libusrp/limbo/inband/usrp_usb_interface.cc

602 lines
17 KiB
C++

/* -*- c++ -*- */
/*
* Copyright 2007,2008,2009 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <usrp_usb_interface.h>
#include <iostream>
#include <vector>
#include <usb.h>
#include <mblock/class_registry.h>
#include <usrp_inband_usb_packet.h>
#include <fpga_regs_common.h>
#include "usrp_rx.h"
#include <usrp_rx_stub.h>
#include "usrp_tx.h"
#include "usrp_standard.h"
#include <stdio.h>
#include <usrp_dbid.h>
typedef usrp_inband_usb_packet transport_pkt;
#include <symbols_usrp_interface_cs.h>
#include <symbols_usrp_tx_cs.h>
#include <symbols_usrp_rx_cs.h>
static pmt_t s_shutdown = pmt_intern("%shutdown");
static const bool verbose = false;
/*!
* \brief Initializes the USB interface m-block.
*
* The \p user_arg should be a PMT dictionary which can contain optional
* arguments for the block, such as the decimatoin and interpolation rate.
*/
usrp_usb_interface::usrp_usb_interface(mb_runtime *rt, const std::string &instance_name, pmt_t user_arg)
: mb_mblock(rt, instance_name, user_arg),
d_fake_usrp(false),
d_rx_reading(false),
d_interp_tx(128),
d_decim_rx(128),
d_rf_freq(-1),
d_rbf("inband_tx_rx.rbf")
{
// Dictionary for arguments to all of the components
pmt_t usrp_dict = user_arg;
// Default TX/RX interface
std::string tx_interface = "usrp_tx";
std::string rx_interface = "usrp_rx";
if (pmt_is_dict(usrp_dict)) {
// The 'fake-usrp' key enables the TX and RX stubs if PMT_T
if(pmt_t fake_usrp = pmt_dict_ref(usrp_dict,
pmt_intern("fake-usrp"),
PMT_NIL)) {
if(pmt_eqv(fake_usrp, PMT_T)) {
tx_interface = "usrp_tx_stub";
rx_interface = "usrp_rx_stub";
d_fake_usrp=true;
}
}
// Read the TX interpolations
if(pmt_t interp_tx = pmt_dict_ref(usrp_dict,
pmt_intern("interp-tx"),
PMT_NIL)) {
if(!pmt_eqv(interp_tx, PMT_NIL))
d_interp_tx = pmt_to_long(interp_tx);
}
// Read the RX decimation rate
if(pmt_t decim_rx = pmt_dict_ref(usrp_dict,
pmt_intern("decim-rx"),
PMT_NIL)) {
if(!pmt_eqv(decim_rx, PMT_NIL))
d_decim_rx = pmt_to_long(decim_rx);
}
// Read the RBF
if(pmt_t rbf = pmt_dict_ref(usrp_dict,
pmt_intern("rbf"),
PMT_NIL)) {
if(!pmt_eqv(rbf, PMT_NIL))
d_rbf = pmt_symbol_to_string(rbf);
}
// The RF center frequency
if(pmt_t rf_freq = pmt_dict_ref(usrp_dict,
pmt_intern("rf-freq"),
PMT_NIL)) {
if(!pmt_eqv(rf_freq, PMT_NIL))
d_rf_freq = pmt_to_double(rf_freq);
}
}
if (verbose) {
std::cout << "[USRP_USB_INTERFACE] Setting USRP RBF to "
<< d_rbf << std::endl;
std::cout << "[USRP_USB_INTERFACE] Setting TX interpolation to "
<< d_interp_tx << std::endl;
std::cout << "[USRP_USB_INTERFACE] Setting RX interpolation to "
<< d_decim_rx << std::endl;
std::cout << "[USRP_USB_INTERFACE] Using TX interface: "
<< tx_interface << "\n";
std::cout << "[USRP_USB_INTERFACE] Using RX interface: "
<< rx_interface << "\n";
}
d_cs = define_port("cs", "usrp-interface-cs", true, mb_port::EXTERNAL);
d_rx_cs = define_port("rx_cs", "usrp-rx-cs", false, mb_port::INTERNAL);
d_tx_cs = define_port("tx_cs", "usrp-tx-cs", false, mb_port::INTERNAL);
// Connect to TX and RX
define_component("tx", tx_interface, usrp_dict);
define_component("rx", rx_interface, usrp_dict);
connect("self", "rx_cs", "rx", "cs");
connect("self", "tx_cs", "tx", "cs");
// FIXME: the code should query the FPGA to retrieve the number of channels and such
d_ntx_chan = 2;
d_nrx_chan = 2;
}
usrp_usb_interface::~usrp_usb_interface()
{
}
void
usrp_usb_interface::initial_transition()
{
}
/*!
