libusrp/limbo/inband/qa_inband_usrp_server.cc

1576 lines
44 KiB
C++

/* -*- c++ -*- */
/*
* Copyright 2007,2008 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <usrp_inband_usb_packet.h>
#include <qa_inband_usrp_server.h>
#include <cppunit/TestAssert.h>
#include <stdio.h>
#include <usrp_server.h>
#include <mblock/mblock.h>
#include <mblock/runtime.h>
#include <mblock/protocol_class.h>
#include <mblock/class_registry.h>
#include <vector>
#include <iostream>
#include <pmt.h>
#include <symbols_usrp_server_cs.h>
#include <symbols_usrp_tx.h>
#include <symbols_usrp_rx.h>
#include <symbols_usrp_channel.h>
#include <symbols_usrp_low_level_cs.h>
typedef usrp_inband_usb_packet transport_pkt; // makes conversion to gigabit easy
static bool verbose = false;
static pmt_t s_timeout = pmt_intern("%timeout");
// ----------------------------------------------------------------------------------------------
class qa_alloc_top : public mb_mblock
{
mb_port_sptr d_tx;
mb_port_sptr d_rx;
mb_port_sptr d_cs;
long d_nmsgs_to_recv;
long d_nrecvd;
long d_max_capacity;
long d_ntx_chan, d_nrx_chan;
long d_nstatus;
long d_nstatus_to_recv;
public:
qa_alloc_top(mb_runtime *runtime, const std::string &instance_name, pmt_t user_arg);
~qa_alloc_top();
void initial_transition();
void handle_message(mb_message_sptr msg);
protected:
void check_message(mb_message_sptr msg);
void run_tests();
};
qa_alloc_top::qa_alloc_top(mb_runtime *runtime, const std::string &instance_name, pmt_t user_arg)
: mb_mblock(runtime, instance_name, user_arg)
{
d_nrecvd=0;
d_nmsgs_to_recv = 6;
d_nstatus=0;
d_nstatus_to_recv = 50;
d_rx = define_port("rx0", "usrp-rx", false, mb_port::INTERNAL);
d_tx = define_port("tx0", "usrp-tx", false, mb_port::INTERNAL);
d_cs = define_port("cs", "usrp-server-cs", false, mb_port::INTERNAL);
// Use the stub with the usrp_server
pmt_t usrp_server_dict = pmt_make_dict();
pmt_dict_set(usrp_server_dict, pmt_intern("fake-usrp"),PMT_T);
// Test the TX side
define_component("server", "usrp_server", usrp_server_dict);
connect("self", "tx0", "server", "tx0");
connect("self", "rx0", "server", "rx0");
connect("self", "cs", "server", "cs");
}
qa_alloc_top::~qa_alloc_top(){}
void
qa_alloc_top::initial_transition()
{
// Allocations should fail before open
d_tx->send(s_cmd_allocate_channel,
pmt_list2(pmt_list2(s_response_allocate_channel,
s_err_usrp_not_opened),
pmt_from_long(1)));
d_rx->send(s_cmd_allocate_channel,
pmt_list2(pmt_list2(s_response_allocate_channel,
s_err_usrp_not_opened),
pmt_from_long(1)));
// Retrieve information about the USRP, then run tests
d_cs->send(s_cmd_open,
pmt_list2(pmt_list2(s_response_open, PMT_T),
pmt_from_long(0)));
d_cs->send(s_cmd_max_capacity,
pmt_list1(pmt_list2(s_response_max_capacity, PMT_T)));
d_cs->send(s_cmd_ntx_chan,
pmt_list1(pmt_list2(s_response_ntx_chan, PMT_T)));
d_cs->send(s_cmd_nrx_chan,
pmt_list1(pmt_list2(s_response_nrx_chan,PMT_T)));
}
void
qa_alloc_top::run_tests()
{
if(verbose)
std::cout << "[qa_alloc_top] Starting tests...\n";
// should be able to allocate 1 byte
d_tx->send(s_cmd_allocate_channel,
pmt_list2(PMT_T, pmt_from_long(1)));
// should not be able to allocate max capacity after 100 bytes were allocated
d_tx->send(s_cmd_allocate_channel,
pmt_list2(s_err_requested_capacity_unavailable,
pmt_from_long(d_max_capacity)));
// keep allocating a little more until all of the channels are used and test
// the error response we start at 1 since we've already allocated 1 channel
for(int i=1; i < d_ntx_chan; i++) {
if(verbose)
std::cout << "[qa_alloc_top] Sent allocation request...\n";
d_tx->send(s_cmd_allocate_channel, pmt_list2(PMT_T, pmt_from_long(1)));
d_nmsgs_to_recv++;
}
// No more channels after allocating all of them is expected
d_tx->send(s_cmd_allocate_channel,
pmt_list2(s_err_channel_unavailable,
pmt_from_long(1)));
// test out the same on the RX side
d_rx->send(s_cmd_allocate_channel, pmt_list2(PMT_T, pmt_from_long(1)));
d_rx->send(s_cmd_allocate_channel,
pmt_list2(s_err_requested_capacity_unavailable,
pmt_from_long(d_max_capacity)));
for(int i=1; i < d_nrx_chan; i++) {
d_rx->send(s_cmd_allocate_channel, pmt_list2(PMT_T, pmt_from_long(1)));
d_nmsgs_to_recv++;
}
d_rx->send(s_cmd_allocate_channel,
pmt_list2(s_err_channel_unavailable,
pmt_from_long(1)));
// when all is said and done, there should be d_ntx_chan+d_ntx_chan bytes
// allocated
d_cs->send(s_cmd_current_capacity_allocation,
pmt_list1(pmt_from_long(d_ntx_chan+d_nrx_chan)));
}
void
qa_alloc_top::handle_message(mb_message_sptr msg)
{
pmt_t data = msg->data();
if ((pmt_eq(msg->port_id(), d_tx->port_symbol())
|| pmt_eq(msg->port_id(), d_rx->port_symbol()))
&& pmt_eq(msg->signal(), s_response_allocate_channel))
check_message(msg);
if (pmt_eq(msg->port_id(), d_cs->port_symbol())) {
if(pmt_eq(msg->signal(), s_response_max_capacity)) {
