libusrp/host/lib/usrp_standard.cc

1176 lines
30 KiB
C++

/* -*- c++ -*- */
/*
* Copyright 2004,2008,2009 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <usrp/usrp_standard.h>
#include "usrp/usrp_prims.h"
#include "fpga_regs_common.h"
#include "fpga_regs_standard.h"
#include <stdexcept>
#include <assert.h>
#include <math.h>
#include <ad9862.h>
#include <cstdio>
static const int OLD_CAPS_VAL = 0xaa55ff77;
static const int DEFAULT_CAPS_VAL = ((2 << bmFR_RB_CAPS_NDUC_SHIFT)
| (2 << bmFR_RB_CAPS_NDDC_SHIFT)
| bmFR_RB_CAPS_RX_HAS_HALFBAND);
// #define USE_FPGA_TX_CORDIC
using namespace ad9862;
#define NELEM(x) (sizeof (x) / sizeof (x[0]))
void
usrp_standard_common::calc_dxc_freq(double target_freq, double baseband_freq, double fs,
double *dxc_freq, bool *inverted)
{
/*
Calculate the frequency to use for setting the digital up or down converter.
@param target_freq: desired RF frequency (Hz)
@param baseband_freq: the RF frequency that corresponds to DC in the IF.
@param fs: converter sample rate
@returns: 2-tuple (ddc_freq, inverted) where ddc_freq is the value
for the ddc and inverted is True if we're operating in an inverted
Nyquist zone.
*/
#if 0
printf("calc_dxc_freq:\n");
printf(" target = %f\n", target_freq);
printf(" baseband = %f\n", baseband_freq);
printf(" fs = %f\n", fs);
#endif
double delta = target_freq - baseband_freq;
if(delta >= 0) {
while(delta > fs) {
delta -= fs;
}
if(delta <= fs/2) { // non-inverted region
*dxc_freq = -delta;
*inverted = false;
}
else { // inverted region
*dxc_freq = delta - fs;
*inverted = true;
}
}
else {
while(delta < -fs) {
delta += fs;
}
if(delta >= -fs/2) {
*dxc_freq = -delta; // non-inverted region
*inverted = false;
}
else { // inverted region
*dxc_freq = delta + fs;
*inverted = true;
}
}
#if 0
printf(" dxc_freq = %f\n", *dxc_freq);
printf(" inverted = %s\n", *inverted ? "true" : "false");
#endif
}
/*
* Real lambda expressions would be _so_ much easier...
*/
class dxc_control {
public:
virtual bool is_tx() = 0;
virtual bool set_dxc_freq(double dxc_freq) = 0;
virtual double dxc_freq() = 0;
};
class ddc_control : public dxc_control {
usrp_standard_rx *d_u;
int d_chan;
public:
ddc_control(usrp_standard_rx *u, int chan)
: d_u(u), d_chan(chan) {}
bool is_tx(){ return false; }
bool set_dxc_freq(double dxc_freq){ return d_u->set_rx_freq(d_chan, dxc_freq); }
double dxc_freq(){ return d_u->rx_freq(d_chan); }
};
class duc_control : public dxc_control {
usrp_standard_tx *d_u;
int d_chan;
public:
duc_control(usrp_standard_tx *u, int chan)
: d_u(u), d_chan(chan) {}
bool is_tx(){ return true; }
bool set_dxc_freq(double dxc_freq){ return d_u->set_tx_freq(d_chan, dxc_freq); }
double dxc_freq() { return d_u->tx_freq(d_chan); }
};
/*!
* \brief Tune such that target_frequency ends up at DC in the complex baseband
*
* \param db the daughterboard to use
* \param target_freq the center frequency we want at baseband (DC)
* \param fs the sample rate
* \param dxc DDC or DUC access and control object
* \param[out] result details of what we did
*
* \returns true iff operation was successful
*
* Tuning is a two step process. First we ask the front-end to
* tune as close to the desired frequency as it can. Then we use
* the result of that operation and our target_frequency to
* determine the value for the digital down converter.