* \brief Handles all incoming signals to the block from the lowest m-blocks
* which read/write to the bus, or the higher m-block which is the USRP server.
*/
void
usrp_usb_interface::handle_message(mb_message_sptr msg)
{
pmt_t event = msg->signal(); // the "name" of the message
pmt_t port_id = msg->port_id(); // which port it came in on
pmt_t data = msg->data();
pmt_t invocation_handle;
if (pmt_eq(event, s_shutdown)) // ignore (for now)
return;
//------------- CONTROL / STATUS -------------//
if (pmt_eq(port_id, d_cs->port_symbol())) {
//------------ OPEN --------------//
if (pmt_eq(event, s_cmd_usrp_open)){
handle_cmd_open(data);
return;
}
//----------- CLOSE -------------//
else if (pmt_eq(event, s_cmd_usrp_close)) {
handle_cmd_close(data);
return;
}
//---------- NTX CHAN ----------//
else if (pmt_eq(event, s_cmd_usrp_ntx_chan)) {
invocation_handle = pmt_nth(0, data);
d_cs->send(s_response_usrp_ntx_chan,
pmt_list2(invocation_handle,
pmt_from_long(d_ntx_chan)));
return;
}
//---------- NRX CHAN ----------//
else if (pmt_eq(event, s_cmd_usrp_nrx_chan)) {
invocation_handle = pmt_nth(0, data);
d_cs->send(s_response_usrp_nrx_chan,
pmt_list2(invocation_handle,
pmt_from_long(d_nrx_chan)));
return;
}
//------------ WRITE -----------//
else if(pmt_eq(event, s_cmd_usrp_write)) {
handle_cmd_write(data);
return;
}
//-------- START READING --------//
else if(pmt_eq(event, s_cmd_usrp_start_reading)) {
handle_cmd_start_reading(data);
return;
}
//-------- STOP READING --------//
else if(pmt_eq(event, s_cmd_usrp_stop_reading)) {
handle_cmd_stop_reading(data);
return;
}
goto unhandled;
}
//---------------- RX ------------------//
if (pmt_eq(port_id, d_rx_cs->port_symbol())) {
// Relay reads back up
if(pmt_eq(event, s_response_usrp_rx_read)) {
d_cs->send(s_response_usrp_read, data);
return;
}
goto unhandled;
}
//---------------- TX ------------------//
if (pmt_eq(port_id, d_tx_cs->port_symbol())) {
if(pmt_eq(event, s_response_usrp_tx_write)) {
pmt_t invocation_handle = pmt_nth(0, data);
pmt_t status = pmt_nth(1, data);
pmt_t channel = pmt_nth(2, data);
d_cs->send(s_response_usrp_write,
pmt_list3(invocation_handle,
status,
channel));
return;
}
goto unhandled;
}
unhandled:
std::cout << "[USRP_USB_INTERFACE] unhandled msg: " << msg << std::endl;
}
/*!
* \brief Called by the handle_message() method when the incoming signal is to
* open a USB connection to the USRP (cmd-usrp-open).
*
* The \p data parameter is a PMT list, where the elements are an invocation
* handle and the USRP number.
*/
void
usrp_usb_interface::handle_cmd_open(pmt_t data)
{
pmt_t invocation_handle = pmt_nth(0, data);
long which_usrp = pmt_to_long(pmt_nth(1, data));
pmt_t reply_data;
if(d_fake_usrp) {
d_cs->send(s_response_usrp_open, pmt_list2(invocation_handle, PMT_T));
return;
}
if (verbose)
std::cout << "[USRP_USB_INTERFACE] Handling open request for USRP " << which_usrp << "\n";
// Open up a standard RX and TX for communication with the USRP
d_utx = usrp_standard_tx::make(which_usrp,
d_interp_tx,
1, // 1 channel
-1, // mux
4096, // USB block size
16, // nblocks for async transfers
d_rbf
);
if(d_utx==0) {
if (verbose)
std::cout << "[USRP_USB_INTERFACE] Failed to open TX\n";
reply_data = pmt_list2(invocation_handle, PMT_F);
d_cs->send(s_response_usrp_open, reply_data);
return;
}
// Perform TX daughterboard tuning
double target_freq;
unsigned int mux;
int tgain, rgain;
float input_rate;
bool ok;
usrp_tune_result r;
// Cast to usrp_basic and then detect daughterboards
d_ub_tx = d_utx;
usrp_subdev_spec tspec = pick_tx_subdevice();
db_base_sptr tsubdev = d_ub_tx->selected_subdev(tspec);
// Set the TX mux value
mux = d_utx->determine_tx_mux_value(tspec);
d_utx->set_mux(mux);
// Set the TX gain and determine rate