d_max_capacity = pmt_to_long(pmt_nth(2, data));
if(verbose)
std::cout << "[qa_alloc_top] USRP has max capacity of "
<< d_max_capacity << "\n";
}
else if(pmt_eq(msg->signal(), s_response_ntx_chan)) {
d_ntx_chan = pmt_to_long(pmt_nth(2, data));
if(verbose)
std::cout << "[qa_alloc_top] USRP tx channels: "
<< d_ntx_chan << "\n";
}
else if(pmt_eq(msg->signal(), s_response_nrx_chan)) {
d_nrx_chan = pmt_to_long(pmt_nth(2, data));
if(verbose)
std::cout << "[qa_alloc_top] USRP rx channels: "
<< d_nrx_chan << "\n";
}
else if(pmt_eq(msg->signal(), s_response_current_capacity_allocation)) {
check_message(msg);
}
d_nstatus++;
check_message(msg);
if(d_nstatus==d_nstatus_to_recv)
run_tests();
}
}
void
qa_alloc_top::check_message(mb_message_sptr msg)
{
pmt_t data = msg->data();
pmt_t event = msg->signal();
pmt_t expected = pmt_nth(0, data);
pmt_t status = pmt_nth(1, data);
pmt_t e_event = pmt_nth(0, expected);
pmt_t e_status = pmt_nth(1, expected);
d_nrecvd++;
if(!pmt_eqv(e_status, status) || !pmt_eqv(e_event, event)) {
if(verbose)
std::cout << "Got: " << status << " Expected: " << e_status << "\n";
shutdown_all(PMT_F);
return;
} else {
if(verbose)
std::cout << "[qa_alloc_top] Received expected response for message "
<< d_nrecvd << " (" << event << ")\n";
}
if(d_nrecvd == d_nmsgs_to_recv)
shutdown_all(PMT_T);
}
REGISTER_MBLOCK_CLASS(qa_alloc_top);
// ----------------------------------------------------------------------------------------------
class qa_dealloc_top : public mb_mblock
{
mb_port_sptr d_tx;
mb_port_sptr d_rx;
mb_port_sptr d_cs;
long d_max_capacity;
long d_ntx_chan, d_nrx_chan;
long d_nstatus;
long d_nstatus_to_recv;
long d_nalloc_to_recv;
long d_nalloc_recvd;
long d_ndealloc_to_recv;
long d_ndealloc_recvd;
std::vector<long> d_tx_chans;
std::vector<long> d_rx_chans;
public:
qa_dealloc_top(mb_runtime *runtime, const std::string &instance_name, pmt_t user_arg);
~qa_dealloc_top();
void initial_transition();
void handle_message(mb_message_sptr msg);
protected:
void check_allocation(mb_message_sptr msg);
void check_deallocation(mb_message_sptr msg);
void allocate_max();
void deallocate_all();
};
qa_dealloc_top::qa_dealloc_top(mb_runtime *runtime, const std::string &instance_name, pmt_t user_arg)
: mb_mblock(runtime, instance_name, user_arg)
{
d_ndealloc_recvd=0;
d_ndealloc_to_recv = 0;
d_nalloc_recvd=0;
d_nalloc_to_recv = 0; // auto-set
d_nstatus=0;
d_nstatus_to_recv = 4;
d_rx = define_port("rx0", "usrp-rx", false, mb_port::INTERNAL);
d_tx = define_port("tx0", "usrp-tx", false, mb_port::INTERNAL);
d_cs = define_port("cs", "usrp-server-cs", false, mb_port::INTERNAL);
// Use the stub with the usrp_server
pmt_t usrp_server_dict = pmt_make_dict();
pmt_dict_set(usrp_server_dict, pmt_intern("fake-usrp"),PMT_T);
// Test the TX side
define_component("server", "usrp_server", usrp_server_dict);
connect("self", "tx0", "server", "tx0");
connect("self", "rx0", "server", "rx0");
connect("self", "cs", "server", "cs");
}
qa_dealloc_top::~qa_dealloc_top(){}
void
qa_dealloc_top::initial_transition()
{
if(verbose)
std::cout << "[qa_dealloc_top] Initializing...\n";
// Retrieve information about the USRP, then run tests
d_cs->send(s_cmd_open,
pmt_list2(pmt_list2(s_response_open,PMT_T),
pmt_from_long(0)));
d_cs->send(s_cmd_max_capacity,
pmt_list1(pmt_list2(s_response_max_capacity,PMT_T)));
d_cs->send(s_cmd_ntx_chan,
pmt_list1(pmt_list2(s_response_ntx_chan,PMT_T)));
d_cs->send(s_cmd_nrx_chan,
pmt_list1(pmt_list2(s_response_nrx_chan,PMT_T)));
}
void
qa_dealloc_top::allocate_max()
{
// Keep allocating until we hit the maximum number of channels
for(int i=0; i < d_ntx_chan; i++) {
d_tx->send(s_cmd_allocate_channel,
pmt_list2(pmt_list2(s_response_allocate_channel,PMT_T),
pmt_from_long(1))); // 1 byte is good enough
d_nalloc_to_recv++;
}
for(int i=0; i < d_nrx_chan; i++) {
d_rx->send(s_cmd_allocate_channel,
pmt_list2(pmt_list2(s_response_allocate_channel,PMT_T),
pmt_from_long(1)));
d_nalloc_to_recv++;
}
}
void
qa_dealloc_top::deallocate_all() {
// Deallocate all of the channels that were allocated from allocate_max()
for(int i=0; i < (int)d_tx_chans.size(); i++) {
if(verbose)
std::cout << "[qa_dealloc_top] Trying to dealloc TX "
<< d_tx_chans[i] << std::endl;
d_tx->send(s_cmd_deallocate_channel,
pmt_list2(pmt_list2(s_response_deallocate_channel,PMT_T),
pmt_from_long(d_tx_chans[i])));
d_ndealloc_to_recv++;
}
// Deallocate the RX side now
for(int i=0; i < (int)d_rx_chans.size(); i++) {
if(verbose)
std::cout << "[qa_dealloc_top] Trying to dealloc RX "
<< d_tx_chans[i] << std::endl;
d_rx->send(s_cmd_deallocate_channel,
pmt_list2(pmt_list2(s_response_deallocate_channel,PMT_T),
pmt_from_long(d_rx_chans[i])));
d_ndealloc_to_recv++;
}
// Should get permission denied errors trying to re-dealloc the channels, as
// we no longer have permission to them after deallocating
for(int i=0; i < (int)d_tx_chans.size(); i++) {
