LOG(DEBUG) << "burst parameters: "
<< " time: " << burstTime
<< " RSSI: " << RSSI
<< " TOA: " << TOA
<< " bits: " << *rxBurst;
char burstString[gSlotLen+10];
burstString[0] = burstTime.TN();
for (int i = 0; i < 4; i++)
burstString[1+i] = (burstTime.FN() >> ((3-i)*8)) & 0x0ff;
burstString[5] = RSSI;
burstString[6] = (TOA >> 8) & 0x0ff;
burstString[7] = TOA & 0x0ff;
SoftVector::iterator burstItr = rxBurst->begin();
for (unsigned int i = 0; i < gSlotLen; i++) {
burstString[8+i] =(char) round((*burstItr++)*255.0);
}
burstString[gSlotLen+9] = '\0';
delete rxBurst;
mDataSocket.write(burstString,gSlotLen+10);
}
}
void Transceiver::driveTransmitFIFO()
{
/**
Features a carefully controlled latency mechanism, to
assure that transmit packets arrive at the radio/USRP
before they need to be transmitted.
Deadline clock indicates the burst that needs to be
pushed into the FIFO right NOW. If transmit queue does
not have a burst, stick in filler data.
*/
RadioClock *radioClock = (mRadioInterface->getClock());
if (mOn) {
//radioClock->wait(); // wait until clock updates
LOG(DEBUG) << "radio clock " << radioClock->get();
while (radioClock->get() + mTransmitLatency > mTransmitDeadlineClock) {
// if underrun, then we're not providing bursts to radio/USRP fast
// enough. Need to increase latency by one GSM frame.
if (mRadioInterface->isUnderrun()) {
// only do latency update every 10 frames, so we don't over update
if (radioClock->get() > mLatencyUpdateTime + GSM::Time(10,0)) {
mTransmitLatency = mTransmitLatency + GSM::Time(1,0);
LOG(INFO) << "new latency: " << mTransmitLatency;
mLatencyUpdateTime = radioClock->get();
}
}
else {
// if underrun hasn't occurred in the last sec (216 frames) drop
// transmit latency by a timeslot
if (mTransmitLatency > GSM::Time(1,1)) {
if (radioClock->get() > mLatencyUpdateTime + GSM::Time(216,0)) {
mTransmitLatency.decTN();
LOG(INFO) << "reduced latency: " << mTransmitLatency;
mLatencyUpdateTime = radioClock->get();
}
}
}
// time to push burst to transmit FIFO
pushRadioVector(mTransmitDeadlineClock);
mTransmitDeadlineClock.incTN();
}
}
// FIXME -- This should not be a hard spin.
// But any delay here causes us to throw omni_thread_fatal.
//else radioClock->wait();
}
void Transceiver::writeClockInterface()
{
char command[50];
// FIXME -- This should be adaptive.
sprintf(command,"IND CLOCK %llu",(unsigned long long) (mTransmitDeadlineClock.FN()+2));
LOG(INFO) << "ClockInterface: sending " << command;
mClockSocket.write(command,strlen(command)+1);
mLastClockUpdateTime = mTransmitDeadlineClock;
}
void *FIFOServiceLoopAdapter(Transceiver *transceiver)
{
while (1) {
transceiver->driveReceiveFIFO();
transceiver->driveTransmitFIFO();
pthread_testcancel();
}
return NULL;
}
void *ControlServiceLoopAdapter(Transceiver *transceiver)
{
while (1) {
transceiver->driveControl();
pthread_testcancel();
}
return NULL;
}
void *TransmitPriorityQueueServiceLoopAdapter(Transceiver *transceiver)
{
while (1) {
bool stale = false;
// Flush the UDP packets until a successful transfer.
while (!transceiver->driveTransmitPriorityQueue()) {
stale = true;
}
if (stale) {
// If a packet was stale, remind the GSM stack of the clock.
transceiver->writeClockInterface();
}
pthread_testcancel();
}
return NULL;
}

View File

@ -0,0 +1,207 @@
/*
* Copyright 2008 Free Software Foundation, Inc.
*
* This software is distributed under the terms of the GNU Public License.
* See the COPYING file in the main directory for details.
*
* This use of this software may be subject to additional restrictions.
* See the LEGAL file in the main directory for details.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
Compilation switches
TRANSMIT_LOGGING write every burst on the given slot to a log
*/
#include "radioInterface.h"
#include "Interthread.h"
#include "GSMCommon.h"
#include "Sockets.h"
#include <sys/types.h>
#include <sys/socket.h>
/** Define this to be the slot number to be logged. */
//#define TRANSMIT_LOGGING 1
/** The Transceiver class, responsible for physical layer of basestation */
class Transceiver {
private:
GSM::Time mTransmitLatency; ///< latency between basestation clock and transmit deadline clock
GSM::Time mLatencyUpdateTime; ///< last time latency was updated
UDPSocket mDataSocket; ///< socket for writing to/reading from GSM core
UDPSocket mControlSocket; ///< socket for writing/reading control commands from GSM core
UDPSocket mClockSocket; ///< socket for writing clock updates to GSM core
VectorQueue mTransmitPriorityQueue; ///< priority queue of transmit bursts received from GSM core
VectorFIFO* mTransmitFIFO; ///< radioInterface FIFO of transmit bursts
VectorFIFO* mReceiveFIFO; ///< radioInterface FIFO of receive bursts
Thread *mFIFOServiceLoopThread; ///< thread to push/pull bursts into transmit/receive FIFO
Thread *mControlServiceLoopThread; ///< thread to process control messages from GSM core
Thread *mTransmitPriorityQueueServiceLoopThread;///< thread to process transmit bursts from GSM core
GSM::Time mTransmitDeadlineClock; ///< deadline for pushing bursts into transmit FIFO
GSM::Time mLastClockUpdateTime; ///< last time clock update was sent up to core
RadioInterface *mRadioInterface; ///< associated radioInterface object
double txFullScale; ///< full scale input to radio
double rxFullScale; ///< full scale output to radio
/** Codes for burst types of received bursts*/
typedef enum {
OFF, ///< timeslot is off
TSC, ///< timeslot should contain a normal burst
RACH, ///< timeslot should contain an access burst
IDLE ///< timeslot is an idle (or dummy) burst
} CorrType;
/** Codes for channel combinations */
typedef enum {
FILL, ///< Channel is transmitted, but unused
I, ///< TCH/FS
II, ///< TCH/HS, idle every other slot
III, ///< TCH/HS
IV, ///< FCCH+SCH+CCCH+BCCH, uplink RACH
V, ///< FCCH+SCH+CCCH+BCCH+SDCCH/4+SACCH/4, uplink RACH+SDCCH/4
VI, ///< CCCH+BCCH, uplink RACH
VII, ///< SDCCH/8 + SACCH/8
NONE, ///< Channel is inactive, default
LOOPBACK ///< similar go VII, used in loopback testing
} ChannelCombination;
/** unmodulate a modulated burst */
#ifdef TRANSMIT_LOGGING
void unModulateVector(signalVector wVector);
#endif
/** modulate and add a burst to the transmit queue */
void addRadioVector(BitVector &burst,
int RSSI,
GSM::Time &wTime);
/** Push modulated burst into transmit FIFO corresponding to a particular timestamp */
void pushRadioVector(GSM::Time &nowTime);
/** Pull and demodulate a burst from the receive FIFO */
SoftVector *pullRadioVector(GSM::Time &wTime,
int &RSSI,
int &timingOffset);
/** Set modulus for specific timeslot */
void setModulus(int timeslot);
/** return the expected burst type for the specified timestamp */
CorrType expectedCorrType(GSM::Time currTime);
/** send messages over the clock socket */
void writeClockInterface(void);
signalVector *gsmPulse; ///< the GSM shaping pulse for modulation
int mSamplesPerSymbol; ///< number of samples per GSM symbol
bool mOn; ///< flag to indicate that transceiver is powered on
ChannelCombination mChanType[8]; ///< channel types for all timeslots
double mTxFreq; ///< the transmit frequency
double mRxFreq; ///< the receive frequency
int mPower; ///< the transmit power in dB
unsigned mTSC; ///< the midamble sequence code
double mEnergyThreshold; ///< threshold to determine if received data is potentially a GSM burst
GSM::Time prevFalseDetectionTime; ///< last timestamp of a false energy detection
int fillerModulus[8]; ///< modulus values of all timeslots, in frames
signalVector *fillerTable[102][8]; ///< table of modulated filler waveforms for all timeslots
unsigned mMaxExpectedDelay; ///< maximum expected time-of-arrival offset in GSM symbols
GSM::Time channelEstimateTime[8]; ///< last timestamp of each timeslot's channel estimate
signalVector *channelResponse[8]; ///< most recent channel estimate of all timeslots
float SNRestimate[8]; ///< most recent SNR estimate of all timeslots
signalVector *DFEForward[8]; ///< most recent DFE feedforward filter of all timeslots
signalVector *DFEFeedback[8]; ///< most recent DFE feedback filter of all timeslots
float chanRespOffset[8]; ///< most recent timing offset, e.g. TOA, of all timeslots
complex chanRespAmplitude[8]; ///< most recent channel amplitude of all timeslots
public:
/** Transceiver constructor
@param wBasePort base port number of UDP sockets
@param TRXAddress IP address of the TRX manager, as a string
@param wSamplesPerSymbol number of samples per GSM symbol
@param wTransmitLatency initial setting of transmit latency
@param radioInterface associated radioInterface object
*/
Transceiver(int wBasePort,
const char *TRXAddress,
int wSamplesPerSymbol,
GSM::Time wTransmitLatency,
RadioInterface *wRadioInterface);
/** Destructor */
~Transceiver();
/** start the Transceiver */
void start();
/** attach the radioInterface receive FIFO */
void receiveFIFO(VectorFIFO *wFIFO) { mReceiveFIFO = wFIFO;}
/** attach the radioInterface transmit FIFO */
void transmitFIFO(VectorFIFO *wFIFO) { mTransmitFIFO = wFIFO;}
protected:
/** drive reception and demodulation of GSM bursts */
void driveReceiveFIFO();
/** drive transmission of GSM bursts */
void driveTransmitFIFO();
/** drive handling of control messages from GSM core */
void driveControl();
/**
drive modulation and sorting of GSM bursts from GSM core
@return true if a burst was transferred successfully
*/
bool driveTransmitPriorityQueue();
friend void *FIFOServiceLoopAdapter(Transceiver *);
friend void *ControlServiceLoopAdapter(Transceiver *);
friend void *TransmitPriorityQueueServiceLoopAdapter(Transceiver *);
void reset();
};
/** FIFO thread loop */
void *FIFOServiceLoopAdapter(Transceiver *);
/** control message handler thread loop */
void *ControlServiceLoopAdapter(Transceiver *);
/** transmit queueing thread loop */
void *TransmitPriorityQueueServiceLoopAdapter(Transceiver *);

