osmo-pcu/tests/alloc/AllocTest.cpp

871 lines
23 KiB
C++
Raw Normal View History

/* AllocTest.cpp
*
* Copyright (C) 2013 by Holger Hans Peter Freyther
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "gprs_rlcmac.h"
#include "gprs_debug.h"
#include "tbf.h"
#include "tbf_ul.h"
#include "tbf_dl.h"
#include "bts.h"
#include "gprs_ms.h"
#include "bts_pch_timer.h"
#include <string.h>
#include <stdio.h>
extern "C" {
#include "mslot_class.h"
#include <osmocom/core/application.h>
#include <osmocom/core/msgb.h>
#include <osmocom/core/talloc.h>
#include <osmocom/core/utils.h>
#include <osmocom/core/fsm.h>
}
/* globals used by the code */
void *tall_pcu_ctx;
int16_t spoof_mnc = 0, spoof_mcc = 0;
bool spoof_mnc_3_digits = false;
static gprs_rlcmac_tbf *tbf_alloc(struct gprs_rlcmac_bts *bts,
GprsMs *ms, gprs_rlcmac_tbf_direction dir,
uint8_t use_trx, bool single_slot)
{
OSMO_ASSERT(ms != NULL);
if (dir == GPRS_RLCMAC_UL_TBF)
return tbf_alloc_ul_tbf(bts, ms, use_trx, single_slot);
else
return tbf_alloc_dl_tbf(bts, ms, use_trx, single_slot);
}
static void check_tfi_usage(struct gprs_rlcmac_bts *bts)
{
int pdch_no;
struct gprs_rlcmac_tbf *tfi_usage[8][8][2][32] = {{{{NULL}}}};
struct llist_head *tbf_lists[2] = {
&bts->trx[0].ul_tbfs,
&bts->trx[0].dl_tbfs
};
struct llist_item *pos;
gprs_rlcmac_tbf *tbf;
unsigned list_idx;
struct gprs_rlcmac_tbf **tbf_var;
for (list_idx = 0; list_idx < ARRAY_SIZE(tbf_lists); list_idx += 1)
{
llist_for_each_entry(pos, tbf_lists[list_idx], list) {
tbf = (struct gprs_rlcmac_tbf *)pos->entry;
for (pdch_no = 0; pdch_no < 8; pdch_no += 1) {
struct gprs_rlcmac_pdch *pdch = tbf->pdch[pdch_no];
if (pdch == NULL)
continue;
tbf_var = &tfi_usage
[tbf->trx->trx_no]
[pdch_no]
[tbf->direction]
[tbf->tfi()];
OSMO_ASSERT(*tbf_var == NULL);
if (tbf->direction == GPRS_RLCMAC_DL_TBF) {
OSMO_ASSERT(pdch->dl_tbf_by_tfi(
tbf->tfi()) == tbf);
OSMO_ASSERT(bts_dl_tbf_by_tfi(bts,
tbf->tfi(),
tbf->trx->trx_no,
pdch_no) == tbf);
} else {
OSMO_ASSERT(pdch->ul_tbf_by_tfi(
tbf->tfi()) == tbf);
OSMO_ASSERT(bts_ul_tbf_by_tfi(bts,
tbf->tfi(),
tbf->trx->trx_no,
pdch_no) == tbf);
}
*tbf_var = tbf;
OSMO_ASSERT(pdch->assigned_tfi(tbf->direction) &
(1 << tbf->tfi()));
}
}
}
}
static void test_alloc_a(gprs_rlcmac_tbf_direction dir,
uint8_t slots, const int count)
{
int tfi;
int i;
uint8_t used_trx, tmp_trx;
struct gprs_rlcmac_bts *bts = bts_alloc(the_pcu, 0);
GprsMs *ms;
struct gprs_rlcmac_tbf *tbfs[32*8+1] = { 0, };
printf("Testing alloc_a direction(%d)\n", dir);
the_pcu->alloc_algorithm = alloc_algorithm_a;
struct gprs_rlcmac_trx *trx = &bts->trx[0];
for (i = 0; i < 8; i += 1)
if (slots & (1 << i))
trx->pdch[i].enable();
OSMO_ASSERT(count >= 0 && count <= (int)ARRAY_SIZE(tbfs));
/**
* Currently alloc_a will only allocate from the first
* PDCH and all possible usf's. We run out of usf's before
* we are out of tfi's. Observe this and make sure that at
* least this part is working okay.
