gr-osmosdr/lib/uhd/uhd_sink_c.cc

450 lines
12 KiB
C++

/* -*- c++ -*- */
/*
* Copyright 2012 Dimitri Stolnikov <horiz0n@gmx.net>
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include <boost/foreach.hpp>
#include <boost/assign.hpp>
#include <boost/algorithm/string.hpp>
//#include <uhd/property_tree.hpp>
#include "osmosdr_arg_helpers.h"
#include "uhd_sink_c.h"
using namespace boost::assign;
static void
get_precision_time (long long *secs, double *fracs);
uhd_sink_c_sptr make_uhd_sink_c(const std::string &args)
{
return gnuradio::get_initial_sptr(new uhd_sink_c(args));
}
uhd_sink_c::uhd_sink_c(const std::string &args) :
gr_hier_block2("uhd_sink_c",
args_to_io_signature(args),
gr_make_io_signature (0, 0, 0)),
_center_freq(0.0f),
_freq_corr(0.0f),
_lo_offset(0.0f)
{
size_t nchan = 1;
dict_t dict = params_to_dict(args);
uhd::stream_args_t stream_args("fc32", "sc16");
std::string extra_args;
std::vector <std::string> extra_list;
extra_list.push_back ("peak");
extra_list.push_back ("fullscale");
if (dict.count("nchan"))
nchan = boost::lexical_cast< size_t >( dict["nchan"] );
if (0 == nchan)
nchan = 1;
if (dict.count("lo_offset"))
_lo_offset = boost::lexical_cast< double >( dict["lo_offset"] );
std::string arguments; // rebuild argument string without internal arguments
BOOST_FOREACH( dict_t::value_type &entry, dict ) {
if ( "uhd" != entry.first &&
"nchan" != entry.first &&
"subdev" != entry.first &&
"lo_offset" != entry.first &&
"otw_format" != entry.first &&
"peak" != entry.first &&
"fullscale" != entry.first &&
"refclock" != entry.first &&
"pps" != entry.first &&
"sync" != entry.first ) {
arguments += entry.first + "=" + entry.second + ",";
}
}
_snk = uhd_make_usrp_sink( arguments,
uhd::io_type_t::COMPLEX_FLOAT32,
nchan );
stream_args.cpu_format = "fc32";
stream_args.otw_format = "sc16";
for (size_t chan = 0; chan < nchan; chan++)
stream_args.channels.push_back(chan); //linear mapping
if (dict.count("otw_format") )
stream_args.otw_format = dict["otw_format"];
// There's probably a more C++/Boosty way to do this.
// look for "peak" and "fullscale" args, and make up some lovely syntax
// that will be acceptable in uhd::stream_args.args
for (unsigned int q = 0; q < extra_list.size(); q++)
{
if (dict.count(extra_list[q]) )
{
std::cerr << "-- Setting " + extra_list[q] + "=" + dict[extra_list[q]] + "\n";
extra_args += extra_list[q] + "=" + dict[extra_list[q]];
if (q < (extra_list.size()-1))
{
extra_args += ",";
}
}
}
if (extra_args.length() > 0)
{
// Finally stuff the args
stream_args.args = extra_args;
}
_snk = uhd_make_usrp_sink ( arguments,
stream_args );
if (dict.count("subdev")) {
_snk->set_subdev_spec( dict["subdev"] );
}
std::cerr << "-- Using subdev spec '" << _snk->get_subdev_spec() << "'."