d_tx->send(s_cmd_deallocate_channel,
pmt_list2(pmt_list2(s_response_deallocate_channel,
s_err_channel_permission_denied),
pmt_from_long(d_tx_chans[i])));
d_ndealloc_to_recv++;
}
// Same for RX
for(int i=0; i < (int)d_rx_chans.size(); i++) {
d_rx->send(s_cmd_deallocate_channel,
pmt_list2(pmt_list2(s_response_deallocate_channel,
s_err_channel_permission_denied),
pmt_from_long(d_rx_chans[i])));
d_ndealloc_to_recv++;
}
// Try to deallocate a channel that doesn't exist on both sides, the last
// element in the vectors is the highest channel number, so we take that plus
// 1
d_ndealloc_to_recv+=2;
d_tx->send(s_cmd_deallocate_channel,
pmt_list2(pmt_list2(s_response_deallocate_channel,
s_err_channel_invalid),
pmt_from_long(d_rx_chans.back()+1)));
d_rx->send(s_cmd_deallocate_channel,
pmt_list2(pmt_list2(s_response_deallocate_channel,
s_err_channel_invalid),
pmt_from_long(d_rx_chans.back()+1)));
// The used capacity should be back to 0 now that we've deallocated everything
d_cs->send(s_cmd_current_capacity_allocation,
pmt_list1(pmt_list2(s_response_current_capacity_allocation,
PMT_T)));
}
void
qa_dealloc_top::handle_message(mb_message_sptr msg)
{
pmt_t data = msg->data();
pmt_t event = msg->signal();
if(pmt_eq(event, pmt_intern("%shutdown")))
return;
pmt_t expected = pmt_nth(0, data);
pmt_t status = pmt_nth(1, data);
pmt_t e_event = pmt_nth(0, expected);
pmt_t e_status = pmt_nth(1, expected);
if(!pmt_eqv(e_status, status) || !pmt_eqv(e_event, event)) {
if(verbose)
std::cout << "Got: " << status << " Expected: " << e_status << "\n";
shutdown_all(PMT_F);
return;
} else {
if(verbose)
std::cout << "[qa_alloc_top] Received expected response for message "
<< d_ndealloc_recvd
<< " (" << event << ")\n";
}
if (pmt_eq(msg->port_id(), d_tx->port_symbol())
|| pmt_eq(msg->port_id(), d_rx->port_symbol())) {
if(pmt_eq(msg->signal(), s_response_allocate_channel)) {
check_allocation(msg);
}
}
if (pmt_eq(msg->port_id(), d_cs->port_symbol())) {
if(pmt_eq(msg->signal(), s_response_max_capacity)) {
d_max_capacity = pmt_to_long(pmt_nth(2, data));
}
else if(pmt_eq(msg->signal(), s_response_ntx_chan)) {
d_ntx_chan = pmt_to_long(pmt_nth(2, data));
}
else if(pmt_eq(msg->signal(), s_response_nrx_chan)) {
d_nrx_chan = pmt_to_long(pmt_nth(2, data));
}
else if(pmt_eq(msg->signal(), s_response_current_capacity_allocation)) {
// the final command is a capacity check which should be 0, then we
// shutdown
pmt_t expected_result = pmt_from_long(0);
pmt_t result = pmt_nth(2, data);
if(pmt_eqv(expected_result, result)) {
shutdown_all(PMT_T);
return;
} else {
shutdown_all(PMT_F);
return;
}
}
d_nstatus++;
if(d_nstatus==d_nstatus_to_recv)
allocate_max();
}
}
void
qa_dealloc_top::check_allocation(mb_message_sptr msg)
{
pmt_t data = msg->data();
pmt_t event = msg->signal();
pmt_t expected = pmt_nth(0, data);
pmt_t status = pmt_nth(1, data);
pmt_t channel = pmt_nth(2, data);
d_nalloc_recvd++;
if(!pmt_eqv(status, PMT_T)) {
shutdown_all(PMT_F);
return;
} else {
// store all of the allocate channel numbers
if(pmt_eq(msg->port_id(), d_tx->port_symbol()))
d_tx_chans.push_back(pmt_to_long(channel));
if(pmt_eq(msg->port_id(), d_rx->port_symbol()))
d_rx_chans.push_back(pmt_to_long(channel));
}
if(d_nalloc_recvd == d_nalloc_to_recv) {
if(verbose) {
std::cout << "[qa_dealloc_top] Allocated TX channels: ";
for(int i=0; i < (int)d_tx_chans.size(); i++)
std::cout << d_tx_chans[i] << " ";
std::cout << "\n[qa_dealloc_top] Allocated RX channels: ";
for(int i=0; i < (int)d_rx_chans.size(); i++)
std::cout << d_rx_chans[i] << " ";
std::cout << "\n";
}
deallocate_all(); // once we've allocated all of our channels, try to
// dealloc them
}
}
REGISTER_MBLOCK_CLASS(qa_dealloc_top);
// ----------------------------------------------------------------------------------------------
class qa_open_close_top : public mb_mblock
{
mb_port_sptr d_cs;
long d_max_capacity;
long d_nmsg_to_recv;
long d_nmsg_recvd;
public:
qa_open_close_top(mb_runtime *runtime, const std::string &instance_name, pmt_t user_arg);
~qa_open_close_top();
void initial_transition();
void handle_message(mb_message_sptr msg);
protected:
void check_cs(mb_message_sptr msg);
void run_tests();
};
qa_open_close_top::qa_open_close_top(mb_runtime *runtime, const std::string &instance_name, pmt_t user_arg)
: mb_mblock(runtime, instance_name, user_arg)
{
d_nmsg_to_recv=7;
d_nmsg_recvd=0;
d_cs = define_port("cs", "usrp-server-cs", false, mb_port::INTERNAL);
// Use the stub with the usrp_server
pmt_t usrp_server_dict = pmt_make_dict();
pmt_dict_set(usrp_server_dict, pmt_intern("fake-usrp"),PMT_T);
// Test the TX side
define_component("server", "usrp_server", usrp_server_dict);
connect("self", "cs", "server", "cs");
}
qa_open_close_top::~qa_open_close_top(){}
void
qa_open_close_top::initial_transition()
{
run_tests();
}
void