*/
for (i = 0; i < (int)ARRAY_SIZE(tbfs); ++i) {
ms = bts_alloc_ms(bts, 0, 0);
tbfs[i] = tbf_alloc(bts, ms, dir, -1, 0);
if (tbfs[i] == NULL)
break;
used_trx = tbfs[i]->trx->trx_no;
tfi = bts_tfi_find_free(bts, dir, &tmp_trx, used_trx);
OSMO_ASSERT(tbfs[i]->tfi() != tfi);
}
check_tfi_usage(bts);
OSMO_ASSERT(i == count);
OSMO_ASSERT(bts_all_pdch_allocated(bts));
for (i = 0; i < count; ++i)
if (tbfs[i])
tbf_free(tbfs[i]);
ms = bts_alloc_ms(bts, 0, 0);
tbfs[0] = tbf_alloc(bts, ms, dir, -1, 0);
OSMO_ASSERT(tbfs[0]);
tbf_free(tbfs[0]);
talloc_free(bts);
}
static void test_alloc_a()
{
/* slots 2 - 3 */
test_alloc_a(GPRS_RLCMAC_DL_TBF, 0x0c, 32*2);
test_alloc_a(GPRS_RLCMAC_UL_TBF, 0x0c, 14);
/* slots 1 - 5 */
test_alloc_a(GPRS_RLCMAC_DL_TBF, 0x1e, 32*4);
test_alloc_a(GPRS_RLCMAC_UL_TBF, 0x1e, 28);
}
static void dump_assignment(struct gprs_rlcmac_tbf *tbf, const char *dir, bool verbose)
{
if (!verbose)
return;
for (size_t i = 0; i < ARRAY_SIZE(tbf->pdch); ++i)
if (tbf->pdch[i])
printf("PDCH[%zu] is used for %s\n", i, dir);
printf("PDCH[%d] is control_ts for %s\n", tbf->control_ts, dir);
printf("PDCH[%d] is first common for %s\n", tbf->first_common_ts, dir);
}
#define ENABLE_PDCH(ts_no, enable_flag, trx) \
if (enable_flag) \
trx->pdch[ts_no].enable();
static inline void enable_ts_on_bts(struct gprs_rlcmac_bts *bts,
bool ts0, bool ts1, bool ts2, bool ts3, bool ts4, bool ts5, bool ts6, bool ts7)
{
struct gprs_rlcmac_trx *trx = &bts->trx[0];
ENABLE_PDCH(0, ts0, trx);
ENABLE_PDCH(1, ts1, trx);
ENABLE_PDCH(2, ts2, trx);
ENABLE_PDCH(3, ts3, trx);
ENABLE_PDCH(4, ts4, trx);
ENABLE_PDCH(5, ts5, trx);
ENABLE_PDCH(6, ts6, trx);
ENABLE_PDCH(7, ts7, trx);
}
static inline bool test_alloc_b_ul_dl(bool ts0, bool ts1, bool ts2, bool ts3, bool ts4, bool ts5, bool ts6, bool ts7,
uint8_t ms_class, bool verbose)
{
struct gprs_rlcmac_bts *bts = bts_alloc(the_pcu, 0);
GprsMs *ms;
gprs_rlcmac_ul_tbf *ul_tbf;
gprs_rlcmac_dl_tbf *dl_tbf;
if (verbose)
printf("Testing UL then DL assignment.\n");
the_pcu->alloc_algorithm = alloc_algorithm_b;
enable_ts_on_bts(bts, ts0, ts1, ts2, ts3, ts4, ts5, ts6, ts7);
ms = bts_alloc_ms(bts, ms_class, 0);
AllocTest: Avoid queuing tons of to-be-freed ms When both TBFs (Dl, Ul), are detached, ms_detach_tbf() will call ms_start_timer() which will hold a reference of the MS (ms_ref()) and wait for X seconds (VTY config, T=-2030, 60 seconds by default) before unrefing the MS, which will trigger ms_update_status() finally (ref==0) and will in turn call cb.ms_idle(), which will tell the ms_storage to free the MS. This mechanism is used to keep MS objects around for a certain time so that when new TBFs are established, we have cached interesting information about the MS, ready to use. However, in AllocTest, tons of MS are allocated in a loop calling a function (such as test_alloc_b_ul_dl()). In that function, a BTS is allocated in the stack and at the end of the function BTS::cleanup() is called due to implicit destructor, which ends up calling ms_storage::cleanup() which removes all MS from its list and frees them *if they are not idle*. The problem here, is that due to T=-2030, an extra reference is hold and hence the ms is not considered idle (ms_is_idle() checks ms->ref==0). As a result, the MS is never freed, because we don't use libosmocore mainloop here (and in any case, it would take 60 seconds to free it). By setting the timeout of T=-2030 to 0, ms_start_timer will avoid using the timer and will also avoid holding the extra reference, hence allowing ms_storage to free the object during cleanup(). This fix really helps in improving performance for AllocTest specially after MS object contains a rate_ctr. As tons of MS objects were left alive, they stood in the rate_ctr single per-process queue, making the test last crazy amount of time and spending 50% of the time or more iterating the list full of MS related rate counters. Change-Id: I6b6ebe8903e4fe76da5e09b02b6ef28542007b6c
2021-01-11 19:40:19 +00:00
/* Avoid delaying free to avoid tons of to-be-freed ms objects queuing */
ms_set_timeout(ms, 0);
ul_tbf = tbf_alloc_ul_tbf(bts, ms, -1, true);
if (!ul_tbf)
return false;
OSMO_ASSERT(ul_tbf->ms());
OSMO_ASSERT(ms_current_trx(ul_tbf->ms()));
dump_assignment(ul_tbf, "UL", verbose);
/* assume final ack has not been sent */
dl_tbf = tbf_alloc_dl_tbf(bts, ms, ms_current_trx(ms)->trx_no, false);
if (!dl_tbf)
return false;
dump_assignment(dl_tbf, "DL", verbose);
OSMO_ASSERT(dl_tbf->first_common_ts == ul_tbf->first_common_ts);
check_tfi_usage(bts);
tbf_free(dl_tbf);
tbf_free(ul_tbf);
talloc_free(bts);
return true;
}
static inline bool test_alloc_b_dl_ul(bool ts0, bool ts1, bool ts2, bool ts3, bool ts4, bool ts5, bool ts6, bool ts7,
uint8_t ms_class, bool verbose)
{
struct gprs_rlcmac_bts *bts = bts_alloc(the_pcu, 0);
GprsMs *ms;
gprs_rlcmac_ul_tbf *ul_tbf;
gprs_rlcmac_dl_tbf *dl_tbf;
if (verbose)
printf("Testing DL then UL assignment followed by update\n");
the_pcu->alloc_algorithm = alloc_algorithm_b;
enable_ts_on_bts(bts, ts0, ts1, ts2, ts3, ts4, ts5, ts6, ts7);
ms = bts_alloc_ms(bts, ms_class, 0);