*/
static bool
tune_a_helper(db_base_sptr db, double target_freq, double fs,
dxc_control &dxc, usrp_tune_result *result)
{
bool inverted = false;
double dxc_freq;
double actual_dxc_freq;
// Ask the d'board to tune as closely as it can to target_freq
#if 0
bool ok = db->set_freq(target_freq, &result->baseband_freq);
#else
bool ok;
{
freq_result_t fr = db->set_freq(target_freq);
ok = fr.ok;
result->baseband_freq = fr.baseband_freq;
}
#endif
// Calculate the DDC setting that will downconvert the baseband from the
// daughterboard to our target frequency.
usrp_standard_common::calc_dxc_freq(target_freq, result->baseband_freq, fs,
&dxc_freq, &inverted);
// If the spectrum is inverted, and the daughterboard doesn't do
// quadrature downconversion, we can fix the inversion by flipping the
// sign of the dxc_freq... (This only happens using the basic_rx board)
if(db->spectrum_inverted())
inverted = !inverted;
if(inverted && !db->is_quadrature()){
dxc_freq = -dxc_freq;
inverted = !inverted;
}
if (dxc.is_tx() && !db->i_and_q_swapped()) // down conversion versus up conversion
dxc_freq = -dxc_freq;
ok &= dxc.set_dxc_freq(dxc_freq);
actual_dxc_freq = dxc.dxc_freq();
result->dxc_freq = dxc_freq;
result->residual_freq = dxc_freq - actual_dxc_freq;
result->inverted = inverted;
return ok;
}
static unsigned int
compute_freq_control_word_fpga (double master_freq, double target_freq,
double *actual_freq, bool verbose)
{
static const int NBITS = 14;
int v = (int) rint (target_freq / master_freq * pow (2.0, 32.0));
if (0)
v = (v >> (32 - NBITS)) << (32 - NBITS); // keep only top NBITS
*actual_freq = v * master_freq / pow (2.0, 32.0);
if (verbose)
fprintf (stderr,
"compute_freq_control_word_fpga: target = %g actual = %g delta = %g\n",
target_freq, *actual_freq, *actual_freq - target_freq);
return (unsigned int) v;
}
// The 9862 uses an unsigned 24-bit frequency tuning word and
// a separate register to control the sign.
static unsigned int
compute_freq_control_word_9862 (double master_freq, double target_freq,
double *actual_freq, bool verbose)
{
double sign = 1.0;
if (target_freq < 0)
sign = -1.0;
int v = (int) rint (fabs (target_freq) / master_freq * pow (2.0, 24.0));
*actual_freq = v * master_freq / pow (2.0, 24.0) * sign;
if (verbose)
fprintf (stderr,
"compute_freq_control_word_9862: target = %g actual = %g delta = %g v = %8d\n",
target_freq, *actual_freq, *actual_freq - target_freq, v);
return (unsigned int) v;
}
// ----------------------------------------------------------------
usrp_standard_common::usrp_standard_common(usrp_basic *parent)
{
// read new FPGA capability register
if (!parent->_read_fpga_reg(FR_RB_CAPS, &d_fpga_caps)){
fprintf (stderr, "usrp_standard_common: failed to read FPGA cap register.\n");
throw std::runtime_error ("usrp_standard_common::ctor");
}
// If we don't have the cap register, set the value to what it would
// have had if we did have one ;)
if (d_fpga_caps == OLD_CAPS_VAL)
d_fpga_caps = DEFAULT_CAPS_VAL;
if (0){
fprintf(stdout, "has_rx_halfband = %d\n", has_rx_halfband());
fprintf(stdout, "nddcs = %d\n", nddcs());
fprintf(stdout, "has_tx_halfband = %d\n", has_tx_halfband());
fprintf(stdout, "nducs = %d\n", nducs());
}
}
bool
usrp_standard_common::has_rx_halfband() const
{
return (d_fpga_caps & bmFR_RB_CAPS_RX_HAS_HALFBAND) ? true : false;
}
int
usrp_standard_common::nddcs() const
{
return (d_fpga_caps & bmFR_RB_CAPS_NDDC_MASK) >> bmFR_RB_CAPS_NDDC_SHIFT;
}
bool
usrp_standard_common::has_tx_halfband() const