View File

@ -0,0 +1,631 @@
/*
* Copyright 2008, 2009 Free Software Foundation, Inc.
*
* This software is distributed under the terms of the GNU Affero Public License.
* See the COPYING file in the main directory for details.
*
* This use of this software may be subject to additional restrictions.
* See the LEGAL file in the main directory for details.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
Compilation Flags
SWLOOPBACK compile for software loopback testing
*/
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include "Threads.h"
#include "USRPDevice.h"
#include <Logger.h>
using namespace std;
string write_it(unsigned v) {
string s = " ";
s[0] = (v>>16) & 0x0ff;
s[1] = (v>>8) & 0x0ff;
s[2] = (v) & 0x0ff;
return s;
}
const float USRPDevice::LO_OFFSET = 4.0e6;
const double USRPDevice::masterClockRate = (double) 52.0e6;
bool USRPDevice::compute_regs(double freq,
unsigned *R,
unsigned *control,
unsigned *N,
double *actual_freq)
{
if (freq < 1.2e9) {
DIV2 = 1;
freq_mult = 2;
}
else {
DIV2 = 0;
freq_mult = 1;
}
float phdet_freq = masterClockRate/R_DIV;
int desired_n = (int) round(freq*freq_mult/phdet_freq);
*actual_freq = desired_n * phdet_freq/freq_mult;
float B = floor(desired_n/16);
float A = desired_n - 16*B;
unsigned B_DIV = int(B);
unsigned A_DIV = int(A);
if (B < A) return false;
*R = (R_RSV<<22) |
(BSC << 20) |
(TEST << 19) |
(LDP << 18) |
(ABP << 16) |
(R_DIV << 2);
*control = (P<<22) |
(PD<<20) |
(CP2 << 17) |
(CP1 << 14) |
(PL << 12) |
(MTLD << 11) |
(CPG << 10) |
(CP3S << 9) |
(PDP << 8) |
(MUXOUT << 5) |
(CR << 4) |
(PC << 2);
*N = (DIVSEL<<23) |
(DIV2<<22) |
(CPGAIN<<21) |
(B_DIV<<8) |
(N_RSV<<7) |
(A_DIV<<2);
return true;
}
bool USRPDevice::tx_setFreq(double freq, double *actual_freq)
{
unsigned R, control, N;
if (!compute_regs(freq, &R, &control, &N, actual_freq)) return false;
if (R==0) return false;
writeLock.lock();
m_uTx->_write_spi(0,SPI_ENABLE_TX_A,SPI_FMT_MSB | SPI_FMT_HDR_0,
write_it((R & ~0x3) | 1));
m_uTx->_write_spi(0,SPI_ENABLE_TX_A,SPI_FMT_MSB | SPI_FMT_HDR_0,
write_it((control & ~0x3) | 0));
usleep(10000);
m_uTx->_write_spi(0,SPI_ENABLE_TX_A,SPI_FMT_MSB | SPI_FMT_HDR_0,
write_it((N & ~0x3) | 2));
writeLock.unlock();
if (m_uTx->read_io(0) & PLL_LOCK_DETECT) return true;
if (m_uTx->read_io(0) & PLL_LOCK_DETECT) return true;
return false;
}
bool USRPDevice::rx_setFreq(double freq, double *actual_freq)
{
unsigned R, control, N;
if (!compute_regs(freq, &R, &control, &N, actual_freq)) return false;
if (R==0) return false;
writeLock.lock();
m_uRx->_write_spi(0,SPI_ENABLE_RX_B,SPI_FMT_MSB | SPI_FMT_HDR_0,
write_it((R & ~0x3) | 1));
m_uRx->_write_spi(0,SPI_ENABLE_RX_B,SPI_FMT_MSB | SPI_FMT_HDR_0,
write_it((control & ~0x3) | 0));
usleep(10000);
m_uRx->_write_spi(0,SPI_ENABLE_RX_B,SPI_FMT_MSB | SPI_FMT_HDR_0,
write_it((N & ~0x3) | 2));
writeLock.unlock();
if (m_uRx->read_io(1) & PLL_LOCK_DETECT) return true;
if (m_uRx->read_io(1) & PLL_LOCK_DETECT) return true;
return false;
}
USRPDevice::USRPDevice (double _desiredSampleRate)
{
LOG(INFO) << "creating USRP device...";
decimRate = (unsigned int) round(masterClockRate/_desiredSampleRate);
actualSampleRate = masterClockRate/decimRate;
rxGain = 0;
#ifdef SWLOOPBACK
samplePeriod = 1.0e6/actualSampleRate;
loopbackBufferSize = 0;
gettimeofday(&lastReadTime,NULL);
firstRead = false;
#endif
}
bool USRPDevice::make(bool wSkipRx)
{
skipRx = wSkipRx;
writeLock.unlock();
LOG(INFO) << "making USRP device..";
#ifndef SWLOOPBACK
string rbf = "std_inband.rbf";
//string rbf = "inband_1rxhb_1tx.rbf";
m_uRx.reset();
if (!skipRx) {
try {
m_uRx = usrp_standard_rx_sptr(usrp_standard_rx::make(0,decimRate,1,-1,
usrp_standard_rx::FPGA_MODE_NORMAL,
1024,16*8,rbf));
#ifdef HAVE_LIBUSRP_3_2
m_uRx->set_fpga_master_clock_freq(masterClockRate);
#endif
}
catch(...) {
LOG(ALERT) << "make failed on Rx";
m_uRx.reset();
return false;
}
if (m_uRx->fpga_master_clock_freq() != masterClockRate)
{
LOG(ALERT) << "WRONG FPGA clock freq = " << m_uRx->fpga_master_clock_freq()
<< ", desired clock freq = " << masterClockRate;
m_uRx.reset();
return false;
}
}
try {
m_uTx = usrp_standard_tx_sptr(usrp_standard_tx::make(0,decimRate*2,1,-1,
1024,16*8,rbf));
#ifdef HAVE_LIBUSRP_3_2
m_uTx->set_fpga_master_clock_freq(masterClockRate);
#endif
}
catch(...) {
LOG(ALERT) << "make failed on Tx";
m_uTx.reset();
return false;
}
if (m_uTx->fpga_master_clock_freq() != masterClockRate)
{
LOG(ALERT) << "WRONG FPGA clock freq = " << m_uTx->fpga_master_clock_freq()
<< ", desired clock freq = " << masterClockRate;
m_uTx.reset();
return false;
}
if (!skipRx) m_uRx->stop();
m_uTx->stop();
#endif
samplesRead = 0;
samplesWritten = 0;
started = false;
return true;
}
bool USRPDevice::start()
{
LOG(INFO) << "starting USRP...";
#ifndef SWLOOPBACK
if (!m_uRx && !skipRx) return false;
if (!m_uTx) return false;
if (!skipRx) m_uRx->stop();
m_uTx->stop();
writeLock.lock();
// power up and configure daughterboards
m_uTx->_write_oe(0,0,0xffff);
m_uTx->_write_oe(0,(POWER_UP|RX_TXN|ENABLE), 0xffff);
m_uTx->write_io(0,(~POWER_UP|RX_TXN),(POWER_UP|RX_TXN|ENABLE));
m_uTx->write_io(0,ENABLE,(RX_TXN | ENABLE));
m_uTx->_write_fpga_reg(FR_ATR_MASK_0 ,0);//RX_TXN|ENABLE);
m_uTx->_write_fpga_reg(FR_ATR_TXVAL_0,0);//,0 |ENABLE);
m_uTx->_write_fpga_reg(FR_ATR_RXVAL_0,0);//,RX_TXN|0);
m_uTx->_write_fpga_reg(40,0);
m_uTx->_write_fpga_reg(42,0);
m_uTx->set_pga(0,m_uTx->pga_max()); // should be 20dB
m_uTx->set_pga(1,m_uTx->pga_max());
m_uTx->set_mux(0x00000098);
LOG(INFO) << "TX pgas: " << m_uTx->pga(0) << ", " << m_uTx->pga(1);
writeLock.unlock();
if (!skipRx) {
writeLock.lock();
m_uRx->_write_fpga_reg(FR_ATR_MASK_0 + 3*3,0);
m_uRx->_write_fpga_reg(FR_ATR_TXVAL_0 + 3*3,0);
m_uRx->_write_fpga_reg(FR_ATR_RXVAL_0 + 3*3,0);
m_uRx->_write_fpga_reg(43,0);
m_uRx->_write_oe(1,(POWER_UP|RX_TXN|ENABLE), 0xffff);
m_uRx->write_io(1,(~POWER_UP|RX_TXN|ENABLE),(POWER_UP|RX_TXN|ENABLE));
//m_uRx->write_io(1,0,RX2_RX1N); // using Tx/Rx/
m_uRx->write_io(1,RX2_RX1N,RX2_RX1N); // using Rx2
m_uRx->set_adc_buffer_bypass(2,true);
m_uRx->set_adc_buffer_bypass(3,true);
m_uRx->set_mux(0x00000032);
writeLock.unlock();
// FIXME -- This should be configurable.
setRxGain(47); //maxRxGain());
}
data = new short[currDataSize];
dataStart = 0;
dataEnd = 0;
timeStart = 0;
timeEnd = 0;
timestampOffset = 0;
latestWriteTimestamp = 0;
lastPktTimestamp = 0;
hi32Timestamp = 0;
isAligned = false;
if (!skipRx)
started = (m_uRx->start() && m_uTx->start());
else
started = m_uTx->start();
return started;
#else
gettimeofday(&lastReadTime,NULL);
return true;
#endif
}
bool USRPDevice::stop()
{
#ifndef SWLOOPBACK
if (!m_uRx) return false;
if (!m_uTx) return false;
// power down
m_uTx->write_io(0,(~POWER_UP|RX_TXN),(POWER_UP|RX_TXN|ENABLE));
m_uRx->write_io(1,~POWER_UP,(POWER_UP|ENABLE));
delete[] currData;
started = !(m_uRx->stop() && m_uTx->stop());
return !started;
#else
return true;
#endif
}
double USRPDevice::setTxGain(double dB) {
writeLock.lock();
if (dB > maxTxGain()) dB = maxTxGain();
if (dB < minTxGain()) dB = minTxGain();
m_uTx->set_pga(0,dB);
m_uTx->set_pga(1,dB);
LOG(NOTICE) << "Setting TX PGA to " << dB << " dB.";
writeLock.unlock();
return dB;
}
double USRPDevice::setRxGain(double dB) {
writeLock.lock();
if (dB > maxRxGain()) dB = maxRxGain();
if (dB < minRxGain()) dB = minRxGain();
double dBret = dB;
dB = dB - minRxGain();
double rfMax = 70.0;
if (dB > rfMax) {
m_uRx->set_pga(2,dB-rfMax);
m_uRx->set_pga(3,dB-rfMax);
dB = rfMax;
}
else {
m_uRx->set_pga(2,0);
m_uRx->set_pga(3,0);
}
m_uRx->write_aux_dac(1,0,
(int) ceil((1.2 + 0.02 - (dB/rfMax))*4096.0/3.3));
LOG(DEBUG) << "Setting DAC voltage to " << (1.2+0.02 - (dB/rfMax)) << " " << (int) ceil((1.2 + 0.02 - (dB/rfMax))*4096.0/3.3);
rxGain = dBret;
writeLock.unlock();
return dBret;
}
// NOTE: Assumes sequential reads