AllocTest: Avoid queuing tons of to-be-freed ms When both TBFs (Dl, Ul), are detached, ms_detach_tbf() will call ms_start_timer() which will hold a reference of the MS (ms_ref()) and wait for X seconds (VTY config, T=-2030, 60 seconds by default) before unrefing the MS, which will trigger ms_update_status() finally (ref==0) and will in turn call cb.ms_idle(), which will tell the ms_storage to free the MS. This mechanism is used to keep MS objects around for a certain time so that when new TBFs are established, we have cached interesting information about the MS, ready to use. However, in AllocTest, tons of MS are allocated in a loop calling a function (such as test_alloc_b_ul_dl()). In that function, a BTS is allocated in the stack and at the end of the function BTS::cleanup() is called due to implicit destructor, which ends up calling ms_storage::cleanup() which removes all MS from its list and frees them *if they are not idle*. The problem here, is that due to T=-2030, an extra reference is hold and hence the ms is not considered idle (ms_is_idle() checks ms->ref==0). As a result, the MS is never freed, because we don't use libosmocore mainloop here (and in any case, it would take 60 seconds to free it). By setting the timeout of T=-2030 to 0, ms_start_timer will avoid using the timer and will also avoid holding the extra reference, hence allowing ms_storage to free the object during cleanup(). This fix really helps in improving performance for AllocTest specially after MS object contains a rate_ctr. As tons of MS objects were left alive, they stood in the rate_ctr single per-process queue, making the test last crazy amount of time and spending 50% of the time or more iterating the list full of MS related rate counters. Change-Id: I6b6ebe8903e4fe76da5e09b02b6ef28542007b6c
2021-01-11 19:40:19 +00:00
/* Avoid delaying free to avoid tons of to-be-freed ms objects queuing */
ms_set_timeout(ms, 0);
dl_tbf = tbf_alloc_dl_tbf(bts, ms, -1, true);
if (!dl_tbf)
return false;
dl_tbf->update_ms(0x23, GPRS_RLCMAC_DL_TBF);
OSMO_ASSERT(dl_tbf->ms() == ms);
OSMO_ASSERT(ms_current_trx(dl_tbf->ms()));
dump_assignment(dl_tbf, "DL", verbose);
ul_tbf = tbf_alloc_ul_tbf(bts, ms, ms_current_trx(ms)->trx_no, false);
if (!ul_tbf)
return false;
ul_tbf->update_ms(0x23, GPRS_RLCMAC_UL_TBF);
ul_tbf->m_contention_resolution_done = 1;
dump_assignment(ul_tbf, "UL", verbose);
OSMO_ASSERT(dl_tbf->first_common_ts == ul_tbf->first_common_ts);
/* now update the dl_tbf */
dl_tbf->update();
dump_assignment(dl_tbf, "DL", verbose);
OSMO_ASSERT(dl_tbf->first_common_ts == ul_tbf->first_common_ts);
check_tfi_usage(bts);
tbf_free(dl_tbf);
tbf_free(ul_tbf);
talloc_free(bts);
return true;
}
static inline bool test_alloc_b_jolly(uint8_t ms_class)
{
struct gprs_rlcmac_bts *bts = bts_alloc(the_pcu, 0);
GprsMs *ms;
int tfi;
uint8_t trx_no;
gprs_rlcmac_tbf *ul_tbf, *dl_tbf;
printf("Testing jolly example\n");
the_pcu->alloc_algorithm = alloc_algorithm_b;
enable_ts_on_bts(bts, false, true, true, true, true, false, false, false);
tfi = bts_tfi_find_free(bts, GPRS_RLCMAC_UL_TBF, &trx_no, -1);
OSMO_ASSERT(tfi >= 0);
ms = bts_alloc_ms(bts, ms_class, 0);
AllocTest: Avoid queuing tons of to-be-freed ms When both TBFs (Dl, Ul), are detached, ms_detach_tbf() will call ms_start_timer() which will hold a reference of the MS (ms_ref()) and wait for X seconds (VTY config, T=-2030, 60 seconds by default) before unrefing the MS, which will trigger ms_update_status() finally (ref==0) and will in turn call cb.ms_idle(), which will tell the ms_storage to free the MS. This mechanism is used to keep MS objects around for a certain time so that when new TBFs are established, we have cached interesting information about the MS, ready to use. However, in AllocTest, tons of MS are allocated in a loop calling a function (such as test_alloc_b_ul_dl()). In that function, a BTS is allocated in the stack and at the end of the function BTS::cleanup() is called due to implicit destructor, which ends up calling ms_storage::cleanup() which removes all MS from its list and frees them *if they are not idle*. The problem here, is that due to T=-2030, an extra reference is hold and hence the ms is not considered idle (ms_is_idle() checks ms->ref==0). As a result, the MS is never freed, because we don't use libosmocore mainloop here (and in any case, it would take 60 seconds to free it). By setting the timeout of T=-2030 to 0, ms_start_timer will avoid using the timer and will also avoid holding the extra reference, hence allowing ms_storage to free the object during cleanup(). This fix really helps in improving performance for AllocTest specially after MS object contains a rate_ctr. As tons of MS objects were left alive, they stood in the rate_ctr single per-process queue, making the test last crazy amount of time and spending 50% of the time or more iterating the list full of MS related rate counters. Change-Id: I6b6ebe8903e4fe76da5e09b02b6ef28542007b6c
2021-01-11 19:40:19 +00:00
/* Avoid delaying free to avoid tons of to-be-freed ms objects queuing */
ms_set_timeout(ms, 0);
ul_tbf = tbf_alloc_ul_tbf(bts, ms, -1, false);
if (!ul_tbf)
return false;
OSMO_ASSERT(ul_tbf->ms() == ms);
OSMO_ASSERT(ms_current_trx(ul_tbf->ms()));
trx_no = ms_current_trx(ms)->trx_no;
dump_assignment(ul_tbf, "UL", true);
/* assume final ack has not been sent */
dl_tbf = tbf_alloc_dl_tbf(bts, ms, trx_no, false);
if (!dl_tbf)
return false;
dump_assignment(dl_tbf, "DL", true);
OSMO_ASSERT(dl_tbf->first_common_ts == ul_tbf->first_common_ts);
check_tfi_usage(bts);
tbf_free(dl_tbf);
tbf_free(ul_tbf);
talloc_free(bts);
return true;
}
static void test_alloc_b_for_ms(uint8_t ms_class)
{
bool rc;
printf("Going to test multislot assignment MS_CLASS=%d\n", ms_class);
/*
* PDCH is on TS 6,7,8 and we start with a UL allocation and
* then follow two DL allocations (once single, once normal).