qa_open_close_top::run_tests()
{
// std::cout << "[qa_open_close_top] Starting tests\n";
// A close before an open should fail
d_cs->send(s_cmd_close, pmt_list1(pmt_list2(s_response_close,
s_err_usrp_already_closed)));
// Perform an open, and a second open which should fail
d_cs->send(s_cmd_open,
pmt_list2(pmt_list2(s_response_open,PMT_T),
pmt_from_long(0)));
d_cs->send(s_cmd_open,
pmt_list2(pmt_list2(s_response_open,
s_err_usrp_already_opened),
pmt_from_long(0)));
// A close should now be successful since the interface is open
d_cs->send(s_cmd_close, pmt_list1(pmt_list2(s_response_close,PMT_T)));
// But, a second close should fail
d_cs->send(s_cmd_close, pmt_list1(pmt_list2(s_response_close,
s_err_usrp_already_closed)));
// Just to be thorough, try an open and close again
d_cs->send(s_cmd_open,
pmt_list2(pmt_list2(s_response_open,PMT_T),
pmt_from_long(0)));
d_cs->send(s_cmd_close, pmt_list1(pmt_list2(s_response_close,PMT_T)));
}
void
qa_open_close_top::handle_message(mb_message_sptr msg)
{
pmt_t data = msg->data();
if (pmt_eq(msg->port_id(), d_cs->port_symbol())) {
check_cs(msg);
}
d_nmsg_recvd++;
if(d_nmsg_to_recv == d_nmsg_recvd)
shutdown_all(PMT_T);
}
void
qa_open_close_top::check_cs(mb_message_sptr msg)
{
pmt_t data = msg->data();
pmt_t event = msg->signal();
pmt_t expected = pmt_nth(0, data);
pmt_t status = pmt_nth(1, data);
pmt_t e_event = pmt_nth(0, expected);
pmt_t e_status = pmt_nth(1, expected);
if(!pmt_eqv(e_status, status) || !pmt_eqv(e_event, event)) {
if(verbose)
std::cout << "[qa_open_close_top] FAILED check_cs... Got: " << status
<< " Expected: " << e_status
<< " for event " << event << "\n";
shutdown_all(PMT_F);
} else {
if(verbose)
std::cout << "[qa_open_close_top] Received expected CS response ("
<< event << ")\n";
}
}
REGISTER_MBLOCK_CLASS(qa_open_close_top);
// ----------------------------------------------------------------------------------------------
class qa_tx_top : public mb_mblock
{
mb_port_sptr d_tx;
mb_port_sptr d_rx;
mb_port_sptr d_cs;
long d_max_capacity;
long d_ntx_chan, d_nrx_chan;
long d_tx_chan;
long d_rx_chan;
long d_nmsg_to_recv;
long d_nmsg_recvd;
public:
qa_tx_top(mb_runtime *runtime, const std::string &instance_name, pmt_t user_arg);
~qa_tx_top();
void initial_transition();
void handle_message(mb_message_sptr msg);
protected:
void check_allocation(mb_message_sptr msg);
void check_deallocation(mb_message_sptr msg);
void check_xmit(mb_message_sptr msg);
void check_cs(mb_message_sptr msg);
void run_tests();
};
qa_tx_top::qa_tx_top(mb_runtime *runtime, const std::string &instance_name, pmt_t user_arg)
: mb_mblock(runtime, instance_name, user_arg)
{
d_nmsg_to_recv=10;
d_nmsg_recvd=0;
d_rx = define_port("rx0", "usrp-rx", false, mb_port::INTERNAL);
d_tx = define_port("tx0", "usrp-tx", false, mb_port::INTERNAL);
d_cs = define_port("cs", "usrp-server-cs", false, mb_port::INTERNAL);
// Use the stub with the usrp_server
pmt_t usrp_server_dict = pmt_make_dict();
pmt_dict_set(usrp_server_dict, pmt_intern("fake-usrp"),PMT_T);
// Test the TX side
define_component("server", "usrp_server", usrp_server_dict);
connect("self", "tx0", "server", "tx0");
connect("self", "rx0", "server", "rx0");
connect("self", "cs", "server", "cs");
}
qa_tx_top::~qa_tx_top(){}
void
qa_tx_top::initial_transition()
{
run_tests();
}
void
qa_tx_top::run_tests()
{
if(verbose)
std::cout << "[qa_tx_top] Starting tests\n";
// A transmit before an open should fail
d_tx->send(s_cmd_xmit_raw_frame,
pmt_list4(pmt_list2(s_response_xmit_raw_frame,
s_err_usrp_not_opened),
pmt_from_long(0),
pmt_make_u32vector(transport_pkt::max_payload()/4, 0),
pmt_from_long(0)));
// Now open
d_cs->send(s_cmd_open,
pmt_list2(pmt_list2(s_response_open,PMT_T),
pmt_from_long(0)));
// Try to transmit on a channel that we have no allocation for
d_tx->send(s_cmd_xmit_raw_frame,
pmt_list4(pmt_list2(s_response_xmit_raw_frame,
s_err_channel_permission_denied),
pmt_from_long(0),
pmt_make_u32vector(transport_pkt::max_payload()/4, 0),
pmt_from_long(0)));
// Get a channel allocation and send on it, we assume 0 (FIXME) until 'defer'
// is implemented for simplicity
d_tx->send(s_cmd_allocate_channel,
pmt_list2(pmt_list2(s_response_allocate_channel, PMT_T),
pmt_from_long(1)));
d_tx->send(s_cmd_xmit_raw_frame,
pmt_list4(pmt_list2(s_response_xmit_raw_frame, PMT_T),
pmt_from_long(0),
pmt_make_u32vector(transport_pkt::max_payload()/4, 0),
pmt_from_long(0)));
// Close should be successful
d_cs->send(s_cmd_close, pmt_list1(pmt_list2(s_response_close,PMT_T)));
// After closing, a new transmit raw frame should fail again
d_tx->send(s_cmd_xmit_raw_frame,
pmt_list4(pmt_list2(s_response_xmit_raw_frame,
s_err_usrp_not_opened),
pmt_from_long(0),
pmt_make_u32vector(transport_pkt::max_payload()/4, 0),
pmt_from_long(0)));
// Reopen and retry before getting an allocation, the first xmit should fail,