int USRPDevice::readSamples(short *buf, int len, bool *overrun,
TIMESTAMP timestamp,
bool *underrun,
unsigned *RSSI)
{
#ifndef SWLOOPBACK
if (!m_uRx) return 0;
timestamp += timestampOffset;
if (timestamp + len < timeStart) {
memset(buf,0,len*2*sizeof(short));
return len;
}
if (underrun) *underrun = false;
uint32_t readBuf[2000];
while (1) {
//guestimate USB read size
int readLen=0;
{
int numSamplesNeeded = timestamp + len - timeEnd;
if (numSamplesNeeded <=0) break;
readLen = 512 * ((int) ceil((float) numSamplesNeeded/126.0));
if (readLen > 8000) readLen= (8000/512)*512;
}
// read USRP packets, parse and save A/D data as needed
readLen = m_uRx->read((void *)readBuf,readLen,overrun);
for(int pktNum = 0; pktNum < (readLen/512); pktNum++) {
// tmpBuf points to start of a USB packet
uint32_t* tmpBuf = (uint32_t *) (readBuf+pktNum*512/4);
TIMESTAMP pktTimestamp = usrp_to_host_u32(tmpBuf[1]);
uint32_t word0 = usrp_to_host_u32(tmpBuf[0]);
uint32_t chan = (word0 >> 16) & 0x1f;
unsigned payloadSz = word0 & 0x1ff;
LOG(DEBUG) << "first two bytes: " << hex << word0 << " " << dec << pktTimestamp;
bool incrementHi32 = ((lastPktTimestamp & 0x0ffffffffll) > pktTimestamp);
if (incrementHi32 && (timeStart!=0)) {
LOG(DEBUG) << "high 32 increment!!!";
hi32Timestamp++;
}
pktTimestamp = (((TIMESTAMP) hi32Timestamp) << 32) | pktTimestamp;
lastPktTimestamp = pktTimestamp;
if (chan == 0x01f) {
// control reply, check to see if its ping reply
uint32_t word2 = usrp_to_host_u32(tmpBuf[2]);
if ((word2 >> 16) == ((0x01 << 8) | 0x02)) {
timestamp -= timestampOffset;
timestampOffset = pktTimestamp - pingTimestamp + PINGOFFSET;
LOG(DEBUG) << "updating timestamp offset to: " << timestampOffset;
timestamp += timestampOffset;
isAligned = true;
}
continue;
}
if (chan != 0) {
LOG(DEBUG) << "chan: " << chan << ", timestamp: " << pktTimestamp << ", sz:" << payloadSz;
continue;
}
if ((word0 >> 28) & 0x04) {
if (underrun) *underrun = true;
LOG(DEBUG) << "UNDERRUN in TRX->USRP interface";
}
if (RSSI) *RSSI = (word0 >> 21) & 0x3f;
if (!isAligned) continue;
unsigned cursorStart = pktTimestamp - timeStart + dataStart;
while (cursorStart*2 > currDataSize) {
cursorStart -= currDataSize/2;
}
if (cursorStart*2 + payloadSz/2 > currDataSize) {
// need to circle around buffer
memcpy(data+cursorStart*2,tmpBuf+2,(currDataSize-cursorStart*2)*sizeof(short));
memcpy(data,tmpBuf+2+(currDataSize/2-cursorStart),payloadSz-(currDataSize-cursorStart*2)*sizeof(short));
}
else {
memcpy(data+cursorStart*2,tmpBuf+2,payloadSz);
}
if (pktTimestamp + payloadSz/2/sizeof(short) > timeEnd)
timeEnd = pktTimestamp+payloadSz/2/sizeof(short);
LOG(DEBUG) << "timeStart: " << timeStart << ", timeEnd: " << timeEnd << ", pktTimestamp: " << pktTimestamp;
}
}
// copy desired data to buf
unsigned bufStart = dataStart+(timestamp-timeStart);
if (bufStart + len < currDataSize/2) {
LOG(DEBUG) << "bufStart: " << bufStart;
memcpy(buf,data+bufStart*2,len*2*sizeof(short));
memset(data+bufStart*2,0,len*2*sizeof(short));
}
else {
LOG(DEBUG) << "len: " << len << ", currDataSize/2: " << currDataSize/2 << ", bufStart: " << bufStart;
unsigned firstLength = (currDataSize/2-bufStart);
LOG(DEBUG) << "firstLength: " << firstLength;
memcpy(buf,data+bufStart*2,firstLength*2*sizeof(short));
memset(data+bufStart*2,0,firstLength*2*sizeof(short));
memcpy(buf+firstLength*2,data,(len-firstLength)*2*sizeof(short));
memset(data,0,(len-firstLength)*2*sizeof(short));
}
dataStart = (bufStart + len) % (currDataSize/2);
timeStart = timestamp + len;
// do IQ swap here
for (int i = 0; i < len; i++) {
short tmp = usrp_to_host_short(buf[2*i]);
buf[2*i] = usrp_to_host_short(buf[2*i+1]);
buf[2*i+1] = tmp;
}
return len;
#else
if (loopbackBufferSize < 2) return 0;
int numSamples = 0;
struct timeval currTime;
gettimeofday(&currTime,NULL);
double timeElapsed = (currTime.tv_sec - lastReadTime.tv_sec)*1.0e6 +
(currTime.tv_usec - lastReadTime.tv_usec);
if (timeElapsed < samplePeriod) {return 0;}
int numSamplesToRead = (int) floor(timeElapsed/samplePeriod);
if (numSamplesToRead < len) return 0;
if (numSamplesToRead > len) numSamplesToRead = len;
if (numSamplesToRead > loopbackBufferSize/2) {
firstRead =false;
numSamplesToRead = loopbackBufferSize/2;
}
memcpy(buf,loopbackBuffer,sizeof(short)*2*numSamplesToRead);
loopbackBufferSize -= 2*numSamplesToRead;
memcpy(loopbackBuffer,loopbackBuffer+2*numSamplesToRead,
sizeof(short)*loopbackBufferSize);
numSamples = numSamplesToRead;
if (firstRead) {
int new_usec = lastReadTime.tv_usec + (int) round((double) numSamplesToRead * samplePeriod);
lastReadTime.tv_sec = lastReadTime.tv_sec + new_usec/1000000;
lastReadTime.tv_usec = new_usec % 1000000;
}
else {
gettimeofday(&lastReadTime,NULL);
firstRead = true;
}
samplesRead += numSamples;
return numSamples;
#endif
}
int USRPDevice::writeSamples(short *buf, int len, bool *underrun,
unsigned long long timestamp,
bool isControl)
{
writeLock.lock();
#ifndef SWLOOPBACK
if (!m_uTx) return 0;
static uint32_t outData[128*20];
for (int i = 0; i < len*2; i++) {
buf[i] = host_to_usrp_short(buf[i]);
}
int numWritten = 0;
unsigned isStart = 1;
unsigned RSSI = 0;
unsigned CHAN = (isControl) ? 0x01f : 0x00;
len = len*2*sizeof(short);
int numPkts = (int) ceil((float)len/(float)504);
unsigned isEnd = (numPkts < 2);
uint32_t *outPkt = outData;
int pktNum = 0;
while (numWritten < len) {
// pkt is pointer to start of a USB packet
uint32_t *pkt = outPkt + pktNum*128;
isEnd = (len - numWritten <= 504);
unsigned payloadLen = ((len - numWritten) < 504) ? (len-numWritten) : 504;
pkt[0] = (isStart << 12 | isEnd << 11 | (RSSI & 0x3f) << 5 | CHAN) << 16 | payloadLen;
pkt[1] = timestamp & 0x0ffffffffll;
memcpy(pkt+2,buf+(numWritten/sizeof(short)),payloadLen);
numWritten += payloadLen;
timestamp += payloadLen/2/sizeof(short);
isStart = 0;
pkt[0] = host_to_usrp_u32(pkt[0]);
pkt[1] = host_to_usrp_u32(pkt[1]);
pktNum++;
}
m_uTx->write((const void*) outPkt,sizeof(uint32_t)*128*numPkts,NULL);
samplesWritten += len/2/sizeof(short);
writeLock.unlock();
return len/2/sizeof(short);
#else
int retVal = len;
memcpy(loopbackBuffer+loopbackBufferSize,buf,sizeof(short)*2*len);
samplesWritten += retVal;
loopbackBufferSize += retVal*2;
return retVal;
#endif
}
bool USRPDevice::updateAlignment(TIMESTAMP timestamp)
{
#ifndef SWLOOPBACK
short data[] = {0x00,0x02,0x00,0x00};
uint32_t *wordPtr = (uint32_t *) data;
*wordPtr = host_to_usrp_u32(*wordPtr);
bool tmpUnderrun;
if (writeSamples((short *) data,1,&tmpUnderrun,timestamp & 0x0ffffffffll,true)) {
pingTimestamp = timestamp;
return true;
}
return false;
#else
return true;
#endif
}
#ifndef SWLOOPBACK
bool USRPDevice::setTxFreq(double wFreq) {
// Tune to wFreq+LO_OFFSET, to prevent LO bleedthrough from interfering with transmitted signal.
double actFreq;
if (!tx_setFreq(wFreq+1*LO_OFFSET,&actFreq)) return false;
bool retVal = m_uTx->set_tx_freq(0,(wFreq-actFreq));
LOG(INFO) << "set TX: " << wFreq-actFreq << " actual TX: " << m_uTx->tx_freq(0);
return retVal;
};
bool USRPDevice::setRxFreq(double wFreq) {
// Tune to wFreq-2*LO_OFFSET, to
// 1) prevent LO bleedthrough (as with the setTxFreq method above)
// 2) The extra LO_OFFSET pushes potential transmitter energy (GSM BS->MS transmissions
// are 45Mhz above MS->BS transmissions) into a notch of the baseband lowpass filter
// in front of the ADC. This possibly gives us an extra 10-20dB Tx/Rx isolation.
double actFreq;
// FIXME -- This should bo configurable.
if (!rx_setFreq(wFreq-2*LO_OFFSET,&actFreq)) return false;
bool retVal = m_uRx->set_rx_freq(0,(wFreq-actFreq));
LOG(DEBUG) << "set RX: " << wFreq-actFreq << " actual RX: " << m_uRx->rx_freq(0);
return retVal;
};
#else
bool USRPDevice::setTxFreq(double wFreq) { return true;};
bool USRPDevice::setRxFreq(double wFreq) { return true;};
#endif