{
return (d_fpga_caps & bmFR_RB_CAPS_TX_HAS_HALFBAND) ? true : false;
}
int
usrp_standard_common::nducs() const
{
return (d_fpga_caps & bmFR_RB_CAPS_NDUC_MASK) >> bmFR_RB_CAPS_NDUC_SHIFT;
}
// ----------------------------------------------------------------
static int
real_rx_mux_value (int mux, int nchan)
{
if (mux != -1)
return mux;
return 0x32103210;
}
usrp_standard_rx::usrp_standard_rx (int which_board,
unsigned int decim_rate,
int nchan, int mux, int mode,
int fusb_block_size, int fusb_nblocks,
const std::string fpga_filename,
const std::string firmware_filename
)
: usrp_basic_rx (which_board, fusb_block_size, fusb_nblocks,
fpga_filename, firmware_filename),
usrp_standard_common(this),
d_nchan (1), d_sw_mux (0x0), d_hw_mux (0x0)
{
if (!set_format(make_format())){
fprintf (stderr, "usrp_standard_rx: set_format failed\n");
throw std::runtime_error ("usrp_standard_rx::ctor");
}
if (!set_nchannels (nchan)){
fprintf (stderr, "usrp_standard_rx: set_nchannels failed\n");
throw std::runtime_error ("usrp_standard_rx::ctor");
}
if (!set_decim_rate (decim_rate)){
fprintf (stderr, "usrp_standard_rx: set_decim_rate failed\n");
throw std::runtime_error ("usrp_standard_rx::ctor");
}
if (!set_mux (real_rx_mux_value (mux, nchan))){
fprintf (stderr, "usrp_standard_rx: set_mux failed\n");
throw std::runtime_error ("usrp_standard_rx::ctor");
}
if (!set_fpga_mode (mode)){
fprintf (stderr, "usrp_standard_rx: set_fpga_mode failed\n");
throw std::runtime_error ("usrp_standard_rx::ctor");
}
for (int i = 0; i < MAX_CHAN; i++){
set_rx_freq(i, 0);
set_ddc_phase(i, 0);
}
}
usrp_standard_rx::~usrp_standard_rx ()
{
// fprintf(stderr, "\nusrp_standard_rx: dtor\n");
}
bool
usrp_standard_rx::start ()
{
if (!usrp_basic_rx::start ())
return false;
// add our code here
return true;
}
bool
usrp_standard_rx::stop ()
{
bool ok = usrp_basic_rx::stop ();
// add our code here
return ok;
}
usrp_standard_rx_sptr
usrp_standard_rx::make (int which_board,
unsigned int decim_rate,
int nchan, int mux, int mode,
int fusb_block_size, int fusb_nblocks,
const std::string fpga_filename,
const std::string firmware_filename
)
{
try {
usrp_standard_rx_sptr u =
usrp_standard_rx_sptr(new usrp_standard_rx(which_board, decim_rate,
nchan, mux, mode,
fusb_block_size, fusb_nblocks,
fpga_filename, firmware_filename));
u->init_db(u);
return u;
}
catch (...){
return usrp_standard_rx_sptr();
}
}
bool
usrp_standard_rx::set_decim_rate(unsigned int rate)
{
if (has_rx_halfband()){
if ((rate & 0x1) || rate < 4 || rate > 256){
fprintf (stderr, "usrp_standard_rx::set_decim_rate: rate must be EVEN and in [4, 256]\n");
return false;
}
}
else {
if (rate < 4 || rate > 128){
fprintf (stderr, "usrp_standard_rx::set_decim_rate: rate must be in [4, 128]\n");
return false;
}
}
d_decim_rate = rate;
set_usb_data_rate ((adc_rate () / rate * nchannels ())
* (2 * sizeof (short)));
bool s = disable_rx ();
int v = has_rx_halfband() ? d_decim_rate/2 - 1 : d_decim_rate - 1;
bool ok = _write_fpga_reg (FR_DECIM_RATE, v);
restore_rx (s);
return ok;
}
bool usrp_standard_rx::set_nchannels (int nchan)
{
if (!(nchan == 1 || nchan == 2 || nchan == 4))
return false;
if (nchan > nddcs())
return false;
d_nchan = nchan;
return write_hw_mux_reg ();
}
// map software mux value to hw mux value
//
// Software mux value:
//
// 3 2 1
// 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
// +-------+-------+-------+-------+-------+-------+-------+-------+
// | Q3 | I3 | Q2 | I2 | Q1 | I1 | Q0 | I0 |