<< std::endl;
if (0.0 != _lo_offset)
std::cerr << "-- Using lo offset of " << _lo_offset << " Hz." << std::endl;
// Fargking oogly. Needs to pull ALL_MBOARDS constant out of multi_usrp:: but I can't figure out how
// So, ALL_MBOARDS is actually just size_t(~0)
size_t ALL_MBOARDS = size_t(~0);
if (dict.count("refclock") )
{
std::cerr << "-- Setting refclock: " + dict["refclock"] + "\n";
_snk->set_clock_source (dict["refclock"], ALL_MBOARDS);
boost::this_thread::sleep(boost::posix_time::milliseconds(50));
uhd::sensor_value_t ref_locked = _snk->get_mboard_sensor("ref_locked",0);
if (!ref_locked.to_bool())
{
std::cerr << "-- WARNING: Requested ref-clock source: " << dict["refclock"] << "\n";
std::cerr << "-- Ref-clock lock sensor indicates: UNLOCKED\n";
std::cerr << "-- You may have poorer phase noise/frequency accuracy\n";
std::cerr << "-- Phase-coherence with other devices will be poor.\n";
}
}
if (dict.count("pps") )
{
std::cerr << "-- Setting PPS source: " + dict["refclock"] + "\n";
_snk->set_time_source (dict["pps"], ALL_MBOARDS);
}
/*
* Set TOD across all MBOARDS to current host time
*/
if (dict.count("sync") )
{
long long seconds;
double fracts;
get_precision_time (&seconds, &fracts);
std::string st = boost::to_upper_copy(dict["sync"]);
std::cerr << "-- Setting TOD to: " << (long long)seconds << "."
<< (long long)fracts << " with method: "+st << "\n";
if (dict["sync"] == "unknown" )
{
_snk->set_time_unknown_pps (uhd::time_spec_t((time_t)seconds+1));
}
else if (dict["sync"] == "next")
{
_snk->set_time_next_pps (uhd::time_spec_t((time_t)seconds+1));
}
else if (dict["sync"] == "now")
{
fracts += 0.001;
if (fracts >= 1.0)
{
fracts -= 1.0;
seconds += 1LL;
}
_snk->set_time_now (uhd::time_spec_t((time_t)seconds, fracts), ALL_MBOARDS);
}
else
{
std::cerr << "*** Not processing sync request: unknown type: " + dict["sync"] + "\n";
}
}
for ( size_t i = 0; i < nchan; i++ )
connect( self(), i, _snk, i );
}
uhd_sink_c::~uhd_sink_c()
{
}
std::vector< std::string > uhd_sink_c::get_devices()
{
std::vector< std::string > devices;
uhd::device_addr_t hint;
BOOST_FOREACH(const uhd::device_addr_t &dev, uhd::device::find(hint))
{
std::string args = "uhd," + dev.to_string();
std::string type = dev.cast< std::string >("type", "usrp");
std::string name = dev.cast< std::string >("name", "");
std::string serial = dev.cast< std::string >("serial", "");
std::string label = "Ettus";
if ( "umtrx" == type )
label = "Fairwaves";
if (type.length()) {
boost::to_upper(type);
label += " " + type;
}
if (name.length())
label += " (" + name + ")";
if (serial.length())
label += " " + serial;
args += ",label='" + label + + "'";
devices.push_back( args );
}
return devices;
}
std::string uhd_sink_c::name()
{
// uhd::property_tree::sptr prop_tree = _snk->get_device()->get_device()->get_tree();
// std::string dev_name = prop_tree->access<std::string>("/name").get();
std::string mboard_name = _snk->get_device()->get_mboard_name();
// std::cerr << "'" << dev_name << "' '" << mboard_name << "'" << std::endl;
// 'USRP1 Device' 'USRP1 (Classic)'
// 'B-Series Device' 'B100 (B-Hundo)'
return mboard_name;
}
size_t uhd_sink_c::get_num_channels()
{
// return _snk->get_device()->get_rx_num_channels();
return input_signature()->max_streams();
}
osmosdr::meta_range_t uhd_sink_c::get_sample_rates( void )
{
osmosdr::meta_range_t rates;
BOOST_FOREACH( uhd::range_t rate, _snk->get_samp_rates() )
rates += osmosdr::range_t( rate.start(), rate.stop(), rate.step() );
return rates;
}
double uhd_sink_c::set_sample_rate( double rate )
{
_snk->set_samp_rate( rate );
return get_sample_rate();
}
double uhd_sink_c::get_sample_rate( void )
{
return _snk->get_samp_rate();
}
osmosdr::freq_range_t uhd_sink_c::get_freq_range( size_t chan )