*
* Uplink assigned and still available..
*/
rc = test_alloc_b_ul_dl(false, false, false, false, false, true, true, true, ms_class, true);
if (!rc)
return;
/**
* Test with the other order.. first DL and then UL
*/
rc = test_alloc_b_dl_ul(false, false, false, false, false, true, true, true, ms_class, true);
if (!rc)
return;
/* Andreas osmocom-pcu example */
test_alloc_b_jolly(ms_class);
}
static void test_alloc_mass(bool ts0, bool ts1, bool ts2, bool ts3, bool ts4, bool ts5, bool ts6, bool ts7, int ms_class)
{
bool rc;
/* we can test the allocation failures differently */
if (!ts0 && !ts1 && !ts2 && !ts3 && !ts4 && !ts5 && !ts6 && !ts7)
return;
printf("Mass test: TS0(%c%c%c%c%c%c%c%c)TS7 MS_Class=%d\n",
ts0 ? 'O' : 'x',
ts1 ? 'O' : 'x',
ts2 ? 'O' : 'x',
ts3 ? 'O' : 'x',
ts4 ? 'O' : 'x',
ts5 ? 'O' : 'x',
ts6 ? 'O' : 'x',
ts7 ? 'O' : 'x', ms_class);
fflush(stdout);
rc = test_alloc_b_ul_dl(ts0, ts1, ts2, ts3, ts4, ts5, ts6, ts7, ms_class, false);
if (!rc)
return;
/**
* Test with the other order.. first DL and then UL
*/
test_alloc_b_dl_ul(ts0, ts1, ts2, ts3, ts4, ts5, ts6, ts7, ms_class, false);
}
static void test_all_alloc_b()
{
/* it is a bit crazy... */
for (uint8_t ts0 = 0; ts0 < 2; ++ts0)
for (uint8_t ts1 = 0; ts1 < 2; ++ts1)
for (uint8_t ts2 = 0; ts2 < 2; ++ts2)
for (uint8_t ts3 = 0; ts3 < 2; ++ts3)
for (uint8_t ts4 = 0; ts4 < 2; ++ts4)
for (uint8_t ts5 = 0; ts5 < 2; ++ts5)
for (uint8_t ts6 = 0; ts6 < 2; ++ts6)
for (uint8_t ts7 = 0; ts7 < 2; ++ts7)
for (int ms_class = 0; ms_class < mslot_class_max(); ++ms_class)
test_alloc_mass(ts0, ts1, ts2, ts3, ts4, ts5, ts6, ts7, ms_class);
}
static void test_alloc_b()
{
for (int i = 0; i < mslot_class_max(); ++i)
test_alloc_b_for_ms(i);
test_all_alloc_b();
}
static char get_dir_char(uint8_t mask, uint8_t tx, uint8_t rx, uint8_t busy)
{
int offs = busy ? 32 : 0;
return (mask & tx & rx) ? 'C' + offs :
(mask & tx) ? 'U' + offs :
(mask & rx) ? 'D' + offs :
'.';
}
enum test_mode {
TEST_MODE_UL_ONLY,
TEST_MODE_DL_ONLY,
TEST_MODE_UL_AND_DL,
TEST_MODE_DL_AND_UL,
TEST_MODE_DL_AFTER_UL,
TEST_MODE_UL_AFTER_DL,
};
static inline char *test_mode_descr(enum test_mode t)
{
switch (t) {
case TEST_MODE_UL_ONLY: return (char*)"UL only";
case TEST_MODE_DL_ONLY: return (char*)"DL only";
case TEST_MODE_UL_AND_DL: return (char*)"UL and DL";
case TEST_MODE_DL_AND_UL: return (char*)"DL and UL";
case TEST_MODE_DL_AFTER_UL: return (char*)"DL after UL";
case TEST_MODE_UL_AFTER_DL: return (char*)"UL after DL";
default: return NULL;
}
}
static GprsMs *alloc_tbfs(struct gprs_rlcmac_bts *bts, struct GprsMs *old_ms, enum test_mode mode)
{
struct GprsMs *ms, *new_ms;
uint8_t trx_no = -1;
OSMO_ASSERT(old_ms != NULL);
gprs_rlcmac_tbf *tbf = NULL;
if (ms_current_trx(old_ms))
trx_no = ms_current_trx(old_ms)->trx_no;
ms_ref(old_ms);
/* Allocate what is needed first */
switch (mode) {
case TEST_MODE_UL_ONLY:
case TEST_MODE_DL_AFTER_UL:
case TEST_MODE_UL_AND_DL:
if (ms_ul_tbf(old_ms))
tbf_free(ms_ul_tbf(old_ms));
tbf = tbf_alloc_ul_tbf(bts, old_ms, trx_no, false);
if (tbf == NULL) {
OSMO_ASSERT(trx_no != -1 || bts_all_pdch_allocated(bts));
ms_unref(old_ms);
return NULL;
}
break;
case TEST_MODE_DL_ONLY:
case TEST_MODE_UL_AFTER_DL:
case TEST_MODE_DL_AND_UL:
if (ms_dl_tbf(old_ms))
tbf_free(ms_dl_tbf(old_ms));
tbf = tbf_alloc_dl_tbf(bts, old_ms, trx_no, false);
if (tbf == NULL) {
OSMO_ASSERT(trx_no != -1 || bts_all_pdch_allocated(bts));
ms_unref(old_ms);
return NULL;
}
}
OSMO_ASSERT(tbf);
OSMO_ASSERT(tbf->ms());
OSMO_ASSERT(old_ms == tbf->ms());
ms = tbf->ms();
ms_ref(ms);
new_ms = ms;
/* Continue with what is needed next */
switch (mode) {
case TEST_MODE_UL_ONLY:
case TEST_MODE_DL_ONLY:
/* We are done */
break;
case TEST_MODE_DL_AFTER_UL:
case TEST_MODE_UL_AND_DL:
new_ms = alloc_tbfs(bts, ms, TEST_MODE_DL_ONLY);
break;
case TEST_MODE_UL_AFTER_DL:
case TEST_MODE_DL_AND_UL:
new_ms = alloc_tbfs(bts, ms, TEST_MODE_UL_ONLY);
break;
}
/* Optionally delete the TBF */