// after we allocate it should work again
d_cs->send(s_cmd_open,
pmt_list2(pmt_list2(s_response_open, PMT_T),
pmt_from_long(0)));
d_tx->send(s_cmd_xmit_raw_frame,
pmt_list4(pmt_list2(s_response_xmit_raw_frame,
s_err_channel_permission_denied),
pmt_from_long(0),
pmt_make_u32vector(transport_pkt::max_payload()/4, 0),
pmt_from_long(0)));
d_tx->send(s_cmd_allocate_channel,
pmt_list2(pmt_list2(s_response_allocate_channel, PMT_T),
pmt_from_long(1)));
d_tx->send(s_cmd_xmit_raw_frame,
pmt_list4(pmt_list2(s_response_xmit_raw_frame,PMT_T),
pmt_from_long(0),
pmt_make_u32vector(transport_pkt::max_payload()/4, 0),
pmt_from_long(0)));
// A final close which should be successful
d_cs->send(s_cmd_close, pmt_list1(pmt_list2(s_response_close,PMT_T)));
}
void
qa_tx_top::handle_message(mb_message_sptr msg)
{
pmt_t data = msg->data();
pmt_t event = msg->signal();
if(pmt_eq(event, pmt_intern("%shutdown")))
return;
pmt_t expected = pmt_nth(0, data);
pmt_t status = pmt_nth(1, data);
pmt_t e_event = pmt_nth(0, expected);
pmt_t e_status = pmt_nth(1, expected);
if(!pmt_eqv(e_status, status) || !pmt_eqv(e_event, event)) {
if(verbose)
std::cout << "[qa_xmit_top] Got: " << status
<< " Expected: " << e_status
<< "For signal: " << event << "\n";
shutdown_all(PMT_F);
return;
} else {
if(verbose)
std::cout << "[qa_xmit_top] Received expected response for message "
<< d_nmsg_recvd
<< " (" << event << ")\n";
}
if (pmt_eq(msg->port_id(), d_tx->port_symbol())
|| pmt_eq(msg->port_id(), d_rx->port_symbol())) {
if(pmt_eq(msg->signal(), s_response_allocate_channel))
check_allocation(msg);
}
d_nmsg_recvd++;
if(d_nmsg_to_recv == d_nmsg_recvd){
shutdown_all(PMT_T);
return;
}
}
void
qa_tx_top::check_allocation(mb_message_sptr msg)
{
pmt_t data = msg->data();
pmt_t event = msg->signal();
pmt_t expected = pmt_nth(0, data);
pmt_t status = pmt_nth(1, data);
pmt_t channel = pmt_nth(2, data);
if(pmt_eqv(status, PMT_T)) {
// store all of the allocate channel numbers
if(pmt_eq(msg->port_id(), d_tx->port_symbol()))
d_tx_chan = pmt_to_long(channel);
if(pmt_eq(msg->port_id(), d_rx->port_symbol()))
d_rx_chan = pmt_to_long(channel);
}
}
REGISTER_MBLOCK_CLASS(qa_tx_top);
// ----------------------------------------------------------------------------------------------
class qa_rx_top : public mb_mblock
{
mb_port_sptr d_rx;
mb_port_sptr d_cs;
long d_max_capacity;
long d_ntx_chan, d_nrx_chan;
long d_rx_chan;
bool d_got_response_recv;
mb_time d_t0;
double d_delta_t;
public:
qa_rx_top(mb_runtime *runtime, const std::string &instance_name, pmt_t user_arg);
~qa_rx_top();
void initial_transition();
void handle_message(mb_message_sptr msg);
protected:
void check_allocation(mb_message_sptr msg);
void check_deallocation(mb_message_sptr msg);
void check_xmit(mb_message_sptr msg);
void check_cs(mb_message_sptr msg);
void run_tests();
};
qa_rx_top::qa_rx_top(mb_runtime *runtime, const std::string &instance_name, pmt_t user_arg)
: mb_mblock(runtime, instance_name, user_arg),
d_got_response_recv(false)
{
d_rx = define_port("rx0", "usrp-rx", false, mb_port::INTERNAL);
d_cs = define_port("cs", "usrp-server-cs", false, mb_port::INTERNAL);
// Use the stub with the usrp_server
pmt_t usrp_dict = pmt_make_dict();
// Set TX and RX interpolations
pmt_dict_set(usrp_dict,
pmt_intern("decim-rx"),
pmt_from_long(128));
pmt_dict_set(usrp_dict, pmt_intern("fake-usrp"), PMT_T);
// Test the TX side
define_component("server", "usrp_server", usrp_dict);
connect("self", "rx0", "server", "rx0");
connect("self", "cs", "server", "cs");
}
qa_rx_top::~qa_rx_top(){}
void
qa_rx_top::initial_transition()
{
run_tests();
}
void
qa_rx_top::run_tests()
{
if(verbose)
std::cout << "[qa_rx_top] Starting tests\n";
d_cs->send(s_cmd_open, pmt_list2(pmt_list2(s_response_open,PMT_T), pmt_from_long(0)));
d_rx->send(s_cmd_allocate_channel,
pmt_list2(pmt_list2(s_response_allocate_channel,PMT_T),
pmt_from_long(1)));
d_rx->send(s_cmd_start_recv_raw_samples,
pmt_list2(PMT_NIL,
pmt_from_long(0)));
// Schedule a small timeout in which we expect to have received at least one
// packet worth of samples from the stub
d_t0 = mb_time::time();
schedule_one_shot_timeout(d_t0 + 0.01, PMT_NIL);
}
void
qa_rx_top::handle_message(mb_message_sptr msg)
{
pmt_t data = msg->data();
pmt_t event = msg->signal();
if(pmt_eq(event, pmt_intern("%shutdown")))
return;
pmt_t expected = pmt_nth(0, data);
pmt_t status = pmt_nth(1, data);
// If we get a timeout we shutdown
if(pmt_eq(event, s_timeout)) {
if(verbose)
std::cout << "[qa_rx_top] Got timeout\n";
d_rx->send(s_cmd_stop_recv_raw_samples,
pmt_list2(PMT_NIL,
pmt_from_long(0)));
d_cs->send(s_cmd_close, pmt_list1(pmt_list2(s_response_close,PMT_T)));
return;
}
// For testing RX, an invocation handle is not generated by the stub,
// therefore the same approach for testing is not used. We simply
// expect all responses to be true.
