libusrp/limbo/apps-inband/test_usrp_inband_underrun.cc

675 lines
18 KiB
C++

/* -*- c++ -*- */
/*
* Copyright 2007,2008 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <mblock/mblock.h>
#include <mblock/runtime.h>
#include <mblock/protocol_class.h>
#include <mblock/exception.h>
#include <mblock/msg_queue.h>
#include <mblock/message.h>
#include <mblock/msg_accepter.h>
#include <mblock/class_registry.h>
#include <pmt.h>
#include <stdio.h>
#include <string.h>
#include <sys/time.h>
#include <iostream>
#include <ui_nco.h>
// Include the symbols needed for communication with USRP server
#include <symbols_usrp_server_cs.h>
#include <symbols_usrp_channel.h>
#include <symbols_usrp_low_level_cs.h>
#include <symbols_usrp_tx.h>
#include <symbols_usrp_rx.h>
static bool verbose = true;
class test_usrp_inband_underrun : public mb_mblock
{
mb_port_sptr d_tx; // Ports connected to the USRP server
mb_port_sptr d_rx;
mb_port_sptr d_cs;
pmt_t d_tx_chan; // Returned channel from TX allocation
pmt_t d_rx_chan; // Returned channel from RX allocation
pmt_t d_which_usrp; // The USRP to use for the test
long d_warm_msgs; // The number of messages to 'warm' the USRP
long d_warm_recvd; // The number of msgs received in the 'warm' state
// Keep track of current state
enum state_t {
INIT,
OPENING_USRP,
ALLOCATING_CHANNELS,
WRITE_REGISTER,
READ_REGISTER,
TRANSMITTING,
CLOSING_CHANNELS,
CLOSING_USRP,
};
state_t d_state;
long d_nsamples_to_send;
long d_nsamples_xmitted;
long d_nframes_xmitted;
long d_samples_per_frame;
bool d_done_sending;
// for generating sine wave output
ui_nco<float,float> d_nco;
double d_amplitude;
long d_n_underruns;
public:
test_usrp_inband_underrun(mb_runtime *runtime, const std::string &instance_name, pmt_t user_arg);
~test_usrp_inband_underrun();
void initial_transition();
void handle_message(mb_message_sptr msg);
protected:
void opening_usrp();
void allocating_channels();
void write_register();
void read_register();
void closing_channels();
void closing_usrp();
void enter_receiving();
void enter_transmitting();
void build_and_send_ping();
void build_and_send_next_frame();
void handle_xmit_response(pmt_t handle);
void handle_recv_response(pmt_t dict);
};
int
main (int argc, char **argv)
{
// handle any command line args here
mb_runtime_sptr rt = mb_make_runtime();
pmt_t result = PMT_NIL;
rt->run("top", "test_usrp_inband_underrun", PMT_F, &result);
}
test_usrp_inband_underrun::test_usrp_inband_underrun(mb_runtime *runtime, const std::string &instance_name, pmt_t user_arg)
: mb_mblock(runtime, instance_name, user_arg),
d_tx_chan(PMT_NIL),
d_rx_chan(PMT_NIL),
d_which_usrp(pmt_from_long(0)),
d_state(INIT),
d_nsamples_to_send((long) 27e6),
d_nsamples_xmitted(0),
d_nframes_xmitted(0),
d_samples_per_frame(d_nsamples_to_send), // full packet
d_done_sending(false),
d_amplitude(16384),
d_n_underruns(0)
{
// A dictionary is used to pass parameters to the USRP
pmt_t usrp_dict = pmt_make_dict();
// Specify the RBF to use
pmt_dict_set(usrp_dict,
pmt_intern("rbf"),
pmt_intern("inband_1rxhb_1tx.rbf"));
// Set TX and RX interpolations
pmt_dict_set(usrp_dict,
pmt_intern("interp-tx"),
pmt_from_long(64));
pmt_dict_set(usrp_dict,
pmt_intern("decim-rx"),
pmt_from_long(128));
d_tx = define_port("tx0", "usrp-tx", false, mb_port::INTERNAL);
d_rx = define_port("rx0", "usrp-rx", false, mb_port::INTERNAL);
d_cs = define_port("cs", "usrp-server-cs", false, mb_port::INTERNAL);
// Create an instance of USRP server and connect ports
define_component("server", "usrp_server", usrp_dict);
connect("self", "tx0", "server", "tx0");
connect("self", "rx0", "server", "rx0");
connect("self", "cs", "server", "cs");
// initialize NCO
double freq = 100e3;
int interp = 32; // 32 -> 4MS/s
double sample_rate = 128e6 / interp;
d_nco.set_freq(2*M_PI * freq/sample_rate);
}
test_usrp_inband_underrun::~test_usrp_inband_underrun()
{
}
void
test_usrp_inband_underrun::initial_transition()
{
opening_usrp();
}
// Handle message reads all incoming messages from USRP server which will be
// initialization and ping responses. We perform actions based on the current
// state and the event (ie, ping response)
void
test_usrp_inband_underrun::handle_message(mb_message_sptr msg)
{
pmt_t event = msg->signal();
pmt_t data = msg->data();
pmt_t port_id = msg->port_id();
pmt_t handle = PMT_F;
pmt_t status = PMT_F;
pmt_t dict = PMT_NIL;
std::string error_msg;
// Check the recv sample responses for underruns and count
if(pmt_eq(event, s_response_recv_raw_samples)) {
handle = pmt_nth(0, data);
status = pmt_nth(1, data);
dict = pmt_nth(4, data);
if(pmt_eq(status, PMT_T)) {
handle_recv_response(dict);
return;
}
else {
error_msg = "error while receiving samples:";
goto bail;
}
}
// Dispatch based on state
switch(d_state) {
//----------------------------- OPENING_USRP ----------------------------//
// We only expect a response from opening the USRP which should be succesful
// or failed.