switch (mode) {
case TEST_MODE_DL_AFTER_UL:
case TEST_MODE_UL_AFTER_DL:
tbf_free(tbf);
tbf = NULL;
break;
default:
break;
}
if (!new_ms && tbf)
tbf_free(tbf);
ms_unref(old_ms);
ms_unref(ms);
return new_ms;
}
static unsigned alloc_many_tbfs(struct gprs_rlcmac_bts *bts, unsigned min_class,
unsigned max_class, enum test_mode mode)
{
unsigned counter;
unsigned ms_class = min_class;
for (counter = 0; 1; counter += 1) {
gprs_rlcmac_tbf *ul_tbf, *dl_tbf;
uint8_t ul_slots = 0;
uint8_t dl_slots = 0;
uint8_t busy_slots = 0;
unsigned i;
int tfi = -1;
int tfi2;
uint8_t trx_no2;
struct gprs_rlcmac_trx *trx;
GprsMs *ms;
enum gprs_rlcmac_tbf_direction dir;
uint32_t tlli = counter + 0xc0000000;
ms = bts_ms_by_tlli(bts, tlli, GSM_RESERVED_TMSI);
if (!ms)
ms = bts_alloc_ms(bts, 0, 0);
ms_set_ms_class(ms, ms_class);
ms = alloc_tbfs(bts, ms, mode);
if (!ms)
break;
ms_set_tlli(ms, tlli);
ul_tbf = ms_ul_tbf(ms);
dl_tbf = ms_dl_tbf(ms);
trx = ms_current_trx(ms);
OSMO_ASSERT(ul_tbf || dl_tbf);
if (ul_tbf) {
ul_slots = 1 << ul_tbf->first_common_ts;
tfi = ul_tbf->tfi();
dir = GPRS_RLCMAC_UL_TBF;
} else {
ul_slots = 1 << dl_tbf->first_common_ts;
tfi = dl_tbf->tfi();
dir = GPRS_RLCMAC_DL_TBF;
}
for (i = 0; dl_tbf && i < ARRAY_SIZE(dl_tbf->pdch); i += 1)
if (dl_tbf->pdch[i])
dl_slots |= 1 << i;
for (i = 0; ul_tbf && i < ARRAY_SIZE(ul_tbf->pdch); i += 1)
if (ul_tbf->pdch[i])
ul_slots |= 1 << i;
for (i = 0; trx && i < ARRAY_SIZE(trx->pdch); i += 1) {
struct gprs_rlcmac_pdch *pdch = &trx->pdch[i];
if (ul_tbf && dl_tbf)
continue;
if (ul_tbf &&
pdch->assigned_tfi(GPRS_RLCMAC_DL_TBF) != NO_FREE_TFI)
continue;
if (dl_tbf &&
pdch->assigned_tfi(GPRS_RLCMAC_UL_TBF) != NO_FREE_TFI)
continue;
busy_slots |= 1 << i;
}
printf(" TBF[%d] class %d reserves " OSMO_BIT_SPEC "\n",
tfi, ms_class,
get_dir_char(0x01, ul_slots, dl_slots, busy_slots),
get_dir_char(0x02, ul_slots, dl_slots, busy_slots),
get_dir_char(0x04, ul_slots, dl_slots, busy_slots),
get_dir_char(0x08, ul_slots, dl_slots, busy_slots),
get_dir_char(0x10, ul_slots, dl_slots, busy_slots),
get_dir_char(0x20, ul_slots, dl_slots, busy_slots),
get_dir_char(0x40, ul_slots, dl_slots, busy_slots),
get_dir_char(0x80, ul_slots, dl_slots, busy_slots));
if (tfi >= 0) {
OSMO_ASSERT(ms_current_trx(ms));
tfi2 = bts_tfi_find_free(bts, dir, &trx_no2,
ms_current_trx(ms)->trx_no);
OSMO_ASSERT(tfi != tfi2);
OSMO_ASSERT(tfi2 < 0 ||
trx_no2 == ms_current_trx(ms)->trx_no);
}
ms_class += 1;
if (ms_class > max_class)
ms_class = min_class;
}
return counter;
}
static void test_successive_allocation(alloc_algorithm_func_t algo, unsigned min_class,
unsigned max_class, enum test_mode mode,
unsigned expect_num, const char *text)
{
struct gprs_rlcmac_bts *bts = bts_alloc(the_pcu, 0);
struct gprs_rlcmac_trx *trx;
unsigned counter;
printf("Going to test assignment with many TBF, algorithm %s class %u..%u (%s)\n",
text, min_class, max_class, test_mode_descr(mode));
the_pcu->alloc_algorithm = algo;
trx = &bts->trx[0];
trx->pdch[3].enable();
trx->pdch[4].enable();
trx->pdch[5].enable();
trx->pdch[6].enable();
trx->pdch[7].enable();
counter = alloc_many_tbfs(bts, min_class, max_class, mode);
printf(" Successfully allocated %u UL TBFs, algorithm %s class %u..%u (%s)\n",
counter, text, min_class, max_class, test_mode_descr(mode));
if (counter != expect_num)
fprintf(stderr, " Expected %u TBFs (got %u), algorithm %s class %u..%u (%s)\n",
expect_num, counter, text, min_class, max_class, test_mode_descr(mode));
OSMO_ASSERT(counter == expect_num);
check_tfi_usage(bts);
talloc_free(bts);
}
static void test_many_connections(alloc_algorithm_func_t algo, unsigned expect_num,
const char *text)
{
struct gprs_rlcmac_bts *bts = bts_alloc(the_pcu, 0);
struct gprs_rlcmac_trx *trx;
int counter1, counter2 = -1;
unsigned i;
enum test_mode mode_seq[] = {
TEST_MODE_DL_AFTER_UL,
TEST_MODE_UL_ONLY,
TEST_MODE_DL_AFTER_UL,
TEST_MODE_DL_ONLY,
};
printf("Going to test assignment with many connections, algorithm %s\n", text);