if(pmt_eq(event, s_response_recv_raw_samples)) {
if(pmt_eqv(status, PMT_T)) {
if(verbose)
std::cout << "[qa_rx_top] Received expected response for message "
<< " (" << event << ")\n";
// All we want is 1 response receive! Can't guarantee exact numbers
d_got_response_recv = true;
}
else {
if(verbose)
std::cout << "Got: " << status << " Expected: " << PMT_T << "\n";
shutdown_all(PMT_F);
}
return;
}
pmt_t e_event = pmt_nth(0, expected);
pmt_t e_status = pmt_nth(1, expected);
if(!pmt_eqv(e_status, status) || !pmt_eqv(e_event, event)) {
if(verbose)
std::cout << "Got: " << status << " Expected: " << e_status << "\n";
shutdown_all(PMT_F);
return;
} else {
if(verbose)
std::cout << "[qa_rx_top] Received expected response for message "
<< " (" << event << ")\n";
}
if (pmt_eq(msg->port_id(), d_rx->port_symbol())) {
if(pmt_eq(msg->signal(), s_response_allocate_channel))
check_allocation(msg);
}
// We stop when we get a close, we are successful if we
// got a response from recv, fail if we never got a recv response
if(pmt_eq(msg->signal(), s_response_close)) {
if(d_got_response_recv) {
shutdown_all(PMT_T);
return;
}
else {
shutdown_all(PMT_F);
if(verbose)
std::cout << "[qa_rx_top] No response message before close\n";
return;
}
}
}
void
qa_rx_top::check_allocation(mb_message_sptr msg)
{
pmt_t data = msg->data();
pmt_t event = msg->signal();
pmt_t expected = pmt_nth(0, data);
pmt_t status = pmt_nth(1, data);
pmt_t channel = pmt_nth(2, data);
if(pmt_eqv(status, PMT_T)) {
// store all of the allocate channel numbers
if(pmt_eq(msg->port_id(), d_rx->port_symbol()))
d_rx_chan = pmt_to_long(channel);
}
}
REGISTER_MBLOCK_CLASS(qa_rx_top);
// ----------------------------------------------------------------------------------------------
class qa_rid_top : public mb_mblock
{
mb_port_sptr d_tx;
mb_port_sptr d_rx;
mb_port_sptr d_cs;
long d_npongs;
long d_tcycles;
long d_cycles;
long d_max_rid;
mb_time d_t0;
double d_delta_t;
public:
qa_rid_top(mb_runtime *runtime, const std::string &instance_name, pmt_t user_arg);
~qa_rid_top();
void initial_transition();
void handle_message(mb_message_sptr msg);
protected:
void run_tests();
void send_max_pings();
};
qa_rid_top::qa_rid_top(mb_runtime *runtime, const std::string &instance_name, pmt_t user_arg)
: mb_mblock(runtime, instance_name, user_arg)
{
d_npongs = 0;
d_tcycles = 3;
d_cycles = d_tcycles;
d_max_rid = usrp_server::D_MAX_RID;
d_delta_t = 0.1;
d_rx = define_port("rx0", "usrp-rx", false, mb_port::INTERNAL);
d_tx = define_port("tx0", "usrp-tx", false, mb_port::INTERNAL);
d_cs = define_port("cs", "usrp-server-cs", false, mb_port::INTERNAL);
// Use the stub with the usrp_server
pmt_t usrp_server_dict = pmt_make_dict();
pmt_dict_set(usrp_server_dict, pmt_intern("fake-usrp"),PMT_T);
// Test the TX side
define_component("server", "usrp_server", usrp_server_dict);
connect("self", "tx0", "server", "tx0");
connect("self", "rx0", "server", "rx0");
connect("self", "cs", "server", "cs");
}
qa_rid_top::~qa_rid_top(){}
void
qa_rid_top::initial_transition()
{
run_tests();
}
void
qa_rid_top::run_tests()
{
if(verbose)
std::cout << "[qa_rid_top] Starting tests...\n";
// Retrieve information about the USRP, then run tests
d_cs->send(s_cmd_open,
pmt_list2(pmt_list2(s_response_open, PMT_T),
pmt_from_long(0)));
// should be able to allocate 1 byte
d_tx->send(s_cmd_allocate_channel,
pmt_list2(pmt_list2(s_response_allocate_channel, PMT_T),
pmt_from_long(1)));
d_rx->send(s_cmd_allocate_channel,
pmt_list2(pmt_list2(s_response_allocate_channel, PMT_T),
pmt_from_long(1)));
// Need to start receiving to read from the USRP to get C/S responses
d_rx->send(s_cmd_start_recv_raw_samples,
pmt_list2(PMT_NIL,
pmt_from_long(0)));
// Build a subpacket of MAX_RID pings and wait a small amount for all of the
// responses and fire off another MAX_RID. If MAX_RID*2 responses are
// received, the RID recycling is working correctly.