case OPENING_USRP:
if(pmt_eq(event, s_response_open)) {
status = pmt_nth(1, data); // failed/succes
if(pmt_eq(status, PMT_T)) {
allocating_channels();
return;
}
else {
error_msg = "failed to open usrp:";
goto bail;
}
}
goto unhandled; // all other messages not handled in this state
//----------------------- ALLOCATING CHANNELS --------------------//
// When allocating channels, we need to wait for 2 responses from
// USRP server: one for TX and one for RX. Both are initialized to
// NIL so we know to continue to the next state once both are set.
case ALLOCATING_CHANNELS:
// A TX allocation response
if(pmt_eq(event, s_response_allocate_channel)
&& pmt_eq(d_tx->port_symbol(), port_id))
{
status = pmt_nth(1, data);
// If successful response, extract the channel
if(pmt_eq(status, PMT_T)) {
d_tx_chan = pmt_nth(2, data);
if(verbose)
std::cout << "[TEST_USRP_INBAND_UNDERRUN] Received TX allocation"
<< " on channel " << d_tx_chan << std::endl;
// If the RX has also been allocated already, we can continue
if(!pmt_eqv(d_rx_chan, PMT_NIL)) {
enter_receiving();
enter_transmitting();
}
return;
}
else { // TX allocation failed
error_msg = "failed to allocate TX channel:";
goto bail;
}
}
// A RX allocation response
if(pmt_eq(event, s_response_allocate_channel)
&& pmt_eq(d_rx->port_symbol(), port_id))
{
status = pmt_nth(1, data);
// If successful response, extract the channel
if(pmt_eq(status, PMT_T)) {
d_rx_chan = pmt_nth(2, data);
if(verbose)
std::cout << "[TEST_USRP_INBAND_UNDERRUN] Received RX allocation"
<< " on channel " << d_rx_chan << std::endl;
// If the TX has also been allocated already, we can continue
if(!pmt_eqv(d_tx_chan, PMT_NIL)) {
enter_receiving();
enter_transmitting();
}
return;
}
else { // RX allocation failed
error_msg = "failed to allocate RX channel:";
goto bail;
}
}
goto unhandled;
case WRITE_REGISTER:
goto unhandled;
case READ_REGISTER:
goto unhandled;
//-------------------------- TRANSMITTING ----------------------------//
// In the transmit state we count the number of underruns received and
// ballpark the number with an expected count (something >1 for starters)
case TRANSMITTING:
// Check that the transmits are OK
if (pmt_eq(event, s_response_xmit_raw_frame)){
handle = pmt_nth(0, data);
status = pmt_nth(1, data);
if (pmt_eq(status, PMT_T)){
handle_xmit_response(handle);
return;
}
else {
error_msg = "bad response-xmit-raw-frame:";
goto bail;
}
}
goto unhandled;
//------------------------- CLOSING CHANNELS ----------------------------//
// Check deallocation responses, once the TX and RX channels are both
// deallocated then we close the USRP.