the_pcu->alloc_algorithm = algo;
trx = &bts->trx[0];
trx->pdch[3].enable();
trx->pdch[4].enable();
trx->pdch[5].enable();
trx->pdch[6].enable();
trx->pdch[7].enable();
for (i = 0; i < ARRAY_SIZE(mode_seq); i += 1) {
counter1 = alloc_many_tbfs(bts, 1, mslot_class_max(), mode_seq[i]);
fprintf(stderr, " Allocated %d TBFs (previously %d)\n",
counter1, counter2);
check_tfi_usage(bts);
/* This will stop earlier due to USF shortage */
if (mode_seq[i] == TEST_MODE_UL_ONLY)
continue;
if (counter2 >= 0) {
if (counter1 < counter2)
fprintf(stderr, " Expected %d >= %d in %s\n",
counter1, counter2, text);
OSMO_ASSERT(counter1 >= counter2);
}
counter2 = counter1;
}
printf(" Successfully allocated %d TBFs\n", counter1);
if (counter1 != (int)expect_num)
fprintf(stderr, " Expected %d TBFs (got %d) for algorithm %s\n", expect_num, counter1, text);
OSMO_ASSERT(expect_num == (unsigned)counter1);
talloc_free(bts);
}
static inline void test_a_b_dyn(enum test_mode mode, uint8_t exp_A, uint8_t exp_B, uint8_t exp_dyn)
{
test_successive_allocation(alloc_algorithm_a, 1, 1, mode, exp_A, "A");
test_successive_allocation(alloc_algorithm_b, 10, 10, mode, exp_B, "B");
test_successive_allocation(alloc_algorithm_dynamic, 10, 10, mode, exp_dyn, "dynamic");
}
static void test_successive_allocations()
{
test_successive_allocation(alloc_algorithm_a, 1, 1, TEST_MODE_UL_AND_DL, 35, "A");
Support uplink multi-slot allocations Before this patch, allocate_usf() was implemented to only allocate 1 USF per TBF, regardless of the available ul_slot mask. As a result, only 1 slot at max was allocated to any TBF. That's a pity because usual multislot classes like 12 support up to 2 UL slots per TBF (in common TS with DL). This patch reworks allocate_usf() to allocate as many UL multislots as possible (given mslot class, current USF availability, TFI availability, related DL TBF slots for the same MS, etc.). As a result, it can be seen that AllocTest results change substantially and maximum concurrent TBF allocation drops under some conditions. That happens due to more USFs being reserved (because each TBF has now more UL slots reserved). Hence now USF exhaustion becomes the usual limitation factor as per the number of concurrent TBFs than can be handled per TRX (as opposed to TFIs previously). Some of the biggest limitations in test appear though because really high end multislot classes are used, which can consume high volumes of UL slots (USFs), and which are probably not the most extended devices in the field. Moreover, in general the curren timeslot allocator for a given multislot class will in general try to optimize the DL side gathering most of the possible timeslots there. That means, for instance on ms class 12 (4 Tx, 4Rx, 5 Sum), 4 DL slots and 1 UL slot will still be selected. But in the case where only 3 PDCHs are available, then with this new multi-slot UL support a TBF will reserve 3 DL slots and 2 UL slots, while before this patch it would only taken 1 UL slot instead of 2. This USF exhaustion situation can be improved in the future by parametrizing (VTY command?) the maximum amount of UL slots that a TBF can reserve, making for instance a default value of 2, meaning usual classes can gather up 2 UL timelosts at a time while forbidding high-end hungry classes to gather up to 8 UL timeslots. Another approach would be to dynamically limit the amount of allowed reservable UL timeslots based on current USF reservation load. Related: OS#2282 Change-Id: Id97cc6e3b769511b591b1694549e0dac55227c43
2021-02-22 16:20:15 +00:00
test_successive_allocation(alloc_algorithm_b, 10, 10, TEST_MODE_UL_AND_DL, 15, "B");
test_successive_allocation(alloc_algorithm_b, 12, 12, TEST_MODE_UL_AND_DL, 15, "B");