tgain = tsubdev->gain_max();
tsubdev->set_gain(tgain);
input_rate = d_ub_tx->converter_rate() / d_utx->interp_rate();
// Perform the actual tuning, if no frequency specified then pick
if(d_rf_freq==-1)
target_freq = tsubdev->freq_min()+((tsubdev->freq_max()-tsubdev->freq_min())/2.0);
else
target_freq = d_rf_freq;
ok = d_utx->tune(tsubdev->which(), tsubdev, target_freq, &r);
tsubdev->set_enable(true);
if(verbose) {
printf("TX Subdevice name is %s\n", tsubdev->name().c_str());
printf("TX Subdevice freq range: (%g, %g)\n",
tsubdev->freq_min(), tsubdev->freq_max());
printf("mux: %#08x\n", mux);
printf("target_freq: %f\n", target_freq);
printf("ok: %s\n", ok ? "true" : "false");
printf("gain: %d\n", tgain);
printf("r.baseband_freq: %f\n", r.baseband_freq);
printf("r.dxc_freq: %f\n", r.dxc_freq);
printf("r.residual_freq: %f\n", r.residual_freq);
printf("r.inverted: %d\n", r.inverted);
}
if(!ok) {
std::cerr << "[USRP_USB_INTERFACE] Failed to set center frequency on TX\n";
reply_data = pmt_list2(invocation_handle, PMT_F);
d_cs->send(s_response_usrp_open, reply_data);
return;
}
d_utx->start();
if (verbose)
std::cout << "[USRP_USB_INTERFACE] Setup TX channel\n";
d_urx =
usrp_standard_rx::make (which_usrp,
d_decim_rx,
1, // nchan
-1, // mux
0, // set blank mode to start
4096, // USB block size
16, // number of blocks for async transfers
d_rbf);
if(!d_urx) {
if (verbose)
std::cout << "[usrp_server] Failed to open RX\n";
reply_data = pmt_list2(invocation_handle, PMT_F);
d_cs->send(s_response_usrp_open, reply_data);
return;
}
// Cast to usrp_basic and then detect daughterboards
d_ub_rx = d_urx;
usrp_subdev_spec rspec = pick_rx_subdevice();
db_base_sptr rsubdev = d_ub_rx->selected_subdev(rspec);
// Set the RX mux value
mux = d_urx->determine_rx_mux_value(rspec);
d_urx->set_mux(mux);
// Set the RX gain and determine rate
rgain = rsubdev->gain_max()/2.0;
rsubdev->set_gain(rgain);
input_rate = d_ub_rx->converter_rate() / d_urx->decim_rate();
ok = d_urx->tune(rsubdev->which(), rsubdev, target_freq, &r);
rsubdev->set_enable(true);
if(verbose) {
printf("RX Subdevice name is %s\n", rsubdev->name().c_str());
printf("RX Subdevice freq range: (%g, %g)\n",
rsubdev->freq_min(), rsubdev->freq_max());
printf("mux: %#08x\n", mux);
printf("target_freq: %f\n", target_freq);
printf("ok: %s\n", ok ? "true" : "false");
printf("gain: %d\n", rgain);
printf("r.baseband_freq: %f\n", r.baseband_freq);
printf("r.dxc_freq: %f\n", r.dxc_freq);
printf("r.residual_freq: %f\n", r.residual_freq);
printf("r.inverted: %d\n", r.inverted);
}
if(!ok) {
std::cerr << "[USRP_USB_INTERFACE] Failed to set center frequency on RX\n";
reply_data = pmt_list2(invocation_handle, PMT_F);
d_cs->send(s_response_usrp_open, reply_data);
return;
}
if (verbose)
std::cout << "[USRP_USB_INTERFACE] Setup RX channel\n";
// d_utx->_write_fpga_reg(FR_DEBUG_EN,0xf);
// d_utx->_write_oe(0, 0xffff, 0xffff);
// d_urx->_write_oe(0, 0xffff, 0xffff);
// d_utx->_write_oe(1, 0xffff, 0xffff);
// d_urx->_write_oe(1, 0xffff, 0xffff);
d_cs->send(s_response_usrp_open, pmt_list2(invocation_handle, PMT_T));
}
/*!
* \brief Called by the handle_message() method when the incoming signal is to
* write data to the USB bus (cmd-usrp-write).
*
* The \p data parameter is a PMT list containing 3 mandatory elements in the
* following order: an invocation handle, channel, and a uniform vector
* representation of the packets.
*/
void
usrp_usb_interface::handle_cmd_write(pmt_t data)
{
pmt_t invocation_handle = pmt_nth(0, data);
pmt_t channel = pmt_nth(1, data);
pmt_t pkts = pmt_nth(2, data);
pmt_t tx_handle = pmt_make_any(d_utx);
d_tx_cs->send(s_cmd_usrp_tx_write,
pmt_list4(invocation_handle,
channel,
pkts,
tx_handle));
}
/*!