case CLOSING_CHANNELS:
if (pmt_eq(event, s_response_deallocate_channel)
&& pmt_eq(d_tx->port_symbol(), port_id))
{
status = pmt_nth(1, data);
// If successful, set the port to NIL
if(pmt_eq(status, PMT_T)) {
d_tx_chan = PMT_NIL;
if(verbose)
std::cout << "[TEST_USRP_INBAND_UNDERRUN] Received TX deallocation\n";
// If the RX is also deallocated, we can close the USRP
if(pmt_eq(d_rx_chan, PMT_NIL))
closing_usrp();
return;
} else {
error_msg = "failed to deallocate TX channel:";
goto bail;
}
}
if (pmt_eq(event, s_response_deallocate_channel)
&& pmt_eq(d_rx->port_symbol(), port_id))
{
status = pmt_nth(1, data);
// If successful, set the port to NIL
if(pmt_eq(status, PMT_T)) {
d_rx_chan = PMT_NIL;
if(verbose)
std::cout << "[TEST_USRP_INBAND_UNDERRUN] Received RX deallocation\n";
// If the TX is also deallocated, we can close the USRP
if(pmt_eq(d_tx_chan, PMT_NIL))
closing_usrp();
return;
} else {
error_msg = "failed to deallocate RX channel:";
goto bail;
}
}
goto unhandled;
//--------------------------- CLOSING USRP ------------------------------//
// Once we have received a successful USRP close response, we shutdown all
// mblocks and exit.
case CLOSING_USRP:
if (pmt_eq(event, s_response_close)) {
status = pmt_nth(1, data);
if(pmt_eq(status, PMT_T)) {
if(verbose)
std::cout << "[TEST_USRP_INBAND_UNDERRUN] Successfully closed USRP\n";
std::cout << "\nUnderruns: " << d_n_underruns << std::endl;
fflush(stdout);
shutdown_all(PMT_T);
return;
} else {
error_msg = "failed to close USRP:";
goto bail;
}
}
goto unhandled;
case INIT:
goto unhandled;
}
// An error occured, print it, and shutdown all m-blocks
bail:
std::cerr << error_msg << data
<< "status = " << status << std::endl;
shutdown_all(PMT_F);
return;
// Received an unhandled message for a specific state
unhandled:
if(verbose && !pmt_eq(event, pmt_intern("%shutdown")))
std::cout << "test_usrp_inband_tx: unhandled msg: " << msg
<< "in state "<< d_state << std::endl;
}
// Sends a command to USRP server to open up a connection to the
// specified USRP, which is defaulted to USRP 0 on the system
void
test_usrp_inband_underrun::opening_usrp()
{
if(verbose)
std::cout << "[TEST_USRP_INBAND_UNDERRUN] Opening USRP "
<< d_which_usrp << std::endl;
d_cs->send(s_cmd_open, pmt_list2(PMT_NIL, d_which_usrp));
d_state = OPENING_USRP;
}
// RX and TX channels must be allocated so that the USRP server can
// properly share bandwidth across multiple USRPs. No commands will be
// successful to the USRP through the USRP server on the TX or RX channels until
// a bandwidth allocation has been received.
void
test_usrp_inband_underrun::allocating_channels()
{
d_state = ALLOCATING_CHANNELS;
long capacity = (long) 16e6;
d_tx->send(s_cmd_allocate_channel, pmt_list2(PMT_T, pmt_from_long(capacity)));
d_rx->send(s_cmd_allocate_channel, pmt_list2(PMT_T, pmt_from_long(capacity)));
}
// After allocating the channels, a write register command will be sent to the
// USRP.
void
test_usrp_inband_underrun::write_register()
{
d_state = WRITE_REGISTER;
long reg = 0;
d_tx->send(s_cmd_to_control_channel, // C/S packet
pmt_list2(PMT_NIL, // invoc handle
pmt_list1(
pmt_list2(s_op_write_reg,
pmt_list2(
pmt_from_long(reg),
pmt_from_long(0xbeef))))));
if(verbose)
std::cout << "[TEST_USRP_INBAND_REGISTERS] Writing 0xbeef to "
<< reg << std::endl;
read_register(); // immediately transition to read the register
}
// Temporary: for testing pings
void
test_usrp_inband_underrun::build_and_send_ping()
{
d_tx->send(s_cmd_to_control_channel,
pmt_list2(PMT_NIL, pmt_list1(pmt_list2(s_op_ping_fixed,
pmt_list2(pmt_from_long(0),
pmt_from_long(0))))));
std::cout << "[TEST_USRP_INBAND_UNDERRUN] Ping sent" << std::endl;
}
// After writing to the register, we want to read the value back and ensure that
// it is the same value that we wrote.