261
Transceiver52M/USRPDevice.h Normal file
View File

@ -0,0 +1,261 @@
/*
* Copyright 2008 Free Software Foundation, Inc.
*
* This software is distributed under multiple licenses; see the COPYING file in the main directory for licensing information for this specific distribuion.
*
* This use of this software may be subject to additional restrictions.
* See the LEGAL file in the main directory for details.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*/
#ifndef _USRP_DEVICE_H_
#define _USRP_DEVICE_H_
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "radioDevice.h"
#ifdef HAVE_LIBUSRP_3_3 // [
# include <usrp/usrp_standard.h>
# include <usrp/usrp_bytesex.h>
# include <usrp/usrp_prims.h>
#else // HAVE_LIBUSRP_3_3 ][
# include "usrp_standard.h"
# include "usrp_bytesex.h"
# include "usrp_prims.h"
#endif // !HAVE_LIBUSRP_3_3 ]
#include <sys/time.h>
#include <math.h>
#include <string>
#include <iostream>
/** Define types which are not defined in libusrp-3.1 */
#ifndef HAVE_LIBUSRP_3_2
#include <boost/shared_ptr.hpp>
typedef boost::shared_ptr<usrp_standard_tx> usrp_standard_tx_sptr;
typedef boost::shared_ptr<usrp_standard_rx> usrp_standard_rx_sptr;
#endif // HAVE_LIBUSRP_3_2
/** A class to handle a USRP rev 4, with a two RFX900 daughterboards */
class USRPDevice: public RadioDevice {
private:
static const double masterClockRate; ///< the USRP clock rate
double desiredSampleRate; ///< the desired sampling rate
usrp_standard_rx_sptr m_uRx; ///< the USRP receiver
usrp_standard_tx_sptr m_uTx; ///< the USRP transmitter
double actualSampleRate; ///< the actual USRP sampling rate
unsigned int decimRate; ///< the USRP decimation rate
unsigned long long samplesRead; ///< number of samples read from USRP
unsigned long long samplesWritten; ///< number of samples sent to USRP
bool started; ///< flag indicates USRP has started
bool skipRx; ///< set if USRP is transmit-only.
static const unsigned int currDataSize_log2 = 21;
static const unsigned long currDataSize = (1 << currDataSize_log2);
short *data;
unsigned long dataStart;
unsigned long dataEnd;
TIMESTAMP timeStart;
TIMESTAMP timeEnd;
bool isAligned;
Mutex writeLock;
short *currData; ///< internal data buffer when reading from USRP
TIMESTAMP currTimestamp; ///< timestamp of internal data buffer
unsigned currLen; ///< size of internal data buffer
TIMESTAMP timestampOffset; ///< timestamp offset b/w Tx and Rx blocks
TIMESTAMP latestWriteTimestamp; ///< timestamp of most recent ping command
TIMESTAMP pingTimestamp; ///< timestamp of most recent ping response
static const TIMESTAMP PINGOFFSET = 272; ///< undetermined delay b/w ping response timestamp and true receive timestamp
unsigned long hi32Timestamp;
unsigned long lastPktTimestamp;
double rxGain;
#ifdef SWLOOPBACK
short loopbackBuffer[1000000];
int loopbackBufferSize;
double samplePeriod;
struct timeval startTime;
struct timeval lastReadTime;
bool firstRead;
#endif
/** Mess of constants used to control various hardware on the USRP */
static const unsigned POWER_UP = (1 << 7);
static const unsigned RX_TXN = (1 << 6);
static const unsigned RX2_RX1N = (1 << 6);
static const unsigned ENABLE = (1 << 5);
static const unsigned PLL_LOCK_DETECT = (1 << 2);
static const unsigned SPI_ENABLE_TX_A = 0x10;
static const unsigned SPI_ENABLE_RX_A = 0x20;
static const unsigned SPI_ENABLE_TX_B = 0x40;
static const unsigned SPI_ENABLE_RX_B = 0x80;
static const unsigned SPI_FMT_MSB = (0 << 7);
static const unsigned SPI_FMT_HDR_0 = (0 << 5);
static const float LO_OFFSET;
//static const float LO_OFFSET = 4.0e6;
static const unsigned R_DIV = 16;
static const unsigned P = 1;
static const unsigned CP2 = 7;
static const unsigned CP1 = 7;
static const unsigned DIVSEL = 0;
unsigned DIV2; // changes with GSM band
unsigned freq_mult; // changes with GSM band
static const unsigned CPGAIN = 0;
// R-Register Common Values
static const unsigned R_RSV = 0; // bits 23,22
static const unsigned BSC = 3; // bits 21,20 Div by 8 to be safe
static const unsigned TEST = 0; // bit 19
static const unsigned LDP = 1; // bit 18
static const unsigned ABP = 0; // bit 17,16 3ns
// N-Register Common Values
static const unsigned N_RSV = 0; // bit 7
// Control Register Common Values
static const unsigned PD = 0; // bits 21,20 Normal operation
static const unsigned PL = 0; // bits 13,12 11mA
static const unsigned MTLD = 1; // bit 11 enabled
static const unsigned CPG = 0; // bit 10 CP setting 1
static const unsigned CP3S = 0; // bit 9 Normal
static const unsigned PDP = 1; // bit 8 Positive
static const unsigned MUXOUT = 1;// bits 7:5 Digital Lock Detect
static const unsigned CR = 0; // bit 4 Normal
static const unsigned PC = 1; // bits 3,2 Core power 10mA
// ATR register value
static const int FR_ATR_MASK_0 = 20;
static const int FR_ATR_TXVAL_0 = 21;
static const int FR_ATR_RXVAL_0 = 22;
/** Compute register values to tune daughterboard to desired frequency */
bool compute_regs(double freq,
unsigned *R,
unsigned *control,
unsigned *N,
double *actual_freq);
/** Set the transmission frequency */
bool tx_setFreq(double freq, double *actual_freq);
/** Set the receiver frequency */
bool rx_setFreq(double freq, double *actual_freq);
public:
/** Object constructor */
USRPDevice (double _desiredSampleRate);
/** Instantiate the USRP */
bool make(bool skipRx = false);
/** Start the USRP */
bool start();
/** Stop the USRP */
bool stop();
/**
Read samples from the USRP.
@param buf preallocated buf to contain read result
@param len number of samples desired
@param overrun Set if read buffer has been overrun, e.g. data not being read fast enough
@param timestamp The timestamp of the first samples to be read
@param underrun Set if USRP does not have data to transmit, e.g. data not being sent fast enough
@param RSSI The received signal strength of the read result
@return The number of samples actually read
*/
int readSamples(short *buf, int len, bool *overrun,
TIMESTAMP timestamp = 0xffffffff,
bool *underrun = NULL,
unsigned *RSSI = NULL);
/**
Write samples to the USRP.
@param buf Contains the data to be written.
@param len number of samples to write.
@param underrun Set if USRP does not have data to transmit, e.g. data not being sent fast enough
@param timestamp The timestamp of the first sample of the data buffer.
@param isControl Set if data is a control packet, e.g. a ping command
@return The number of samples actually written
*/
int writeSamples(short *buf, int len, bool *underrun,
TIMESTAMP timestamp = 0xffffffff,
bool isControl = false);
/** Update the alignment between the read and write timestamps */
bool updateAlignment(TIMESTAMP timestamp);
/** Set the transmitter frequency */
bool setTxFreq(double wFreq);
/** Set the receiver frequency */
bool setRxFreq(double wFreq);
/** Returns the starting write Timestamp*/
TIMESTAMP initialWriteTimestamp(void) { return 20000;}
/** Returns the starting read Timestamp*/
TIMESTAMP initialReadTimestamp(void) { return 20000;}
/** returns the full-scale transmit amplitude **/
double fullScaleInputValue() {return 13500.0;}
/** returns the full-scale receive amplitude **/
double fullScaleOutputValue() {return 9450.0;}
/** sets the receive chan gain, returns the gain setting **/
double setRxGain(double dB);
/** get the current receive gain */
double getRxGain(void) {return rxGain;}
/** return maximum Rx Gain **/
double maxRxGain(void) {return 97.0;}
/** return minimum Rx Gain **/
double minRxGain(void) {return 7.0;}
/** sets the transmit chan gain, returns the gain setting **/
double setTxGain(double dB);
/** return maximum Tx Gain **/
double maxTxGain(void) {return 0.0;}
/** return minimum Rx Gain **/
double minTxGain(void) {return -20.0;}
/** Return internal status values */
inline double getTxFreq() { return 0;}
inline double getRxFreq() { return 0;}
inline double getSampleRate() {return actualSampleRate;}
inline double numberRead() { return samplesRead; }
inline double numberWritten() { return samplesWritten;}
};
#endif // _USRP_DEVICE_H_

View File

@ -0,0 +1,96 @@
/*
* Copyright 2008, 2009 Free Software Foundation, Inc.
*
* This software is distributed under the terms of the GNU Public License.
* See the COPYING file in the main directory for details.
*
* This use of this software may be subject to additional restrictions.
* See the LEGAL file in the main directory for details.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <stdio.h>
#include <Logger.h>
#include <Configuration.h>
#include "USRPDevice.h"
ConfigurationTable gConfig;
using namespace std;
int main(int argc, char *argv[]) {
// Configure logger.
if (argc>1) gLogInit(argv[1]);
else gLogInit("DEBUG");
//if (argc>2) gSetLogFile(argv[2]);
USRPDevice *usrp = new USRPDevice(52.0e6/192.0);
usrp->make();
TIMESTAMP timestamp;
usrp->setTxFreq(825.4e6);
usrp->setRxFreq(825.4e6);
usrp->start();
usrp->setRxGain(57);
LOG(INFO) << "Looping...";
bool underrun;
short data[]={0x00,0x02};
usrp->updateAlignment(20000);
usrp->updateAlignment(21000);
int numpkts = 1;
short data2[512*2*numpkts];
for (int i = 0; i < 512*numpkts; i++) {
data2[i<<1] = 10000;//4096*cos(2*3.14159*(i % 126)/126);
data2[(i<<1) + 1] = 10000;//4096*sin(2*3.14159*(i % 126)/126);
}
for (int i = 0; i < 1; i++)
usrp->writeSamples((short*) data2,512*numpkts,&underrun,102000+i*1000);
timestamp = 19000;
double sum = 0.0;
unsigned long num = 0;
while (1) {
short readBuf[512*2];
int rd = usrp->readSamples(readBuf,512,&underrun,timestamp);
if (rd) {
LOG(INFO) << "rcvd. data@:" << timestamp;
for (int i = 0; i < 512; i++) {
uint32_t *wordPtr = (uint32_t *) &readBuf[2*i];
*wordPtr = usrp_to_host_u32(*wordPtr);
printf ("%llu: %d %d\n", timestamp+i,readBuf[2*i],readBuf[2*i+1]);
sum += (readBuf[2*i+1]*readBuf[2*i+1] + readBuf[2*i]*readBuf[2*i]);
num++;
//if (num % 10000 == 0) printf("avg pwr: %f\n",sum/num);
}
timestamp += rd;
//usrp->writeSamples((short*) data2,512*numpkts,&underrun,timestamp+1000);
}
}
}