* \brief Called by the handle_message() method when the incoming signal is to
* start reading data from the USB bus (cmd-usrp-start-reading).
*
* The \p data parameter is a PMT list with a single element: an invocation
* handle which can be returned with the response.
*/
void
usrp_usb_interface::handle_cmd_start_reading(pmt_t data)
{
pmt_t invocation_handle = pmt_nth(0, data);
if(verbose)
std::cout << "[USRP_USB_INTERFACE] Starting RX...\n";
if(!d_fake_usrp)
d_urx->start();
pmt_t rx_handle = pmt_make_any(d_urx);
d_rx_cs->send(s_cmd_usrp_rx_start_reading, pmt_list2(PMT_NIL, rx_handle));
d_rx_reading = true;
return;
}
/*!
* \brief Called by the handle_message() method when the incoming signal is to
* stop reading data from the USB bus (cmd-usrp-stop-reading).
*
* The \p data parameter is a PMT list with a single element: an invocation
* handle which can be returned with the response.
*/
void
usrp_usb_interface::handle_cmd_stop_reading(pmt_t data)
{
pmt_t invocation_handle = pmt_nth(0, data);
if(!d_fake_usrp) {
if(verbose)
std::cout << "[USRP_USB_INTERFACE] Stopping RX...\n";
usrp_rx_stop = true;
// Used to allow a read() being called by a lower layer to complete before
// stopping, else there can be partial data left on the bus and can generate
// errors.
while(usrp_rx_stop) {usleep(1);}
d_urx->stop();
}
else {
if(verbose)
std::cout << "[USRP_USB_INTERFACE] Stopping fake RX...\n";
usrp_rx_stop_stub = true; // extern to communicate with stub to wait
}
d_rx_reading = false;
return;
}
/*!
* \brief Called by the handle_message() method when the incoming signal is to
* close the USB connection to the USRP.
*
* The \p data parameter is a PMT list with a single element: an invocation
* handle which can be returned with the response.
*/
void
usrp_usb_interface::handle_cmd_close(pmt_t data)
{
pmt_t invocation_handle = pmt_nth(0, data);
if(d_rx_reading)
handle_cmd_stop_reading(PMT_NIL);
if(d_fake_usrp) {
d_cs->send(s_response_usrp_close, pmt_list2(invocation_handle, PMT_T));
return;
}
if (verbose)
std::cout << "[USRP_USB_INTERFACE] Handling close request for USRP\n";
d_utx.reset();
d_urx.reset();
d_cs->send(s_response_usrp_close, pmt_list2(invocation_handle, PMT_T));
// FIXME This seems like a _very_ strange place to be calling shutdown_all.
// That decision should be left to high-level code, not low-level code like this.
shutdown_all(PMT_T);
}
usrp_subdev_spec
usrp_usb_interface::pick_rx_subdevice()
{
int dbids[] = {
USRP_DBID_FLEX_400_RX,
USRP_DBID_FLEX_900_RX,
USRP_DBID_FLEX_1200_RX,
USRP_DBID_FLEX_2400_RX,
USRP_DBID_TV_RX,
USRP_DBID_TV_RX_REV_2,
USRP_DBID_DBS_RX,
USRP_DBID_BASIC_RX
};
std::vector<int> candidates(dbids, dbids+(sizeof(dbids)/sizeof(int)));
return pick_subdev(d_ub_rx, candidates);
}
usrp_subdev_spec
usrp_usb_interface::pick_tx_subdevice()
{
int dbids[] = {
USRP_DBID_FLEX_400_TX,
USRP_DBID_FLEX_900_TX,
USRP_DBID_FLEX_1200_TX,
USRP_DBID_FLEX_2400_TX,
USRP_DBID_BASIC_TX
};
std::vector<int> candidates(dbids, dbids+(sizeof(dbids)/sizeof(int)));
return pick_subdev(d_ub_tx, candidates);
}
usrp_subdev_spec
usrp_usb_interface::pick_subdev(boost::shared_ptr<usrp_basic> d_usrp_basic, std::vector<int> candidates)
{
int dbid0 = d_usrp_basic->selected_subdev(usrp_subdev_spec(0, 0))->dbid();
int dbid1 = d_usrp_basic->selected_subdev(usrp_subdev_spec(1, 0))->dbid();
for (int i = 0; i < candidates.size(); i++) {
int dbid = candidates[i];
if (dbid0 == dbid)
return usrp_subdev_spec(0, 0);
if (dbid1 == dbid)
return usrp_subdev_spec(1, 0);
}
if (dbid0 >= 0)
return usrp_subdev_spec(0, 0);
if (dbid1 >= 0)
return usrp_subdev_spec(1, 0);
throw std::runtime_error("No suitable daughterboard found!");
}
REGISTER_MBLOCK_CLASS(usrp_usb_interface);