void
test_usrp_inband_underrun::read_register()
{
d_state = READ_REGISTER;
long reg = 9;
d_tx->send(s_cmd_to_control_channel, // C/S packet
pmt_list2(PMT_NIL, // invoc handle
pmt_list1(
pmt_list2(s_op_read_reg,
pmt_list2(
pmt_from_long(0), // rid
pmt_from_long(reg))))));
if(verbose)
std::cout << "[TEST_USRP_INBAND_UNDERRUN] Reading from register "
<< reg << std::endl;
}
// Used to enter the receiving state
void
test_usrp_inband_underrun::enter_receiving()
{
d_rx->send(s_cmd_start_recv_raw_samples,
pmt_list2(PMT_F,
d_rx_chan));
if(verbose)
std::cout << "[TEST_USRP_INBAND_UNDERRUN] Started RX sample stream\n";
}
void
test_usrp_inband_underrun::enter_transmitting()
{
d_state = TRANSMITTING;
d_nsamples_xmitted = 0;
if(verbose)
std::cout << "[TEST_USRP_INBAND_UNDERRUN] Entering transmit state...\n";
build_and_send_next_frame(); // fire off 4 to start pipeline
build_and_send_next_frame();
build_and_send_next_frame();
build_and_send_next_frame();
}
void
test_usrp_inband_underrun::build_and_send_next_frame()
{
long nsamples_this_frame =
std::min(d_nsamples_to_send - d_nsamples_xmitted,
d_samples_per_frame);
if (nsamples_this_frame == 0){
d_done_sending = true;
return;
}
size_t nshorts = 2 * nsamples_this_frame; // 16-bit I & Q
pmt_t uvec = pmt_make_s16vector(nshorts, 0);
size_t ignore;
int16_t *samples = pmt_s16vector_writable_elements(uvec, ignore);
// fill in the complex sinusoid
for (int i = 0; i < nsamples_this_frame; i++){
if (1){
gr_complex s;
d_nco.sincos(&s, 1, d_amplitude);
// write 16-bit i & q
samples[2*i] = (int16_t) s.real();
samples[2*i+1] = (int16_t) s.imag();
}
else {
gr_complex s(d_amplitude, d_amplitude);
// write 16-bit i & q
samples[2*i] = (int16_t) s.real();
samples[2*i+1] = (int16_t) s.imag();
}
}
if(verbose)
std::cout << "[TEST_USRP_INBAND_TX] Transmitting frame...\n";
pmt_t timestamp = pmt_from_long(0xffffffff); // NOW
d_tx->send(s_cmd_xmit_raw_frame,
pmt_list4(pmt_from_long(d_nframes_xmitted), // invocation-handle
d_tx_chan, // channel
uvec, // the samples
timestamp));
d_nsamples_xmitted += nsamples_this_frame;
d_nframes_xmitted++;
if(verbose)
std::cout << "[TEST_USRP_INBAND_TX] Transmitted frame\n";
}
void
test_usrp_inband_underrun::handle_xmit_response(pmt_t handle)
{
if (d_done_sending &&
pmt_to_long(handle) == (d_nframes_xmitted - 1)){
// We're done sending and have received all responses
closing_channels();
return;
}
build_and_send_next_frame();
}
void
test_usrp_inband_underrun::handle_recv_response(pmt_t dict)
{
if(!pmt_is_dict(dict)) {
std::cout << "[TEST_USRP_INBAND_UNDERRUN] Recv samples dictionary is improper\n";
return;
}
// Read the TX interpolations
if(pmt_t underrun = pmt_dict_ref(dict,
pmt_intern("underrun"),
PMT_NIL)) {
if(pmt_eqv(underrun, PMT_T)) {
d_n_underruns++;
if(verbose && 0)
std::cout << "[TEST_USRP_INBAND_UNDERRUN] Underrun\n";
}
else {
if(verbose && 0)
std::cout << "[TEST_USRP_INBAND_UNDERRUN] No underrun\n" << underrun <<std::endl;
}
} else {
if(verbose && 0)
std::cout << "[TEST_USRP_INBAND_UNDERRUN] No underrun\n";
}
}
void
test_usrp_inband_underrun::closing_channels()
{
d_state = CLOSING_CHANNELS;
d_tx->send(s_cmd_deallocate_channel, pmt_list2(PMT_NIL, d_tx_chan));
d_rx->send(s_cmd_deallocate_channel, pmt_list2(PMT_NIL, d_rx_chan));
}
void
test_usrp_inband_underrun::closing_usrp()
{
d_state = CLOSING_USRP;
d_cs->send(s_cmd_close, pmt_list1(PMT_NIL));
}
REGISTER_MBLOCK_CLASS(test_usrp_inband_underrun);