// Schedule a timer in which we expect to have received all of the responses,
// which will send off another MAX_RID worth.
send_max_pings();
d_t0 = mb_time::time();
schedule_one_shot_timeout(d_t0 + d_delta_t, PMT_NIL);
}
void
qa_rid_top::send_max_pings()
{
pmt_t ping = pmt_list2(s_op_ping_fixed,
pmt_list2(pmt_from_long(0),
pmt_from_long(0)));
pmt_t sub_packets = PMT_NIL;
for(int i=0; i<d_max_rid; i++)
sub_packets = pmt_list_add(sub_packets, ping);
d_tx->send(s_cmd_to_control_channel,
pmt_list2(pmt_list2(s_response_from_control_channel, PMT_T),
sub_packets));
}
void
qa_rid_top::handle_message(mb_message_sptr msg)
{
pmt_t data = msg->data();
pmt_t event = msg->signal();
// If we get a timeout we ensure we got a maximum RID number of responses.
if(pmt_eq(event, s_timeout)) {
if(verbose)
std::cout << "[qa_rid_top] Got timeout, received so far: "
<< d_npongs << "\n";
d_cycles--;
if(d_cycles==0 && d_npongs == d_max_rid*d_tcycles) {
shutdown_all(PMT_T);
}
else if(d_cycles==0) {
std::cout << "[qa_rid_top] d_npongs: " << d_npongs
<< " expected: " << d_max_rid*d_tcycles
<< std::endl;
shutdown_all(PMT_F);
}
else {
send_max_pings();
d_t0 = mb_time::time();
schedule_one_shot_timeout(d_t0 + d_delta_t, PMT_NIL);
}
}
else if(pmt_eq(event, s_response_from_control_channel))
{
d_npongs++;
}
}
REGISTER_MBLOCK_CLASS(qa_rid_top);
// ----------------------------------------------------------------------------------------------
class qa_cs_top : public mb_mblock
{
mb_port_sptr d_tx;
mb_port_sptr d_rx;
mb_port_sptr d_cs;
long d_nmsgs_to_recv;
long d_nrecvd;
long d_max_capacity;
long d_ntx_chan, d_nrx_chan;
long d_nstatus;
long d_nstatus_to_recv;
public:
qa_cs_top(mb_runtime *runtime, const std::string &instance_name, pmt_t user_arg);
~qa_cs_top();
void initial_transition();
void handle_message(mb_message_sptr msg);
protected:
void check_message(mb_message_sptr msg);
void run_tests();
};
qa_cs_top::qa_cs_top(mb_runtime *runtime, const std::string &instance_name, pmt_t user_arg)
: mb_mblock(runtime, instance_name, user_arg)
{
d_nrecvd=0;
d_nmsgs_to_recv = 8;
d_nstatus=0;
d_nstatus_to_recv = 50;
d_rx = define_port("rx0", "usrp-rx", false, mb_port::INTERNAL);
d_tx = define_port("tx0", "usrp-tx", false, mb_port::INTERNAL);
d_cs = define_port("cs", "usrp-server-cs", false, mb_port::INTERNAL);
// Use the stub with the usrp_server
pmt_t usrp_server_dict = pmt_make_dict();
pmt_dict_set(usrp_server_dict, pmt_intern("fake-usrp"),PMT_T);
// Test the TX side
define_component("server", "usrp_server", usrp_server_dict);
connect("self", "tx0", "server", "tx0");
connect("self", "rx0", "server", "rx0");
connect("self", "cs", "server", "cs");
}
qa_cs_top::~qa_cs_top(){}
void
qa_cs_top::initial_transition()
{
run_tests();
}
void
qa_cs_top::run_tests()
{
if(verbose)
std::cout << "[qa_cs_top] Starting tests...\n";
// Retrieve information about the USRP, then run tests
d_cs->send(s_cmd_open,
pmt_list2(pmt_list2(s_response_open, PMT_T),
pmt_from_long(0)));
// should be able to allocate 1 byte
d_tx->send(s_cmd_allocate_channel,
pmt_list2(pmt_list2(s_response_allocate_channel, PMT_T),
pmt_from_long(1)));
d_rx->send(s_cmd_allocate_channel,
pmt_list2(pmt_list2(s_response_allocate_channel, PMT_T),
pmt_from_long(1)));
// Need to start receiving to read from the USRP to get C/S responses
d_rx->send(s_cmd_start_recv_raw_samples,
pmt_list2(PMT_NIL,
pmt_from_long(0)));
d_tx->send(s_cmd_to_control_channel,
pmt_list2(pmt_list2(s_response_from_control_channel, PMT_T),
pmt_list1(
pmt_list2(s_op_ping_fixed,
pmt_list2(pmt_from_long(3),
pmt_from_long(0))))));
d_tx->send(s_cmd_to_control_channel,
pmt_list2(pmt_list2(s_response_from_control_channel, PMT_T),
pmt_list1(
pmt_list2(s_op_write_reg,
pmt_list2(
pmt_from_long(0x3),
pmt_from_long(0x4))))));
d_tx->send(s_cmd_to_control_channel,
pmt_list2(pmt_list2(s_response_from_control_channel, PMT_T),
pmt_list1(
pmt_list2(s_op_write_reg_masked,
pmt_list3(
pmt_from_long(0x3),
pmt_from_long(0x4),
pmt_from_long(0x5))))));
d_tx->send(s_cmd_to_control_channel,
pmt_list2(pmt_list2(s_response_from_control_channel, PMT_T),
pmt_list1(
pmt_list2(s_op_read_reg,
pmt_list2(pmt_from_long(0),
pmt_from_long(0x6))))));
d_tx->send(s_cmd_to_control_channel,
pmt_list2(pmt_list2(s_response_from_control_channel, PMT_T),
pmt_list1(
pmt_list2(s_op_delay,
pmt_list1(pmt_from_long(0x7))))));
pmt_t subpackets = pmt_list5(
pmt_list2(s_op_ping_fixed, pmt_list2(pmt_from_long(0), pmt_from_long(0))),
pmt_list2(s_op_delay, pmt_list1(pmt_from_long(0x7))),
pmt_list2(s_op_write_reg_masked, pmt_list3(pmt_from_long(3),
pmt_from_long(4),
pmt_from_long(5))),
pmt_list2(s_op_write_reg, pmt_list2(pmt_from_long(3),
pmt_from_long(4))),
pmt_list2(s_op_read_reg, pmt_list2(pmt_from_long(0),