View File

@ -0,0 +1,314 @@
This file specifies the format of USB packets used for in-band data
transmission and signaling on the USRP. All packets are 512-byte long,
and are transfered using USB "bulk" transfers.
IN packets are sent towards the host.
OUT packets are sent away from the host.
The layout is 32-bits wide. All data is transmitted in little-endian
format across the USB.
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|O|U|D|S|E| RSSI | Chan | mbz | Tag | Payload Len |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Timestamp |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| Payload |
. .
. .
. .
| |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... | .
+-+-+-+-+-+-+-+ .
. .
. Padding .
. .
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
mbz Must be Zero: these bits must be zero in both IN and OUT packets.
O Overrun Flag: set in an IN packet if an overrun condition was
detected. Must be zero in OUT packets. Overrun occurs when
the FPGA has data to transmit to the host and there is no
buffer space available. This generally indicates a problem on
the host. Either it is not keeping up, or it has configured
the FPGA to transmit data at a higher rate than the transport
(USB) can support.
U Underrun Flag: set in an IN packet if an underrun condition
was detected. Must be zero in OUT packets. Underrun occurs
when the FPGA runs out of samples, and it's not between
bursts. See the "End of Burst flag" below.
D Dropped Packet Flag: Set in an IN packet if the FPGA
discarded an OUT packet because its timestamp had already
passed.
S Start of Burst Flag: Set in an OUT packet if the data is the
first segment of what is logically a continuous burst of data.
Must be zero in IN packets.
E End of Burst Flag: Set in an OUT packet if the data is the
last segment of what is logically a continuous burst of data.
Must be zero in IN packets. Underruns are not reported
when the FPGA runs out of samples between bursts.
RSSI 6-bit Received Strength Signal Indicator: Must be zero in OUT
packets. In IN packets, indicates RSSI as reported by front end.
FIXME The format and interpretation are to be determined.
Chan 5-bit logical channel number. Channel number 0x1f is reserved
for control information. See "Control Channel" below. Other
channels are "data channels." Each data channel is logically
independent of the others. A data channel payload field
contains a sequence of homogeneous samples. The format of the
samples is determined by the configuration associated with the
given channel. It is often the case that the payload field
contains 32-bit complex samples, each containing 16-bit real
and imaginary components.
Tag 4-bit tag for matching IN packets with OUT packets.
[FIXME, write more...]
Payload Len: 9-bit field that specifies the length of the payload
field in bytes. Must be in the range 0 to 504 inclusive.
Timestamp: 32-bit timestamp.
On IN packets, the timestamp indicates the time at which the
first sample of the packet was produced by the A/D converter(s)
for that channel. On OUT packets, the timestamp specifies the
time at which the first sample in the packet should go out the
D/A converter(s) for that channel. If a packet reaches the
head of the transmit queue, and the current time is later than
the timestamp, an error is assumed to have occurred and the
packet is discarded. As a special case, the timestamp
0xffffffff is interpreted as "Now".
The time base is a free running 32-bit counter that is
incremented by the A/D sample-clock.
Payload: Variable length field. Length is specified by the
Payload Len field.
Padding: This field is 504 - Payload Len bytes long, and its content
is unspecified. This field pads the packet out to a constant
512 bytes.
"Data Channel" payload format:
-------------------------------
If Chan != 0x1f, the packet is a "data packet" and the payload is a
sequence of homogeneous samples. The format of the samples is
determined by the configuration associated with the given channel.
It is often the case that the payload field contains 32-bit complex
samples, each containing 16-bit real and imaginary components.
"Control Channel" payload format:
---------------------------------
If Chan == 0x1f, the packet is a "control packet". The control channel
payload consists of a sequence of 0 or more sub-packets.
Each sub-packet starts on a 32-bit boundary, and consists of an 8-bit
Opcode field, an 8-bit Length field, Length bytes of arguments, and 0,
1, 2 or 3 bytes of padding to align the tail of the sub-packet to
a 32-bit boundary.
Control channel packets shall be processed at the head of the queue,
and shall observe the timestamp semantics described above.
General sub-packet format:
--------------------------
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-//-+-+-+-+-+-+-+-+
| Opcode | Length | <length bytes> ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-//-+-+-+-+-+-+-+-+
Specific sub-packet formats:
----------------------------
RID: 6-bit Request-ID. Copied from request sub-packet into corresponding
reply sub-packet. RID allows the host to match requests and replies.
Reg Number: 10-bit Register Number.
Ping Fixed Length:
Opcode: OP_PING_FIXED
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Opcode | 2 | RID | Ping Value |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Ping Fixed Length Reply:
Opcode: OP_PING_FIXED_REPLY
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Opcode | 2 | RID | Ping Value |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Write Register:
Opcode: OP_WRITE_REG
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Opcode | 6 | mbz | Reg Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Register Value |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Write Register Masked:
Opcode: OP_WRITE_REG_MASKED
REG[Num] = (REG[Num] & ~Mask) | (Value & Mask)
That is, only the register bits that correspond to 1's in the
mask are written with the new value.
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Opcode | 10 | mbz | Reg Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Register Value |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Mask Value |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Read Register:
Opcode: OP_READ_REG
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Opcode | 2 | RID | Reg Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Read Register Reply:
Opcode: OP_READ_REG_REPLY
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Opcode | 6 | RID | Reg Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Register Value |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I2C Write:
Opcode: OP_I2C_WRITE
I2C Addr: 7-bit I2C address
Data: The bytes to write to the I2C bus
Length: Length of Data + 2
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Opcode | Length | mbz | I2C Addr |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Data ... .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I2C Read:
Opcode: OP_I2C_READ
I2C Addr: 7-bit I2C address
Nbytes: Number of bytes to read from I2C bus
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Opcode | 3 | RID | mbz | I2C Addr |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Nbytes | unspecified padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I2C Read Reply:
Opcode: OP_I2C_READ_REPLY
I2C Addr: 7-bit I2C address
Data: Length - 2 bytes of data read from I2C bus.
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Opcode | Length | RID | mbz | I2C Addr |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Data ... .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
SPI Write:
Opcode: OP_SPI_WRITE
Enables: Which SPI enables to assert (mask)
Format: Specifies format of SPI data and Opt Header Bytes
Opt Header Bytes: 2-byte field containing optional Tx bytes; see Format
Data: The bytes to write to the SPI bus
Length: Length of Data + 6
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Opcode | Length | mbz |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Enables | Format | Opt Header Bytes |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Data ... .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
SPI Read:
Opcode: OP_SPI_READ
Enables: Which SPI enables to assert (mask)
Format: Specifies format of SPI data and Opt Header Bytes
Opt Header Bytes: 2-byte field containing optional Tx bytes; see Format
Nbytes: Number of bytes to read from SPI bus.
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Opcode | 7 | RID | mbz |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Enables | Format | Opt Header Bytes |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Nbytes | unspecified padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
SPI Read Reply:
Opcode: OP_SPI_READ_REPLY
Data: Length - 2 bytes of data read from SPI bus.
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Opcode | Length | RID | mbz |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Data ... .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Delay:
Opcode: OP_DELAY
Ticks: 16-bit unsigned delay count
Delay Ticks clock ticks before executing next operation.
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Opcode | 2 | Ticks |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

View File

@ -0,0 +1,15 @@
pp = [0 0 0.015 0.18 0.7 0.96 0.7 0.18 0.015 0 0];
t = -2.5:0.5:2.5;
v = -0.000:-0.001:-1.999;
for ix1 = 1:length(v),
disp(ix1);
for ix2 = 1:length(v),
p = exp(v(ix1)*t.^2+v(ix2)*t.^4);
r(ix1,ix2) = norm(p./max(abs(p)) - pp./max(abs(pp)));
end;
end;

View File

@ -0,0 +1,115 @@
/*
* Copyright 2008 Free Software Foundation, Inc.
*
* This software is distributed under multiple licenses; see the COPYING file in the main directory for licensing information for this specific distribuion.
*
* This use of this software may be subject to additional restrictions.
* See the LEGAL file in the main directory for details.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*/
#ifndef __RADIO_DEVICE_H__
#define __RADIO_DEVICE_H__
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
/** a 64-bit virtual timestamp for radio data */
typedef unsigned long long TIMESTAMP;
/** A class to handle a USRP rev 4, with a two RFX900 daughterboards */
class RadioDevice {
public:
/** Start the USRP */
virtual bool start()=0;
/** Stop the USRP */
virtual bool stop()=0;
/**
Read samples from the radio.
@param buf preallocated buf to contain read result
@param len number of samples desired
@param overrun Set if read buffer has been overrun, e.g. data not being read fast enough
@param timestamp The timestamp of the first samples to be read
@param underrun Set if radio does not have data to transmit, e.g. data not being sent fast enough
@param RSSI The received signal strength of the read result
@return The number of samples actually read
*/
virtual int readSamples(short *buf, int len, bool *overrun,
TIMESTAMP timestamp,
bool *underrun,
unsigned *RSSI=NULL)=0;
/**
Write samples to the radio.
@param buf Contains the data to be written.
@param len number of samples to write.
@param underrun Set if radio does not have data to transmit, e.g. data not being sent fast enough
@param timestamp The timestamp of the first sample of the data buffer.
@param isControl Set if data is a control packet, e.g. a ping command
@return The number of samples actually written
*/
virtual int writeSamples(short *buf, int len, bool *underrun,
TIMESTAMP timestamp,
bool isControl=false)=0;
/** Update the alignment between the read and write timestamps */
virtual bool updateAlignment(TIMESTAMP timestamp)=0;
/** Set the transmitter frequency */
virtual bool setTxFreq(double wFreq)=0;
/** Set the receiver frequency */
virtual bool setRxFreq(double wFreq)=0;
/** Returns the starting write Timestamp*/
virtual TIMESTAMP initialWriteTimestamp(void)=0;
/** Returns the starting read Timestamp*/
virtual TIMESTAMP initialReadTimestamp(void)=0;
/** returns the full-scale transmit amplitude **/
virtual double fullScaleInputValue()=0;
/** returns the full-scale receive amplitude **/
virtual double fullScaleOutputValue()=0;
/** sets the receive chan gain, returns the gain setting **/
virtual double setRxGain(double dB)=0;
/** gets the current receive gain **/
virtual double getRxGain(void)=0;
/** return maximum Rx Gain **/
virtual double maxRxGain(void) = 0;
/** return minimum Rx Gain **/
virtual double minRxGain(void) = 0;
/** sets the transmit chan gain, returns the gain setting **/
virtual double setTxGain(double dB)=0;
/** return maximum Tx Gain **/
virtual double maxTxGain(void) = 0;
/** return minimum Tx Gain **/
virtual double minTxGain(void) = 0;
/** Return internal status values */
virtual double getTxFreq()=0;
virtual double getRxFreq()=0;
virtual double getSampleRate()=0;
virtual double numberRead()=0;
virtual double numberWritten()=0;
};
#endif