Support uplink multi-slot allocations Before this patch, allocate_usf() was implemented to only allocate 1 USF per TBF, regardless of the available ul_slot mask. As a result, only 1 slot at max was allocated to any TBF. That's a pity because usual multislot classes like 12 support up to 2 UL slots per TBF (in common TS with DL). This patch reworks allocate_usf() to allocate as many UL multislots as possible (given mslot class, current USF availability, TFI availability, related DL TBF slots for the same MS, etc.). As a result, it can be seen that AllocTest results change substantially and maximum concurrent TBF allocation drops under some conditions. That happens due to more USFs being reserved (because each TBF has now more UL slots reserved). Hence now USF exhaustion becomes the usual limitation factor as per the number of concurrent TBFs than can be handled per TRX (as opposed to TFIs previously). Some of the biggest limitations in test appear though because really high end multislot classes are used, which can consume high volumes of UL slots (USFs), and which are probably not the most extended devices in the field. Moreover, in general the curren timeslot allocator for a given multislot class will in general try to optimize the DL side gathering most of the possible timeslots there. That means, for instance on ms class 12 (4 Tx, 4Rx, 5 Sum), 4 DL slots and 1 UL slot will still be selected. But in the case where only 3 PDCHs are available, then with this new multi-slot UL support a TBF will reserve 3 DL slots and 2 UL slots, while before this patch it would only taken 1 UL slot instead of 2. This USF exhaustion situation can be improved in the future by parametrizing (VTY command?) the maximum amount of UL slots that a TBF can reserve, making for instance a default value of 2, meaning usual classes can gather up 2 UL timelosts at a time while forbidding high-end hungry classes to gather up to 8 UL timeslots. Another approach would be to dynamically limit the amount of allowed reservable UL timeslots based on current USF reservation load. Related: OS#2282 Change-Id: Id97cc6e3b769511b591b1694549e0dac55227c43
2021-02-22 16:20:15 +00:00
test_successive_allocation(alloc_algorithm_b, 1, 12, TEST_MODE_UL_AND_DL, 23, "B");
test_successive_allocation(alloc_algorithm_b, 1, mslot_class_max(), TEST_MODE_UL_AND_DL, 17, "B");
test_successive_allocation(alloc_algorithm_dynamic, 1, mslot_class_max(), TEST_MODE_UL_AND_DL, 17, "dynamic");
Support uplink multi-slot allocations Before this patch, allocate_usf() was implemented to only allocate 1 USF per TBF, regardless of the available ul_slot mask. As a result, only 1 slot at max was allocated to any TBF. That's a pity because usual multislot classes like 12 support up to 2 UL slots per TBF (in common TS with DL). This patch reworks allocate_usf() to allocate as many UL multislots as possible (given mslot class, current USF availability, TFI availability, related DL TBF slots for the same MS, etc.). As a result, it can be seen that AllocTest results change substantially and maximum concurrent TBF allocation drops under some conditions. That happens due to more USFs being reserved (because each TBF has now more UL slots reserved). Hence now USF exhaustion becomes the usual limitation factor as per the number of concurrent TBFs than can be handled per TRX (as opposed to TFIs previously). Some of the biggest limitations in test appear though because really high end multislot classes are used, which can consume high volumes of UL slots (USFs), and which are probably not the most extended devices in the field. Moreover, in general the curren timeslot allocator for a given multislot class will in general try to optimize the DL side gathering most of the possible timeslots there. That means, for instance on ms class 12 (4 Tx, 4Rx, 5 Sum), 4 DL slots and 1 UL slot will still be selected. But in the case where only 3 PDCHs are available, then with this new multi-slot UL support a TBF will reserve 3 DL slots and 2 UL slots, while before this patch it would only taken 1 UL slot instead of 2. This USF exhaustion situation can be improved in the future by parametrizing (VTY command?) the maximum amount of UL slots that a TBF can reserve, making for instance a default value of 2, meaning usual classes can gather up 2 UL timelosts at a time while forbidding high-end hungry classes to gather up to 8 UL timeslots. Another approach would be to dynamically limit the amount of allowed reservable UL timeslots based on current USF reservation load. Related: OS#2282 Change-Id: Id97cc6e3b769511b591b1694549e0dac55227c43