// +-------+-------+-------+-------+-------+-------+-------+-------+
//
// Each 4-bit I field is either 0,1,2,3
// Each 4-bit Q field is either 0,1,2,3 or 0xf (input is const zero)
// All Q's must be 0xf or none of them may be 0xf
//
//
// Hardware mux value:
//
// 3 2 1
// 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
// +-----------------------+-------+-------+-------+-------+-+-----+
// | must be zero | Q3| I3| Q2| I2| Q1| I1| Q0| I0|Z| NCH |
// +-----------------------+-------+-------+-------+-------+-+-----+
static bool
map_sw_mux_to_hw_mux (int sw_mux, int *hw_mux_ptr)
{
// confirm that all I's are either 0,1,2,3
for (int i = 0; i < 8; i += 2){
int t = (sw_mux >> (4 * i)) & 0xf;
if (!(0 <= t && t <= 3))
return false;
}
// confirm that all Q's are either 0,1,2,3 or 0xf
for (int i = 1; i < 8; i += 2){
int t = (sw_mux >> (4 * i)) & 0xf;
if (!(t == 0xf || (0 <= t && t <= 3)))
return false;
}
// confirm that all Q inputs are 0xf (const zero input),
// or none of them are 0xf
int q_and = 1;
int q_or = 0;
for (int i = 0; i < 4; i++){
int qx_is_0xf = ((sw_mux >> (8 * i + 4)) & 0xf) == 0xf;
q_and &= qx_is_0xf;
q_or |= qx_is_0xf;
}
if (q_and || !q_or){ // OK
int hw_mux_value = 0;
for (int i = 0; i < 8; i++){
int t = (sw_mux >> (4 * i)) & 0x3;
hw_mux_value |= t << (2 * i + 4);
}
if (q_and)
hw_mux_value |= 0x8; // all Q's zero
*hw_mux_ptr = hw_mux_value;
return true;
}
else
return false;
}
bool
usrp_standard_rx::set_mux (int mux)
{
if (!map_sw_mux_to_hw_mux (mux, &d_hw_mux))
return false;
// fprintf (stderr, "sw_mux = 0x%08x hw_mux = 0x%08x\n", mux, d_hw_mux);
d_sw_mux = mux;
return write_hw_mux_reg ();
}
bool
usrp_standard_rx::write_hw_mux_reg ()
{
bool s = disable_rx ();
bool ok = _write_fpga_reg (FR_RX_MUX, d_hw_mux | d_nchan);
restore_rx (s);
return ok;
}
int
usrp_standard_rx::determine_rx_mux_value(const usrp_subdev_spec &ss)
{
/*
Determine appropriate Rx mux value as a function of the subdevice choosen and the
characteristics of the respective daughterboard.
@param u: instance of USRP source
@param subdev_spec: return value from subdev option parser.
@type subdev_spec: (side, subdev), where side is 0 or 1 and subdev is 0 or 1
@returns: the Rx mux value
Figure out which A/D's to connect to the DDC.
Each daughterboard consists of 1 or 2 subdevices. (At this time,
all but the Basic Rx have a single subdevice. The Basic Rx
has two independent channels, treated as separate subdevices).
subdevice 0 of a daughterboard may use 1 or 2 A/D's. We determine this
by checking the is_quadrature() method. If subdevice 0 uses only a single
A/D, it's possible that the daughterboard has a second subdevice, subdevice 1,
and it uses the second A/D.
If the card uses only a single A/D, we wire a zero into the DDC Q input.
(side, 0) says connect only the A/D's used by subdevice 0 to the DDC.
(side, 1) says connect only the A/D's used by subdevice 1 to the DDC.
*/
struct truth_table_element
{
int d_side;
int d_uses;
bool d_swap_iq;
unsigned int d_mux_val;
truth_table_element(int side, unsigned int uses, bool swap_iq, unsigned int mux_val=0)
: d_side(side), d_uses(uses), d_swap_iq(swap_iq), d_mux_val(mux_val){}
bool operator==(const truth_table_element &in)
{
return (d_side == in.d_side && d_uses == in.d_uses && d_swap_iq == in.d_swap_iq);
}
unsigned int mux_val() { return d_mux_val; }
};
if (!is_valid(ss))
throw std::invalid_argument("subdev_spec");
// This is a tuple of length 1 or 2 containing the subdevice
// classes for the selected side.