{
osmosdr::freq_range_t range;
BOOST_FOREACH( uhd::range_t freq, _snk->get_freq_range(chan) )
range += osmosdr::range_t( freq.start(), freq.stop(), freq.step() );
return range;
}
double uhd_sink_c::set_center_freq( double freq, size_t chan )
{
#define APPLY_PPM_CORR(val, ppm) ((val) * (1.0 + (ppm) * 0.000001))
double corr_freq = APPLY_PPM_CORR( freq, _freq_corr );
// advanced tuning with tune_request_t
uhd::tune_request_t tune_req(corr_freq, _lo_offset);
_snk->set_center_freq(tune_req, chan);
_center_freq = freq;
return get_center_freq(chan);
}
double uhd_sink_c::get_center_freq( size_t chan )
{
return _snk->get_center_freq(chan);
}
double uhd_sink_c::set_freq_corr( double ppm, size_t chan )
{
_freq_corr = ppm;
set_center_freq( _center_freq );
return get_freq_corr(chan);
}
double uhd_sink_c::get_freq_corr( size_t chan )
{
return _freq_corr;
}
std::vector<std::string> uhd_sink_c::get_gain_names( size_t chan )
{
return _snk->get_gain_names( chan );
}
osmosdr::gain_range_t uhd_sink_c::get_gain_range( size_t chan )
{
osmosdr::gain_range_t range;
BOOST_FOREACH( uhd::range_t gain, _snk->get_gain_range(chan) )
range += osmosdr::range_t( gain.start(), gain.stop(), gain.step() );
return range;
}
osmosdr::gain_range_t uhd_sink_c::get_gain_range( const std::string & name, size_t chan )
{
osmosdr::gain_range_t range;
BOOST_FOREACH( uhd::range_t gain, _snk->get_gain_range(name, chan) )
range += osmosdr::range_t( gain.start(), gain.stop(), gain.step() );
return range;
}
double uhd_sink_c::set_gain( double gain, size_t chan )
{
_snk->set_gain(gain, chan);
return get_gain(chan);
}
double uhd_sink_c::set_gain( double gain, const std::string & name, size_t chan )
{
_snk->set_gain(gain, name, chan);
return get_gain(name, chan);
}
double uhd_sink_c::get_gain( size_t chan )
{
return _snk->get_gain(chan);
}
double uhd_sink_c::get_gain( const std::string & name, size_t chan )
{
return _snk->get_gain(name, chan);
}
std::vector< std::string > uhd_sink_c::get_antennas( size_t chan )
{
return _snk->get_antennas(chan);
}
std::string uhd_sink_c::set_antenna( const std::string & antenna, size_t chan )
{
_snk->set_antenna(antenna, chan);
return _snk->get_antenna(chan);
}
std::string uhd_sink_c::get_antenna( size_t chan )
{
return _snk->get_antenna(chan);
}
void uhd_sink_c::set_dc_offset( const std::complex<double> &offset, size_t chan )
{
try {
_snk->set_dc_offset( offset, chan );
} catch ( const std::exception &ex ) {
std::cerr << __FUNCTION__ << ": " << ex.what() << std::endl;
}
}
void uhd_sink_c::set_iq_balance( const std::complex<double> &balance, size_t chan )
{
try {
_snk->set_iq_balance( balance, chan );
} catch ( const std::exception &ex ) {
std::cerr << __FUNCTION__ << ": " << ex.what() << std::endl;
}
}
double uhd_sink_c::set_bandwidth( double bandwidth, size_t chan )
{
_snk->set_bandwidth(bandwidth, chan);
return _snk->get_bandwidth(chan);
}
double uhd_sink_c::get_bandwidth( size_t chan )
{
return _snk->get_bandwidth(chan);
}
osmosdr::freq_range_t uhd_sink_c::get_bandwidth_range( size_t chan )
{
osmosdr::freq_range_t bandwidths;
BOOST_FOREACH( uhd::range_t bw, _snk->get_bandwidth_range(chan) )
bandwidths += osmosdr::range_t( bw.start(), bw.stop(), bw.step() );
return bandwidths;
}
static void
get_precision_time (long long *secs, double *fracs)
{
boost::posix_time::ptime now;
boost::posix_time::ptime epoch(boost::posix_time::from_time_t((time_t)0));
boost::posix_time::time_duration diff;
double psecs;
double fracts;
now = boost::posix_time::microsec_clock::universal_time();
diff = now - epoch;
psecs = (diff.total_milliseconds() / 1.0e3);
fracts = psecs - (long long)psecs;
fracts *= 1.0e3;
*secs = (long long)psecs;
*fracs = fracts;
}