View File

@ -0,0 +1,315 @@
/*
* Copyright 2008, 2009 Free Software Foundation, Inc.
*
* This software is distributed under the terms of the GNU Affero Public License.
* See the COPYING file in the main directory for details.
*
* This use of this software may be subject to additional restrictions.
* See the LEGAL file in the main directory for details.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
//#define NDEBUG
#include "radioInterface.h"
#include <Logger.h>
GSM::Time VectorQueue::nextTime() const
{
GSM::Time retVal;
ScopedLock lock(mLock);
while (mQ.size()==0) mWriteSignal.wait(mLock);
return mQ.top()->time();
}
radioVector* VectorQueue::getStaleBurst(const GSM::Time& targTime)
{
ScopedLock lock(mLock);
if ((mQ.size()==0)) {
return NULL;
}
if (mQ.top()->time() < targTime) {
radioVector* retVal = mQ.top();
mQ.pop();
return retVal;
}
return NULL;
}
radioVector* VectorQueue::getCurrentBurst(const GSM::Time& targTime)
{
ScopedLock lock(mLock);
if ((mQ.size()==0)) {
return NULL;
}
if (mQ.top()->time() == targTime) {
radioVector* retVal = mQ.top();
mQ.pop();
return retVal;
}
return NULL;
}
RadioInterface::RadioInterface(RadioDevice *wRadio,
int wReceiveOffset,
int wRadioOversampling,
int wTransceiverOversampling,
GSM::Time wStartTime)
{
underrun = false;
sendCursor = 0;
rcvCursor = 0;
mOn = false;
mRadio = wRadio;
receiveOffset = wReceiveOffset;
samplesPerSymbol = wRadioOversampling;
mClock.set(wStartTime);
powerScaling = 1.0;
}
RadioInterface::~RadioInterface(void) {
if (rcvBuffer!=NULL) delete rcvBuffer;
//mReceiveFIFO.clear();
}
double RadioInterface::fullScaleInputValue(void) {
return mRadio->fullScaleInputValue();
}
double RadioInterface::fullScaleOutputValue(void) {
return mRadio->fullScaleOutputValue();
}
void RadioInterface::setPowerAttenuation(double dBAtten)
{
float HWdBAtten = mRadio->setTxGain(-dBAtten);
dBAtten -= (-HWdBAtten);
float linearAtten = powf(10.0F,0.1F*dBAtten);
if (linearAtten < 1.0)
powerScaling = 1.0;
else
powerScaling = 1.0/sqrt(linearAtten);
LOG(INFO) << "setting HW gain to " << HWdBAtten << " and power scaling to " << powerScaling;
}
short *RadioInterface::radioifyVector(signalVector &wVector, short *retVector, double scale, bool zeroOut)
{
signalVector::iterator itr = wVector.begin();
short *shortItr = retVector;
if (zeroOut) {
while (itr < wVector.end()) {
*shortItr++ = 0;
*shortItr++ = 0;
itr++;
}
}
else if (scale != 1.0) {
while (itr < wVector.end()) {
*shortItr++ = (short) (itr->real()*scale);
*shortItr++ = (short) (itr->imag()*scale);
itr++;
}
}
else {
while (itr < wVector.end()) {
*shortItr++ = (short) (itr->real());
*shortItr++ = (short) (itr->imag());
itr++;
}
}
return retVector;
}
void RadioInterface::unRadioifyVector(short *shortVector, signalVector& newVector)
{
signalVector::iterator itr = newVector.begin();
short *shortItr = shortVector;
while (itr < newVector.end()) {
*itr++ = Complex<float>(*shortItr,*(shortItr+1));
//LOG(DEBUG) << (*(itr-1));
shortItr += 2;
}
}
bool started = false;
void RadioInterface::pushBuffer(void) {
if (sendCursor < 2*INCHUNK*samplesPerSymbol) return;
// send resampleVector
int samplesWritten = mRadio->writeSamples(sendBuffer,
INCHUNK*samplesPerSymbol,
&underrun,
writeTimestamp);
//LOG(DEBUG) << "writeTimestamp: " << writeTimestamp << ", samplesWritten: " << samplesWritten;
writeTimestamp += (TIMESTAMP) samplesWritten;
if (sendCursor > 2*samplesWritten)
memcpy(sendBuffer,sendBuffer+samplesWritten*2,sizeof(short)*2*(sendCursor-2*samplesWritten));
sendCursor = sendCursor - 2*samplesWritten;
}
void RadioInterface::pullBuffer(void)
{
bool localUnderrun;
// receive receiveVector
short* shortVector = rcvBuffer+rcvCursor;
//LOG(DEBUG) << "Reading USRP samples at timestamp " << readTimestamp;
int samplesRead = mRadio->readSamples(shortVector,OUTCHUNK*samplesPerSymbol,&overrun,readTimestamp,&localUnderrun);
underrun |= localUnderrun;
readTimestamp += (TIMESTAMP) samplesRead;
while (samplesRead < OUTCHUNK*samplesPerSymbol) {
int oldSamplesRead = samplesRead;
samplesRead += mRadio->readSamples(shortVector+2*samplesRead,
OUTCHUNK*samplesPerSymbol-samplesRead,
&overrun,
readTimestamp,
&localUnderrun);
underrun |= localUnderrun;
readTimestamp += (TIMESTAMP) (samplesRead - oldSamplesRead);
}
//LOG(DEBUG) << "samplesRead " << samplesRead;
rcvCursor += samplesRead*2;
}
bool RadioInterface::tuneTx(double freq)
{
return mRadio->setTxFreq(freq);
}
bool RadioInterface::tuneRx(double freq)
{
return mRadio->setRxFreq(freq);
}
void RadioInterface::start()
{
LOG(INFO) << "starting radio interface...";
mAlignRadioServiceLoopThread.start((void * (*)(void*))AlignRadioServiceLoopAdapter,
(void*)this);
writeTimestamp = mRadio->initialWriteTimestamp();
readTimestamp = mRadio->initialReadTimestamp();
mRadio->start();
LOG(DEBUG) << "Radio started";
mRadio->updateAlignment(writeTimestamp-10000);
mRadio->updateAlignment(writeTimestamp-10000);
sendBuffer = new short[2*2*INCHUNK*samplesPerSymbol];
rcvBuffer = new short[2*2*OUTCHUNK*samplesPerSymbol];
mOn = true;
}
void *AlignRadioServiceLoopAdapter(RadioInterface *radioInterface)
{
while (1) {
radioInterface->alignRadio();
pthread_testcancel();
}
return NULL;
}
void RadioInterface::alignRadio() {
sleep(60);
mRadio->updateAlignment(writeTimestamp+ (TIMESTAMP) 10000);
}
void RadioInterface::driveTransmitRadio(signalVector &radioBurst, bool zeroBurst) {
if (!mOn) return;
radioifyVector(radioBurst, sendBuffer+sendCursor, powerScaling, zeroBurst);
sendCursor += (radioBurst.size()*2);
pushBuffer();
}
void RadioInterface::driveReceiveRadio() {
if (!mOn) return;
if (mReceiveFIFO.size() > 8) return;
pullBuffer();
GSM::Time rcvClock = mClock.get();
rcvClock.decTN(receiveOffset);
unsigned tN = rcvClock.TN();
int rcvSz = rcvCursor/2;
int readSz = 0;
const int symbolsPerSlot = gSlotLen + 8;
// while there's enough data in receive buffer, form received
// GSM bursts and pass up to Transceiver
// Using the 157-156-156-156 symbols per timeslot format.
while (rcvSz > (symbolsPerSlot + (tN % 4 == 0))*samplesPerSymbol) {
signalVector rxVector((symbolsPerSlot + (tN % 4 == 0))*samplesPerSymbol);
unRadioifyVector(rcvBuffer+readSz*2,rxVector);
GSM::Time tmpTime = rcvClock;
if (rcvClock.FN() >= 0) {
//LOG(DEBUG) << "FN: " << rcvClock.FN();
radioVector *rxBurst = NULL;
if (!loadTest)
rxBurst = new radioVector(rxVector,tmpTime);
else {
if (tN % 4 == 0)
rxBurst = new radioVector(*finalVec9,tmpTime);
else
rxBurst = new radioVector(*finalVec,tmpTime);
}
mReceiveFIFO.put(rxBurst);
}
mClock.incTN();
rcvClock.incTN();
//if (mReceiveFIFO.size() >= 16) mReceiveFIFO.wait(8);
//LOG(DEBUG) << "receiveFIFO: wrote radio vector at time: " << mClock.get() << ", new size: " << mReceiveFIFO.size() ;
readSz += (symbolsPerSlot+(tN % 4 == 0))*samplesPerSymbol;
rcvSz -= (symbolsPerSlot+(tN % 4 == 0))*samplesPerSymbol;
tN = rcvClock.TN();
}
if (readSz > 0) {
memcpy(rcvBuffer,rcvBuffer+2*readSz,sizeof(short)*2*(rcvCursor-readSz));
rcvCursor = rcvCursor-2*readSz;
}
}

View File

@ -0,0 +1,243 @@
/*
* Copyright 2008 Free Software Foundation, Inc.
*
* This software is distributed under multiple licenses; see the COPYING file in the main directory for licensing information for this specific distribuion.
*
* This use of this software may be subject to additional restrictions.
* See the LEGAL file in the main directory for details.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*/
#include "sigProcLib.h"
#include "GSMCommon.h"
#include "LinkedLists.h"
#include "radioDevice.h"
/** samples per GSM symbol */
#define SAMPSPERSYM 1
#define INCHUNK (625)
#define OUTCHUNK (625)
/** class used to organize GSM bursts by GSM timestamps */
class radioVector : public signalVector {
private:
GSM::Time mTime; ///< the burst's GSM timestamp
public:
/** constructor */
radioVector(const signalVector& wVector,
GSM::Time& wTime): signalVector(wVector),mTime(wTime) {};
/** timestamp read and write operators */
GSM::Time time() const { return mTime;}
void time(const GSM::Time& wTime) { mTime = wTime;}
/** comparison operator, used for sorting */
bool operator>(const radioVector& other) const {return mTime > other.mTime;}
};
/** a priority queue of radioVectors, i.e. GSM bursts, sorted so that earliest element is at top */
class VectorQueue : public InterthreadPriorityQueue<radioVector> {
public:
/** the top element of the queue */
GSM::Time nextTime() const;
/**
Get stale burst, if any.
@param targTime The target time.
@return Pointer to burst older than target time, removed from queue, or NULL.
*/
radioVector* getStaleBurst(const GSM::Time& targTime);
/**
Get current burst, if any.
@param targTime The target time.
@return Pointer to burst at the target time, removed from queue, or NULL.
*/
radioVector* getCurrentBurst(const GSM::Time& targTime);
};
/** a FIFO of radioVectors */
class VectorFIFO {
private:
PointerFIFO mQ;
Mutex mLock;
public:
unsigned size() {return mQ.size();}
void put(radioVector *ptr) {ScopedLock lock(mLock); mQ.put((void*) ptr);}
radioVector *get() { ScopedLock lock(mLock); return (radioVector*) mQ.get();}
};
/** the basestation clock class */
class RadioClock {
private:
GSM::Time mClock;
Mutex mLock;
Signal updateSignal;
public:
/** Set clock */
//void set(const GSM::Time& wTime) { ScopedLock lock(mLock); mClock = wTime; updateSignal.signal();}
void set(const GSM::Time& wTime) { ScopedLock lock(mLock); mClock = wTime; updateSignal.broadcast();;}
/** Increment clock */
//void incTN() { ScopedLock lock(mLock); mClock.incTN(); updateSignal.signal();}
void incTN() { ScopedLock lock(mLock); mClock.incTN(); updateSignal.broadcast();}
/** Get clock value */
GSM::Time get() { ScopedLock lock(mLock); return mClock; }
/** Wait until clock has changed */
//void wait() {ScopedLock lock(mLock); updateSignal.wait(mLock,1);}
// FIXME -- If we take away the timeout, a lot of threads don't start. Why?
void wait() {ScopedLock lock(mLock); updateSignal.wait(mLock);}
};
/** class to interface the transceiver with the USRP */
class RadioInterface {
private:
Thread mAlignRadioServiceLoopThread; ///< thread that synchronizes transmit and receive sections
VectorFIFO mReceiveFIFO; ///< FIFO that holds receive bursts
RadioDevice *mRadio; ///< the USRP object
short *sendBuffer; //[2*2*INCHUNK];
unsigned sendCursor;
short *rcvBuffer; //[2*2*OUTCHUNK];
unsigned rcvCursor;
bool underrun; ///< indicates writes to USRP are too slow
bool overrun; ///< indicates reads from USRP are too slow
TIMESTAMP writeTimestamp; ///< sample timestamp of next packet written to USRP
TIMESTAMP readTimestamp; ///< sample timestamp of next packet read from USRP
RadioClock mClock; ///< the basestation clock!
int samplesPerSymbol; ///< samples per GSM symbol
int receiveOffset; ///< offset b/w transmit and receive GSM timestamps, in timeslots
int mRadioOversampling;
int mTransceiverOversampling;
bool mOn; ///< indicates radio is on
double powerScaling;
bool loadTest;
int mNumARFCNs;
signalVector *finalVec, *finalVec9;
/** format samples to USRP */
short *radioifyVector(signalVector &wVector, short *shortVector, double scale, bool zeroOut);
/** format samples from USRP */
void unRadioifyVector(short *shortVector, signalVector &wVector);
/** push GSM bursts into the transmit buffer */
void pushBuffer(void);
/** pull GSM bursts from the receive buffer */
void pullBuffer(void);
public:
/** start the interface */
void start();
/** constructor */
RadioInterface(RadioDevice* wRadio = NULL,
int receiveOffset = 3,
int wRadioOversampling = SAMPSPERSYM,
int wTransceiverOversampling = SAMPSPERSYM,
GSM::Time wStartTime = GSM::Time(0));
/** destructor */
~RadioInterface();
void setSamplesPerSymbol(int wSamplesPerSymbol) {if (!mOn) samplesPerSymbol = wSamplesPerSymbol;}
int getSamplesPerSymbol() { return samplesPerSymbol;}
/** check for underrun, resets underrun value */
bool isUnderrun() { bool retVal = underrun; underrun = false; return retVal;}
/** attach an existing USRP to this interface */
void attach(RadioDevice *wRadio, int wRadioOversampling) {if (!mOn) {mRadio = wRadio; mRadioOversampling = SAMPSPERSYM;} }
/** return the receive FIFO */
VectorFIFO* receiveFIFO() { return &mReceiveFIFO;}
/** return the basestation clock */
RadioClock* getClock(void) { return &mClock;};
/** set receive gain */
double setRxGain(double dB) {if (mRadio) return mRadio->setRxGain(dB); else return -1;}
/** get receive gain */
double getRxGain(void) {if (mRadio) return mRadio->getRxGain(); else return -1;}
/** set transmit frequency */
bool tuneTx(double freq);
/** set receive frequency */
bool tuneRx(double freq);
/** drive transmission of GSM bursts */
void driveTransmitRadio(signalVector &radioBurst, bool zeroBurst);
/** drive reception of GSM bursts */
void driveReceiveRadio();
void setPowerAttenuation(double atten);
/** returns the full-scale transmit amplitude **/
double fullScaleInputValue();
/** returns the full-scale receive amplitude **/
double fullScaleOutputValue();
protected:
/** drive synchronization of Tx/Rx of USRP */
void alignRadio();
/** reset the interface */
void reset();
friend void *AlignRadioServiceLoopAdapter(RadioInterface*);
};
/** synchronization thread loop */
void *AlignRadioServiceLoopAdapter(RadioInterface*);