std::vector<db_base_sptr> db = this->db(ss.side);
unsigned int uses;
// compute bitmasks of used A/D's
if(db[ss.subdev]->is_quadrature())
uses = 0x3; // uses A/D 0 and 1
else if (ss.subdev == 0)
uses = 0x1; // uses A/D 0 only
else if(ss.subdev == 1)
uses = 0x2; // uses A/D 1 only
else
uses = 0x0; // uses no A/D (doesn't exist)
if(uses == 0){
throw std::runtime_error("Determine RX Mux Error");
}
bool swap_iq = db[ss.subdev]->i_and_q_swapped();
truth_table_element truth_table[8] = {
// (side, uses, swap_iq) : mux_val
truth_table_element(0, 0x1, false, 0xf0f0f0f0),
truth_table_element(0, 0x2, false, 0xf0f0f0f1),
truth_table_element(0, 0x3, false, 0x00000010),
truth_table_element(0, 0x3, true, 0x00000001),
truth_table_element(1, 0x1, false, 0xf0f0f0f2),
truth_table_element(1, 0x2, false, 0xf0f0f0f3),
truth_table_element(1, 0x3, false, 0x00000032),
truth_table_element(1, 0x3, true, 0x00000023)
};
size_t nelements = sizeof(truth_table)/sizeof(truth_table[0]);
truth_table_element target(ss.side, uses, swap_iq, 0);
size_t i;
for(i = 0; i < nelements; i++){
if (truth_table[i] == target)
return truth_table[i].mux_val();
}
throw std::runtime_error("internal error");
}
int
usrp_standard_rx::determine_rx_mux_value(const usrp_subdev_spec &ss_a, const usrp_subdev_spec &ss_b)
{
std::vector<db_base_sptr> db_a = this->db(ss_a.side);
std::vector<db_base_sptr> db_b = this->db(ss_b.side);
if (db_a[ss_a.subdev]->is_quadrature() != db_b[ss_b.subdev]->is_quadrature()){
throw std::runtime_error("Cannot compute dual mux when mixing quadrature and non-quadrature subdevices");
}
int mux_a = determine_rx_mux_value(ss_a);
int mux_b = determine_rx_mux_value(ss_b);
//move the lower byte of the mux b into the second byte of the mux a
return ((mux_b & 0xff) << 8) | (mux_a & 0xffff00ff);
}
bool
usrp_standard_rx::set_rx_freq (int channel, double freq)
{
if (channel < 0 || channel > MAX_CHAN)
return false;
unsigned int v =
compute_freq_control_word_fpga (adc_rate(),
freq, &d_rx_freq[channel],
d_verbose);
return _write_fpga_reg (FR_RX_FREQ_0 + channel, v);
}
unsigned int
usrp_standard_rx::decim_rate () const { return d_decim_rate; }
int
usrp_standard_rx::nchannels () const { return d_nchan; }
int
usrp_standard_rx::mux () const { return d_sw_mux; }
double
usrp_standard_rx::rx_freq (int channel) const
{
if (channel < 0 || channel >= MAX_CHAN)
return 0;
return d_rx_freq[channel];
}
bool
usrp_standard_rx::set_fpga_mode (int mode)
{
return _write_fpga_reg (FR_MODE, mode);
}
bool
usrp_standard_rx::set_ddc_phase(int channel, int phase)
{
if (channel < 0 || channel >= MAX_CHAN)
return false;
return _write_fpga_reg(FR_RX_PHASE_0 + channel, phase);
}
// To avoid quiet failures, check for things that our code cares about.
static bool
rx_format_is_valid(unsigned int format)
{
int width = usrp_standard_rx::format_width(format);
int want_q = usrp_standard_rx::format_want_q(format);
if (!(width == 8 || width == 16)) // FIXME add other widths when valid
return false;
if (!want_q) // FIXME remove check when the rest of the code can handle I only
return false;
return true;
}
bool
usrp_standard_rx::set_format(unsigned int format)
{
if (!rx_format_is_valid(format))
return false;
return _write_fpga_reg(FR_RX_FORMAT, format);
}
unsigned int
usrp_standard_rx::format() const
{
return d_fpga_shadows[FR_RX_FORMAT];
}
// ----------------------------------------------------------------
unsigned int
usrp_standard_rx::make_format(int width, int shift, bool want_q, bool bypass_halfband)
{
unsigned int format =
(((width << bmFR_RX_FORMAT_WIDTH_SHIFT) & bmFR_RX_FORMAT_WIDTH_MASK)
| ((shift << bmFR_RX_FORMAT_SHIFT_SHIFT) & bmFR_RX_FORMAT_SHIFT_MASK));
if (want_q)
format |= bmFR_RX_FORMAT_WANT_Q;
if (bypass_halfband)
format |= bmFR_RX_FORMAT_BYPASS_HB;
return format;
}