2021-02-22 16:20:15 +00:00
test_a_b_dyn(TEST_MODE_DL_AND_UL, 35, 15, 15);
test_a_b_dyn(TEST_MODE_DL_AFTER_UL, 160, 32, 101);
test_a_b_dyn(TEST_MODE_UL_AFTER_DL, 35, 15, 15);
test_a_b_dyn(TEST_MODE_UL_ONLY, 35, 15, 21);
test_a_b_dyn(TEST_MODE_DL_ONLY, 160, 32, 101);
}
static void test_2_consecutive_dl_tbfs()
{
struct gprs_rlcmac_bts *bts = bts_alloc(the_pcu, 0);
GprsMs *ms;
struct gprs_rlcmac_trx *trx;
uint8_t ms_class = 11;
uint8_t egprs_ms_class = 11;
gprs_rlcmac_tbf *dl_tbf1, *dl_tbf2;
uint8_t numTs1 = 0, numTs2 = 0;
printf("Testing DL TS allocation for Multi UEs\n");
the_pcu->alloc_algorithm = alloc_algorithm_b;
trx = &bts->trx[0];
trx->pdch[4].enable();
trx->pdch[5].enable();
trx->pdch[6].enable();
trx->pdch[7].enable();
ms = bts_alloc_ms(bts, ms_class, egprs_ms_class);
dl_tbf1 = tbf_alloc_dl_tbf(bts, ms, 0, false);
OSMO_ASSERT(dl_tbf1);
for (int i = 0; i < 8; i++) {
if (dl_tbf1->pdch[i])
numTs1++;
}
OSMO_ASSERT(numTs1 == 4);
printf("TBF1: numTs(%d)\n", numTs1);
ms = bts_alloc_ms(bts, ms_class, egprs_ms_class);
dl_tbf2 = tbf_alloc_dl_tbf(bts, ms, 0, false);
OSMO_ASSERT(dl_tbf2);
for (int i = 0; i < 8; i++) {
if (dl_tbf2->pdch[i])
numTs2++;
}
/*
* TODO: currently 2nd DL TBF gets 3 TS
* This behaviour will be fixed in subsequent patch
*/
printf("TBF2: numTs(%d)\n", numTs2);
OSMO_ASSERT(numTs2 == 3);
tbf_free(dl_tbf1);
tbf_free(dl_tbf2);
talloc_free(bts);
}
static void test_bts_pch_timer(void)
{
struct gprs_rlcmac_bts *bts = bts_alloc(the_pcu, 0);
struct osmo_mobile_identity mi_imsi1, mi_imsi2;
struct osmo_mobile_identity mi_tmsi1;
mi_imsi1.type = mi_imsi2.type = GSM_MI_TYPE_IMSI;
mi_tmsi1.type = GSM_MI_TYPE_TMSI;
OSMO_STRLCPY_ARRAY(mi_imsi1.imsi, "1234");
OSMO_STRLCPY_ARRAY(mi_imsi2.imsi, "5678");
mi_tmsi1.tmsi = 987654321;
fprintf(stderr, "Testing bts_pch_timer dealloc on bts dealloc\n");
log_set_category_filter(osmo_stderr_target, DPCU, 1, LOGL_DEBUG);
fprintf(stderr, "Starting PCH timer for 2 IMSI\n");
bts_pch_timer_start(bts, &mi_imsi1, mi_imsi1.imsi);
bts_pch_timer_start(bts, &mi_imsi2, mi_imsi2.imsi);
fprintf(stderr, "Starting PCH timer for 1 TMSI\n");
bts_pch_timer_start(bts, &mi_tmsi1, "6666");
fprintf(stderr, "Deallocating BTS, expecting the PCH timer to be stopped and deallocated\n");
talloc_free(bts);
}
int main(int argc, char **argv)
{
tall_pcu_ctx = talloc_named_const(NULL, 1, "moiji-mobile AllocTest context");
if (!tall_pcu_ctx)
abort();
msgb_talloc_ctx_init(tall_pcu_ctx, 0);
osmo_init_logging2(tall_pcu_ctx, &gprs_log_info);
log_set_use_color(osmo_stderr_target, 0);
log_set_print_filename2(osmo_stderr_target, LOG_FILENAME_NONE);
log_set_print_category(osmo_stderr_target, 0);
log_set_print_category_hex(osmo_stderr_target, 0);
log_set_category_filter(osmo_stderr_target, DTBF, 1, LOGL_INFO);
if (getenv("LOGL_DEBUG"))
log_set_log_level(osmo_stderr_target, LOGL_DEBUG);
osmo_fsm_log_addr(false);
the_pcu = gprs_pcu_alloc(tall_pcu_ctx);
test_alloc_a();
test_alloc_b();
test_successive_allocations();
test_many_connections(alloc_algorithm_a, 160, "A");
test_many_connections(alloc_algorithm_b, 32, "B");
test_many_connections(alloc_algorithm_dynamic, 160, "dynamic");
test_2_consecutive_dl_tbfs();
test_bts_pch_timer();
talloc_free(the_pcu);
return EXIT_SUCCESS;
}
/*
* stubs that should not be reached
*/
extern "C" {
void l1if_pdch_req() { abort(); }
void l1if_connect_pdch() { abort(); }
void l1if_close_pdch() { abort(); }
void l1if_open_pdch() { abort(); }
}