pmt_from_long(6)))
);
d_tx->send(s_cmd_to_control_channel,
pmt_list2(pmt_list2(s_response_from_control_channel, PMT_T),
subpackets));
pmt_t i2c_data = pmt_make_u8vector(8, 0xff);
subpackets = pmt_list2(
pmt_list2(s_op_i2c_write,
pmt_list2(pmt_from_long(8), i2c_data)),
pmt_list2(s_op_i2c_read,
pmt_list3(pmt_from_long(0), pmt_from_long(9), pmt_from_long(1)))
);
d_tx->send(s_cmd_to_control_channel,
pmt_list2(pmt_list2(s_response_from_control_channel, PMT_T),
subpackets));
}
void
qa_cs_top::handle_message(mb_message_sptr msg)
{
pmt_t data = msg->data();
if ((pmt_eq(msg->port_id(), d_tx->port_symbol())
|| pmt_eq(msg->port_id(), d_rx->port_symbol()))
&& pmt_eq(msg->signal(), s_response_allocate_channel))
check_message(msg);
if (pmt_eq(msg->port_id(), d_tx->port_symbol())
&& pmt_eq(msg->signal(), s_response_from_control_channel))
check_message(msg);
if (pmt_eq(msg->port_id(), d_cs->port_symbol())) {
if(pmt_eq(msg->signal(), s_response_max_capacity)) {
d_max_capacity = pmt_to_long(pmt_nth(2, data));
if(verbose)
std::cout << "[qa_cs_top] USRP has max capacity of "
<< d_max_capacity << "\n";
}
else if(pmt_eq(msg->signal(), s_response_ntx_chan)) {
d_ntx_chan = pmt_to_long(pmt_nth(2, data));
if(verbose)
std::cout << "[qa_cs_top] USRP tx channels: "
<< d_ntx_chan << "\n";
}
else if(pmt_eq(msg->signal(), s_response_nrx_chan)) {
d_nrx_chan = pmt_to_long(pmt_nth(2, data));
if(verbose)
std::cout << "[qa_cs_top] USRP rx channels: "
<< d_nrx_chan << "\n";
}
else if(pmt_eq(msg->signal(), s_response_current_capacity_allocation)) {
check_message(msg);
}
d_nstatus++;
check_message(msg);
if(d_nstatus==d_nstatus_to_recv)
run_tests();
}
}
void
qa_cs_top::check_message(mb_message_sptr msg)
{
pmt_t data = msg->data();
pmt_t event = msg->signal();
pmt_t expected = pmt_nth(0, data);
pmt_t status = pmt_nth(1, data);
pmt_t e_event = pmt_nth(0, expected);
pmt_t e_status = pmt_nth(1, expected);
d_nrecvd++;
if(!pmt_eqv(e_status, status) || !pmt_eqv(e_event, event)) {
if(verbose)
std::cout << "[qa_cs_top] Got: " << status << " Expected: " << e_status << "\n";
shutdown_all(PMT_F);
return;
} else {
if(verbose)
std::cout << "[qa_cs_top] Received expected response for message "
<< d_nrecvd << " (" << event << ")\n";
}
if(d_nrecvd == d_nmsgs_to_recv)
shutdown_all(PMT_T);
}
REGISTER_MBLOCK_CLASS(qa_cs_top);
// ----------------------------------------------------------------------------------------------
void
qa_inband_usrp_server::test_open_close()
{
mb_runtime_sptr rt = mb_make_runtime();
pmt_t result = PMT_T;
// std::cout << "\n\n----------------------------\n";
// std::cout << " RUNNING OPEN/CLOSE TESTS \n";
rt->run("top", "qa_open_close_top", PMT_F, &result);
CPPUNIT_ASSERT(pmt_equal(PMT_T, result));
}
void
qa_inband_usrp_server::test_chan_allocation()
{
mb_runtime_sptr rt = mb_make_runtime();
pmt_t result = PMT_T;
// std::cout << "\n\n----------------------------\n";
// std::cout << " RUNNING ALLOCATION TESTS \n";
rt->run("qa_alloc_top", "qa_alloc_top", PMT_F, &result);
CPPUNIT_ASSERT(pmt_equal(PMT_T, result));
}
void
qa_inband_usrp_server::test_chan_deallocation()
{
mb_runtime_sptr rt = mb_make_runtime();
pmt_t result = PMT_T;
// std::cout << "\n\n----------------------------\n";
// std::cout << " RUNNING DEALLOCATION TESTS \n";
rt->run("qa_dealloc_top", "qa_dealloc_top", PMT_F, &result);
CPPUNIT_ASSERT(pmt_equal(PMT_T, result));
}
void
qa_inband_usrp_server::test_tx()
{
mb_runtime_sptr rt = mb_make_runtime();
pmt_t result = PMT_T;
// std::cout << "\n\n-----------------\n";
// std::cout << " RUNNING TX TESTS \n";
rt->run("top", "qa_tx_top", PMT_F, &result);
CPPUNIT_ASSERT(pmt_equal(PMT_T, result));
}
void
qa_inband_usrp_server::test_rx()
{
mb_runtime_sptr rt = mb_make_runtime();
pmt_t result = PMT_T;
// std::cout << "\n\n-----------------\n";
// std::cout << " RUNNING RX TESTS \n";
rt->run("top", "qa_rx_top", PMT_F, &result);
CPPUNIT_ASSERT(pmt_equal(PMT_T, result));
}
void
qa_inband_usrp_server::test_cs()
{
// FIXME This test is disabled because it hangs with the change to use usrp_standard_*_sptr's
return;
mb_runtime_sptr rt = mb_make_runtime();
pmt_t result = PMT_T;
// std::cout << "\n\n-----------------\n";
// std::cout << " RUNNING CS TESTS \n";
rt->run("top", "qa_cs_top", PMT_F, &result);
CPPUNIT_ASSERT(pmt_equal(PMT_T, result));
}
void
qa_inband_usrp_server::test_rid()
{
// FIXME This test is disabled because it hangs with the change to use usrp_standard_*_sptr's
return;
mb_runtime_sptr rt = mb_make_runtime();
pmt_t result = PMT_T;
// std::cout << "\n\n-----------------\n";
// std::cout << " RUNNING RID TESTS \n";
rt->run("top", "qa_rid_top", PMT_F, &result);
CPPUNIT_ASSERT(pmt_equal(PMT_T, result));
}