int
usrp_standard_rx::format_width(unsigned int format)
{
return (format & bmFR_RX_FORMAT_WIDTH_MASK) >> bmFR_RX_FORMAT_WIDTH_SHIFT;
}
int
usrp_standard_rx::format_shift(unsigned int format)
{
return (format & bmFR_RX_FORMAT_SHIFT_MASK) >> bmFR_RX_FORMAT_SHIFT_SHIFT;
}
bool
usrp_standard_rx::format_want_q(unsigned int format)
{
return (format & bmFR_RX_FORMAT_WANT_Q) != 0;
}
bool
usrp_standard_rx::format_bypass_halfband(unsigned int format)
{
return (format & bmFR_RX_FORMAT_BYPASS_HB) != 0;
}
bool
usrp_standard_rx::tune(int chan, db_base_sptr db, double target_freq, usrp_tune_result *result)
{
ddc_control dxc(this, chan);
return tune_a_helper(db, target_freq, converter_rate(), dxc, result);
}
//////////////////////////////////////////////////////////////////
// tx data is timed to CLKOUT1 (64 MHz)
// interpolate 4x
// fine modulator enabled
static unsigned char tx_regs_use_nco[] = {
REG_TX_IF, (TX_IF_USE_CLKOUT1
| TX_IF_I_FIRST
| TX_IF_2S_COMP
| TX_IF_INTERLEAVED),
REG_TX_DIGITAL, (TX_DIGITAL_2_DATA_PATHS
| TX_DIGITAL_INTERPOLATE_4X)
};
static int
real_tx_mux_value (int mux, int nchan)
{
if (mux != -1)
return mux;
switch (nchan){
case 1:
return 0x0098;
case 2:
return 0xba98;
default:
assert (0);
}
}
usrp_standard_tx::usrp_standard_tx (int which_board,
unsigned int interp_rate,
int nchan, int mux,
int fusb_block_size, int fusb_nblocks,
const std::string fpga_filename,
const std::string firmware_filename
)
: usrp_basic_tx (which_board, fusb_block_size, fusb_nblocks, fpga_filename, firmware_filename),
usrp_standard_common(this),
d_sw_mux (0x8), d_hw_mux (0x81)
{
if (!usrp_9862_write_many_all (d_udh, tx_regs_use_nco, sizeof (tx_regs_use_nco))){
fprintf (stderr, "usrp_standard_tx: failed to init AD9862 TX regs\n");
throw std::runtime_error ("usrp_standard_tx::ctor");
}
if (!set_nchannels (nchan)){
fprintf (stderr, "usrp_standard_tx: set_nchannels failed\n");
throw std::runtime_error ("usrp_standard_tx::ctor");
}
if (!set_interp_rate (interp_rate)){
fprintf (stderr, "usrp_standard_tx: set_interp_rate failed\n");
throw std::runtime_error ("usrp_standard_tx::ctor");
}
if (!set_mux (real_tx_mux_value (mux, nchan))){
fprintf (stderr, "usrp_standard_tx: set_mux failed\n");
throw std::runtime_error ("usrp_standard_tx::ctor");
}
for (int i = 0; i < MAX_CHAN; i++){
d_tx_modulator_shadow[i] = (TX_MODULATOR_DISABLE_NCO
| TX_MODULATOR_COARSE_MODULATION_NONE);
d_coarse_mod[i] = CM_OFF;
set_tx_freq (i, 0);
}
}
usrp_standard_tx::~usrp_standard_tx ()
{
// fprintf(stderr, "\nusrp_standard_tx: dtor\n");
}
bool
usrp_standard_tx::start ()
{
if (!usrp_basic_tx::start ())
return false;
// add our code here
return true;
}
bool
usrp_standard_tx::stop ()
{
bool ok = usrp_basic_tx::stop ();
// add our code here
return ok;
}
usrp_standard_tx_sptr
usrp_standard_tx::make (int which_board,
unsigned int interp_rate,
int nchan, int mux,
int fusb_block_size, int fusb_nblocks,
const std::string fpga_filename,
const std::string firmware_filename
)
{
try {
usrp_standard_tx_sptr u =
usrp_standard_tx_sptr(new usrp_standard_tx(which_board, interp_rate, nchan, mux,
fusb_block_size, fusb_nblocks,
fpga_filename, firmware_filename));
u->init_db(u);
return u;
}
catch (...){
return usrp_standard_tx_sptr();
}
}
bool
usrp_standard_tx::set_interp_rate (unsigned int rate)
{
// fprintf (stderr, "usrp_standard_tx::set_interp_rate\n");
if ((rate & 0x3) || rate < 4 || rate > 512){
fprintf (stderr, "usrp_standard_tx::set_interp_rate: rate must be in [4, 512] and a multiple of 4.\n");
return false;
}
d_interp_rate = rate;
set_usb_data_rate ((dac_rate () / rate * nchannels ())
* (2 * sizeof (short)));
// We're using the interp by 4 feature of the 9862 so that we can
// use its fine modulator. Thus, we reduce the FPGA's interpolation rate
// by a factor of 4.