View File

@ -0,0 +1,123 @@
/*
* Copyright 2008, 2009, 2010 Free Software Foundation, Inc.
* Copyright 2010 Kestrel Signal Processing, Inc.
*
* This software is distributed under the terms of the GNU Affero Public License.
* See the COPYING file in the main directory for details.
*
* This use of this software may be subject to additional restrictions.
* See the LEGAL file in the main directory for details.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "Transceiver.h"
#include "USRPDevice.h"
#include "DummyLoad.h"
#include <time.h>
#include <signal.h>
#include <GSMCommon.h>
#include <Logger.h>
#include <Configuration.h>
using namespace std;
ConfigurationTable gConfig("/etc/OpenBTS/OpenBTS.db");
volatile bool gbShutdown = false;
static void ctrlCHandler(int signo)
{
cout << "Received shutdown signal" << endl;;
gbShutdown = true;
}
int main(int argc, char *argv[])
{
if ( signal( SIGINT, ctrlCHandler ) == SIG_ERR )
{
cerr << "Couldn't install signal handler for SIGINT" << endl;
exit(1);
}
if ( signal( SIGTERM, ctrlCHandler ) == SIG_ERR )
{
cerr << "Couldn't install signal handler for SIGTERM" << endl;
exit(1);
}
// Configure logger.
gLogInit("transceiver",gConfig.getStr("Log.Level").c_str(),LOG_LOCAL7);
int numARFCN=1;
LOG(NOTICE) << "starting transceiver with " << numARFCN << " ARFCNs (argc=" << argc << ")";
srandom(time(NULL));
int mOversamplingRate = numARFCN/2 + numARFCN;
//DYNDevice *usrp = new DYNDevice(mOversamplingRate*1625.0e3/6.0);
USRPDevice *usrp = new USRPDevice(mOversamplingRate*1625.0e3/6.0);
//DummyLoad *usrp = new DummyLoad(mOversamplingRate*1625.0e3/6.0);
usrp->make();
RadioInterface* radio = new RadioInterface(usrp,3,SAMPSPERSYM,mOversamplingRate,false);
Transceiver *trx = new Transceiver(5700,"127.0.0.1",SAMPSPERSYM,GSM::Time(2,0),radio);
trx->receiveFIFO(radio->receiveFIFO());
/*
signalVector *gsmPulse = generateGSMPulse(2,1);
BitVector normalBurstSeg = "0000101010100111110010101010010110101110011000111001101010000";
BitVector normalBurst(BitVector(normalBurstSeg,gTrainingSequence[0]),normalBurstSeg);
signalVector *modBurst = modulateBurst(normalBurst,*gsmPulse,8,1);
signalVector *modBurst9 = modulateBurst(normalBurst,*gsmPulse,9,1);
signalVector *interpolationFilter = createLPF(0.6/mOversamplingRate,6*mOversamplingRate,1);
signalVector totalBurst1(*modBurst,*modBurst9);
signalVector totalBurst2(*modBurst,*modBurst);
signalVector totalBurst(totalBurst1,totalBurst2);
scaleVector(totalBurst,usrp->fullScaleInputValue());
double beaconFreq = -1.0*(numARFCN-1)*200e3;
signalVector finalVec(625*mOversamplingRate);
for (int j = 0; j < numARFCN; j++) {
signalVector *frequencyShifter = new signalVector(625*mOversamplingRate);
frequencyShifter->fill(1.0);
frequencyShift(frequencyShifter,frequencyShifter,2.0*M_PI*(beaconFreq+j*400e3)/(1625.0e3/6.0*mOversamplingRate));
signalVector *interpVec = polyphaseResampleVector(totalBurst,mOversamplingRate,1,interpolationFilter);
multVector(*interpVec,*frequencyShifter);
addVector(finalVec,*interpVec);
}
signalVector::iterator itr = finalVec.begin();
short finalVecShort[2*finalVec.size()];
short *shortItr = finalVecShort;
while (itr < finalVec.end()) {
*shortItr++ = (short) (itr->real());
*shortItr++ = (short) (itr->imag());
itr++;
}
usrp->loadBurst(finalVecShort,finalVec.size());
*/
trx->start();
//int i = 0;
while(!gbShutdown) { sleep(1); }//i++; if (i==60) break;}
cout << "Shutting down transceiver..." << endl;
// trx->stop();
delete trx;
// delete radio;
}