bool s = disable_tx ();
bool ok = _write_fpga_reg (FR_INTERP_RATE, d_interp_rate/4 - 1);
restore_tx (s);
return ok;
}
bool
usrp_standard_tx::set_nchannels (int nchan)
{
if (!(nchan == 1 || nchan == 2))
return false;
if (nchan > nducs())
return false;
d_nchan = nchan;
return write_hw_mux_reg ();
}
bool
usrp_standard_tx::set_mux (int mux)
{
d_sw_mux = mux;
d_hw_mux = mux << 4;
return write_hw_mux_reg ();
}
bool
usrp_standard_tx::write_hw_mux_reg ()
{
bool s = disable_tx ();
bool ok = _write_fpga_reg (FR_TX_MUX, d_hw_mux | d_nchan);
restore_tx (s);
return ok;
}
int
usrp_standard_tx::determine_tx_mux_value(const usrp_subdev_spec &ss)
{
/*
Determine appropriate Tx mux value as a function of the subdevice choosen.
@param u: instance of USRP source
@param subdev_spec: return value from subdev option parser.
@type subdev_spec: (side, subdev), where side is 0 or 1 and subdev is 0
@returns: the Rx mux value
This is simpler than the rx case. Either you want to talk
to side A or side B. If you want to talk to both sides at once,
determine the value manually.
*/
if (!is_valid(ss))
throw std::invalid_argument("subdev_spec");
std::vector<db_base_sptr> db = this->db(ss.side);
if(db[ss.subdev]->i_and_q_swapped()) {
unsigned int mask[2] = {0x0089, 0x8900};
return mask[ss.side];
}
else {
unsigned int mask[2] = {0x0098, 0x9800};
return mask[ss.side];
}
}
int
usrp_standard_tx::determine_tx_mux_value(const usrp_subdev_spec &ss_a, const usrp_subdev_spec &ss_b)
{
if (ss_a.side == ss_b.side && ss_a.subdev == ss_b.subdev){
throw std::runtime_error("Cannot compute dual mux, repeated subdevice");
}
int mux_a = determine_tx_mux_value(ss_a);
//Get the mux b:
// DAC0 becomes DAC2
// DAC1 becomes DAC3
unsigned int mask[2] = {0x0022, 0x2200};
int mux_b = determine_tx_mux_value(ss_b) + mask[ss_b.side];
return mux_b | mux_a;
}
#ifdef USE_FPGA_TX_CORDIC
bool
usrp_standard_tx::set_tx_freq (int channel, double freq)
{
if (channel < 0 || channel >= MAX_CHAN)
return false;
// This assumes we're running the 4x on-chip interpolator.
unsigned int v =
compute_freq_control_word_fpga (dac_rate () / 4,
freq, &d_tx_freq[channel],
d_verbose);
return _write_fpga_reg (FR_TX_FREQ_0 + channel, v);
}
#else
bool
usrp_standard_tx::set_tx_freq (int channel, double freq)
{
if (channel < 0 || channel >= MAX_CHAN)
return false;
// split freq into fine and coarse components
coarse_mod_t cm;
double coarse;
double coarse_freq_1 = dac_rate () / 8; // First coarse frequency
double coarse_freq_2 = dac_rate () / 4; // Second coarse frequency
double coarse_limit_1 = coarse_freq_1 / 2; // Midpoint of [0 , freq1] range
double coarse_limit_2 = (coarse_freq_1 + coarse_freq_2) / 2; // Midpoint of [freq1 , freq2] range
double high_limit = (double)44e6/128e6*dac_rate (); // Highest meaningful frequency
if (freq < -high_limit) // too low
return false;
else if (freq < -coarse_limit_2){ // For 64MHz: [-44, -24)
cm = CM_NEG_FDAC_OVER_4;
coarse = -coarse_freq_2;
}
else if (freq < -coarse_limit_1){ // For 64MHz: [-24, -8)
cm = CM_NEG_FDAC_OVER_8;
coarse = -coarse_freq_1;
}
else if (freq < coarse_limit_1){ // For 64MHz: [-8, 8)
cm = CM_OFF;
coarse = 0;
}
else if (freq < coarse_limit_2){ // For 64MHz: [8, 24)
cm = CM_POS_FDAC_OVER_8;
coarse = coarse_freq_1;
}
else if (freq <= high_limit){ // For 64MHz: [24, 44]
cm = CM_POS_FDAC_OVER_4;
coarse = coarse_freq_2;
}
else // too high
return false;
set_coarse_modulator (channel, cm); // set bits in d_tx_modulator_shadow
double fine = freq - coarse;
// Compute fine tuning word...
// This assumes we're running the 4x on-chip interpolator.
// (This is required to use the fine modulator.)
unsigned int v =
compute_freq_control_word_9862 (dac_rate () / 4,
fine, &d_tx_freq[channel], d_verbose);
d_tx_freq[channel] += coarse; // adjust actual
unsigned char high, mid, low;
high = (v >> 16) & 0xff;
mid = (v >> 8) & 0xff;
low = (v >> 0) & 0xff;
bool ok = true;
// write the fine tuning word
ok &= _write_9862 (channel, REG_TX_NCO_FTW_23_16, high);
ok &= _write_9862 (channel, REG_TX_NCO_FTW_15_8, mid);
ok &= _write_9862 (channel, REG_TX_NCO_FTW_7_0, low);
d_tx_modulator_shadow[channel] |= TX_MODULATOR_ENABLE_NCO;
if (fine < 0)
d_tx_modulator_shadow[channel] |= TX_MODULATOR_NEG_FINE_TUNE;
else
d_tx_modulator_shadow[channel] &= ~TX_MODULATOR_NEG_FINE_TUNE;
ok &=_write_9862 (channel, REG_TX_MODULATOR, d_tx_modulator_shadow[channel]);
return ok;
}
#endif
bool
usrp_standard_tx::set_coarse_modulator (int channel, coarse_mod_t cm)
{
if (channel < 0 || channel >= MAX_CHAN)
return false;
switch (cm){
case CM_NEG_FDAC_OVER_4:
d_tx_modulator_shadow[channel] &= ~TX_MODULATOR_CM_MASK;
d_tx_modulator_shadow[channel] |= TX_MODULATOR_COARSE_MODULATION_F_OVER_4;
d_tx_modulator_shadow[channel] |= TX_MODULATOR_NEG_COARSE_TUNE;
break;
case CM_NEG_FDAC_OVER_8:
d_tx_modulator_shadow[channel] &= ~TX_MODULATOR_CM_MASK;
d_tx_modulator_shadow[channel] |= TX_MODULATOR_COARSE_MODULATION_F_OVER_8;
d_tx_modulator_shadow[channel] |= TX_MODULATOR_NEG_COARSE_TUNE;
break;
case CM_OFF:
d_tx_modulator_shadow[channel] &= ~TX_MODULATOR_CM_MASK;
break;
case CM_POS_FDAC_OVER_8:
d_tx_modulator_shadow[channel] &= ~TX_MODULATOR_CM_MASK;
d_tx_modulator_shadow[channel] |= TX_MODULATOR_COARSE_MODULATION_F_OVER_8;
break;
case CM_POS_FDAC_OVER_4:
d_tx_modulator_shadow[channel] &= ~TX_MODULATOR_CM_MASK;
d_tx_modulator_shadow[channel] |= TX_MODULATOR_COARSE_MODULATION_F_OVER_4;
break;
default:
return false;
}
d_coarse_mod[channel] = cm;
return true;
}
unsigned int
usrp_standard_tx::interp_rate () const { return d_interp_rate; }
int
usrp_standard_tx::nchannels () const { return d_nchan; }
int
usrp_standard_tx::mux () const { return d_sw_mux; }
double
usrp_standard_tx::tx_freq (int channel) const
{
if (channel < 0 || channel >= MAX_CHAN)
return 0;
return d_tx_freq[channel];
}
usrp_standard_tx::coarse_mod_t
usrp_standard_tx::coarse_modulator (int channel) const
{
if (channel < 0 || channel >= MAX_CHAN)
return CM_OFF;
return d_coarse_mod[channel];
}
bool
usrp_standard_tx::tune(int chan, db_base_sptr db, double target_freq, usrp_tune_result *result)
{
duc_control dxc(this, chan);
return tune_a_helper(db, target_freq, converter_rate(), dxc, result);
}