File diff suppressed because it is too large Load Diff

386
Transceiver52M/sigProcLib.h Normal file
View File

@ -0,0 +1,386 @@
/*
* Copyright 2008 Free Software Foundation, Inc.
*
* This software is distributed under multiple licenses; see the COPYING file in the main directory for licensing information for this specific distribuion.
*
* This use of this software may be subject to additional restrictions.
* See the LEGAL file in the main directory for details.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*/
#include "Vector.h"
#include "Complex.h"
#include "GSMTransfer.h"
using namespace GSM;
/** Indicated signalVector symmetry */
typedef enum Symmetry {
NONE = 0,
ABSSYM = 1
};
/** Convolution type indicator */
typedef enum ConvType {
FULL_SPAN = 0,
OVERLAP_ONLY = 1,
START_ONLY = 2,
WITH_TAIL = 3,
NO_DELAY = 4,
CUSTOM = 5,
UNDEFINED = 255
};
/** the core data structure of the Transceiver */
class signalVector: public Vector<complex>
{
private:
Symmetry symmetry; ///< the symmetry of the vector
bool realOnly; ///< true if vector is real-valued, not complex-valued
public:
/** Constructors */
signalVector(int dSize=0, Symmetry wSymmetry = NONE):
Vector<complex>(dSize),
realOnly(false)
{
symmetry = wSymmetry;
};
signalVector(complex* wData, size_t start,
size_t span, Symmetry wSymmetry = NONE):
Vector<complex>(NULL,wData+start,wData+start+span),
realOnly(false)
{
symmetry = wSymmetry;
};
signalVector(const signalVector &vec1, const signalVector &vec2):
Vector<complex>(vec1,vec2),
realOnly(false)
{
symmetry = vec1.symmetry;
};
signalVector(const signalVector &wVector):
Vector<complex>(wVector.size()),
realOnly(false)
{
wVector.copyTo(*this);
symmetry = wVector.getSymmetry();
};
/** symmetry operators */
Symmetry getSymmetry() const { return symmetry;};
void setSymmetry(Symmetry wSymmetry) { symmetry = wSymmetry;};
/** real-valued operators */
bool isRealOnly() const { return realOnly;};
void isRealOnly(bool wOnly) { realOnly = wOnly;};
};
/** Convert a linear number to a dB value */
float dB(float x);
/** Convert a dB value into a linear value */
float dBinv(float x);
/** Compute the energy of a vector */
float vectorNorm2(const signalVector &x);
/** Compute the average power of a vector */
float vectorPower(const signalVector &x);
/** Setup the signal processing library */
void sigProcLibSetup(int samplesPerSymbol);
/** Destroy the signal processing library */
void sigProcLibDestroy(void);
/**
Convolve two vectors.
@param a,b The vectors to be convolved.
@param c, A preallocated vector to hold the convolution result.
@param spanType The type/span of the convolution.
@return The convolution result.
*/
signalVector* convolve(const signalVector *a,
const signalVector *b,
signalVector *c,
ConvType spanType,
unsigned startIx = 0,
unsigned len = 0);
/**
Generate the GSM pulse.
@param samplesPerSymbol The number of samples per GSM symbol.
@param symbolLength The size of the pulse.
@return The GSM pulse.
*/
signalVector* generateGSMPulse(int samplesPerSymbol,
int symbolLength);
/**
Frequency shift a vector.
@param y The frequency shifted vector.
@param x The vector to-be-shifted.
@param freq The digital frequency shift
@param startPhase The starting phase of the oscillator
@param finalPhase The final phase of the oscillator
@return The frequency shifted vector.
*/
signalVector* frequencyShift(signalVector *y,
signalVector *x,
float freq = 0.0,
float startPhase = 0.0,
float *finalPhase=NULL);
/**
Correlate two vectors.
@param a,b The vectors to be correlated.
@param c, A preallocated vector to hold the correlation result.
@param spanType The type/span of the correlation.
@return The correlation result.
*/
signalVector* correlate(signalVector *a,
signalVector *b,
signalVector *c,
ConvType spanType,
bool bReversedConjugated = false,
unsigned startIx = 0,
unsigned len = 0);
/** Operate soft slicer on real-valued portion of vector */
bool vectorSlicer(signalVector *x);
/** GMSK modulate a GSM burst of bits */
signalVector *modulateBurst(const BitVector &wBurst,
const signalVector &gsmPulse,
int guardPeriodLength,
int samplesPerSymbol);
/** Sinc function */
float sinc(float x);
/** Delay a vector */
void delayVector(signalVector &wBurst,
float delay);
/** Add two vectors in-place */
bool addVector(signalVector &x,
signalVector &y);
/** Multiply two vectors in-place*/
bool multVector(signalVector &x,
signalVector &y);
/** Generate a vector of gaussian noise */
signalVector *gaussianNoise(int length,
float variance = 1.0,
complex mean = complex(0.0));
/**
Given a non-integer index, interpolate a sample.
@param inSig The signal from which to interpolate.
@param ix The index.
@return The interpolated signal value.
*/
complex interpolatePoint(const signalVector &inSig,
float ix);
/**
Given a correlator output, locate the correlation peak.
@param rxBurst The correlator result.
@param peakIndex Pointer to value to receive interpolated peak index.
@param avgPower Power to value to receive mean power.
@return Peak value.
*/
complex peakDetect(const signalVector &rxBurst,
float *peakIndex,
float *avgPwr);
/**
Apply a scalar to a vector.
@param x The vector of interest.
@param scale The scalar.
*/
void scaleVector(signalVector &x,
complex scale);
/**
Add a constant offset to a vecotr.
@param x The vector of interest.
@param offset The offset.
*/
void offsetVector(signalVector &x,
complex offset);
/**
Generate a modulated GSM midamble, stored within the library.
@param gsmPulse The GSM pulse used for modulation.
@param samplesPerSymbol The number of samples per GSM symbol.
@param TSC The training sequence [0..7]
@return Success.
*/
bool generateMidamble(signalVector &gsmPulse,
int samplesPerSymbol,
int TSC);
/**
Generate a modulated RACH sequence, stored within the library.
@param gsmPulse The GSM pulse used for modulation.
@param samplesPerSymbol The number of samples per GSM symbol.
@return Success.
*/
bool generateRACHSequence(signalVector &gsmPulse,
int samplesPerSymbol);
/**
Energy detector, checks to see if received burst energy is above a threshold.
@param rxBurst The received GSM burst of interest.
@param windowLength The number of burst samples used to compute burst energy
@param detectThreshold The detection threshold, a linear value.
@param avgPwr The average power of the received burst.
@return True if burst energy is above threshold.
*/
bool energyDetect(signalVector &rxBurst,
unsigned windowLength,
float detectThreshold,
float *avgPwr = NULL);
/**
RACH correlator/detector.
@param rxBurst The received GSM burst of interest.
@param detectThreshold The threshold that the received burst's post-correlator SNR is compared against to determine validity.
@param samplesPerSymbol The number of samples per GSM symbol.
@param amplitude The estimated amplitude of received RACH burst.
@param TOA The estimate time-of-arrival of received RACH burst.
@return True if burst SNR is larger that the detectThreshold value.
*/
bool detectRACHBurst(signalVector &rxBurst,
float detectThreshold,
int samplesPerSymbol,
complex *amplitude,
float* TOA);
/**
Normal burst correlator, detector, channel estimator.
@param rxBurst The received GSM burst of interest.
@param detectThreshold The threshold that the received burst's post-correlator SNR is compared against to determine validity.
@param samplesPerSymbol The number of samples per GSM symbol.
@param amplitude The estimated amplitude of received TSC burst.
@param TOA The estimate time-of-arrival of received TSC burst.
@param maxTOA The maximum expected time-of-arrival
@param requestChannel Set to true if channel estimation is desired.
@param channelResponse The estimated channel.
@param channelResponseOffset The time offset b/w the first sample of the channel response and the reported TOA.
@return True if burst SNR is larger that the detectThreshold value.
*/
bool analyzeTrafficBurst(signalVector &rxBurst,
unsigned TSC,
float detectThreshold,
int samplesPerSymbol,
complex *amplitude,
float *TOA,
unsigned maxTOA,
bool requestChannel = false,
signalVector** channelResponse = NULL,
float *channelResponseOffset = NULL);
/**
Decimate a vector.
@param wVector The vector of interest.
@param decimationFactor The amount of decimation, i.e. the decimation factor.
@return The decimated signal vector.
*/
signalVector *decimateVector(signalVector &wVector,
int decimationFactor);
/**
Demodulates a received burst using a soft-slicer.
@param rxBurst The burst to be demodulated.
@param gsmPulse The GSM pulse.
@param samplesPerSymbol The number of samples per GSM symbol.
@param channel The amplitude estimate of the received burst.
@param TOA The time-of-arrival of the received burst.
@return The demodulated bit sequence.
*/
SoftVector *demodulateBurst(signalVector &rxBurst,
const signalVector &gsmPulse,
int samplesPerSymbol,
complex channel,
float TOA);
/**
Creates a simple Kaiser-windowed low-pass FIR filter.
@param cutoffFreq The digital 3dB bandwidth of the filter.
@param filterLen The number of taps in the filter.
@param gainDC The DC gain of the filter.
@return The desired LPF
*/
signalVector *createLPF(float cutoffFreq,
int filterLen,
float gainDC = 1.0);
/**
Change sampling rate of a vector via polyphase resampling.
@param wVector The vector to be resampled.
@param P The numerator, i.e. the amount of upsampling.
@param Q The denominator, i.e. the amount of downsampling.
@param LPF An optional low-pass filter used in the resampling process.
@return A vector resampled at P/Q of the original sampling rate.
*/
signalVector *polyphaseResampleVector(signalVector &wVector,
int P, int Q,
signalVector *LPF);
/**
Change the sampling rate of a vector via linear interpolation.
@param wVector The vector to be resampled.
@param expFactor Ratio of new sampling rate/original sampling rate.
@param endPoint ???
@return A vector resampled a expFactor*original sampling rate.
*/
signalVector *resampleVector(signalVector &wVector,
float expFactor,
complex endPoint);
/**
Design the necessary filters for a decision-feedback equalizer.
@param channelResponse The multipath channel that we're mitigating.
@param SNRestimate The signal-to-noise estimate of the channel, a linear value
@param Nf The number of taps in the feedforward filter.
@param feedForwardFilter The designed feed forward filter.
@param feedbackFilter The designed feedback filter.
@return True if DFE can be designed.
*/
bool designDFE(signalVector &channelResponse,
float SNRestimate,
int Nf,
signalVector **feedForwardFilter,
signalVector **feedbackFilter);
/**
Equalize/demodulate a received burst via a decision-feedback equalizer.
@param rxBurst The received burst to be demodulated.
@param TOA The time-of-arrival of the received burst.
@param samplesPerSymbol The number of samples per GSM symbol.
@param w The feed forward filter of the DFE.
@param b The feedback filter of the DFE.
@return The demodulated bit sequence.
*/
SoftVector *equalizeBurst(signalVector &rxBurst,
float TOA,
int samplesPerSymbol,
signalVector &w,
signalVector &b);

View File

@ -0,0 +1,168 @@
/*
* Copyright 2011 Free Software Foundation, Inc.
* Copyright 2008, 2010 Kestrel Signal Processing, Inc.
*
* This software is distributed under the terms of the GNU Affero Public License.
* See the COPYING file in the main directory for details.
*
* This use of this software may be subject to additional restrictions.
* See the LEGAL file in the main directory for details.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
Contributors:
Harvind S. Samra, hssamra@kestrelsp.com
*/
#include "sigProcLib.h"
//#include "radioInterface.h"
#include <Logger.h>
#include <Configuration.h>
using namespace std;
ConfigurationTable gConfig;
int main(int argc, char **argv) {
gLogInit("sigProcLibTest","DEBUG");
int samplesPerSymbol = 1;
int TSC = 2;
sigProcLibSetup(samplesPerSymbol);
signalVector *gsmPulse = generateGSMPulse(2,samplesPerSymbol);
cout << *gsmPulse << endl;
BitVector RACHBurstStart = "01010101";
BitVector RACHBurstRest = "000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000";
BitVector RACHBurst(BitVector(RACHBurstStart,gRACHSynchSequence),RACHBurstRest);
signalVector *RACHSeq = modulateBurst(RACHBurst,
*gsmPulse,
9,
samplesPerSymbol);
generateRACHSequence(*gsmPulse,samplesPerSymbol);
complex a; float t;
detectRACHBurst(*RACHSeq, 5, samplesPerSymbol,&a,&t);
//cout << *RACHSeq << endl;
//signalVector *autocorr = correlate(RACHSeq,RACHSeq,NULL,NO_DELAY);
//cout << *autocorr;
//exit(1);
/*signalVector x(6500);
x.fill(1.0);
frequencyShift(&x,&x,0.48*M_PI);
signalVector *y = polyphaseResampleVector(x,96,65,NULL);
cout << *y << endl;
exit(1);*/
//CommSig normalBurstSeg = "0000000000000000000000000000000000000000000000000000000000000";
BitVector normalBurstSeg = "0000101010100111110010101010010110101110011000111001101010000";
BitVector normalBurst(BitVector(normalBurstSeg,gTrainingSequence[TSC]),normalBurstSeg);
generateMidamble(*gsmPulse,samplesPerSymbol,TSC);
signalVector *modBurst = modulateBurst(normalBurst,*gsmPulse,
0,samplesPerSymbol);
//delayVector(*rsVector2,6.932);
complex ampl = 1;
float TOA = 0;
//modBurst = rsVector2;
//delayVector(*modBurst,0.8);
/*
signalVector channelResponse(4);
signalVector::iterator c=channelResponse.begin();
*c = (complex) 9000.0; c++;
*c = (complex) 0.4*9000.0; c++; c++;
*c = (complex) -1.2*0;
signalVector *guhBurst = convolve(modBurst,&channelResponse,NULL,NO_DELAY);
delete modBurst; modBurst = guhBurst;
*/
signalVector *chanResp;
/*
double noisePwr = 0.001/sqrtf(2);
signalVector *noise = gaussianNoise(modBurst->size(),noisePwr);
*/
float chanRespOffset;
analyzeTrafficBurst(*modBurst,TSC,8.0,samplesPerSymbol,&ampl,&TOA,1,true,&chanResp,&chanRespOffset);
//addVector(*modBurst,*noise);
cout << "ampl:" << ampl << endl;
cout << "TOA: " << TOA << endl;
//cout << "chanResp: " << *chanResp << endl;
SoftVector *demodBurst = demodulateBurst(*modBurst,*gsmPulse,samplesPerSymbol,(complex) ampl, TOA);
cout << *demodBurst << endl;
/*
COUT("chanResp: " << *chanResp);
signalVector *w,*b;
designDFE(*chanResp,1.0/noisePwr,7,&w,&b);
COUT("w: " << *w);
COUT("b: " << *b);
SoftSig *DFEBurst = equalizeBurst(*modBurst,TOA-chanRespOffset,samplesPerSymbol,*w,*b);
COUT("DFEBurst: " << *DFEBurst);
delete gsmPulse;
delete RACHSeq;
delete modBurst;
delete sendLPF;
delete rcvLPF;
delete rsVector;
//delete rsVector2;
delete autocorr;
delete chanResp;
delete noise;
delete demodBurst;
delete w;
delete b;
delete DFEBurst;
*/
sigProcLibDestroy();
}

BIN
Transceiver52M/std_inband.rbf Executable file

Binary file not shown.