libusrp/host/lib/db_tv_rx.cc

279 lines
5.6 KiB
C++
Raw Normal View History

//
// Copyright 2008,2009 Free Software Foundation, Inc.
//
// This file is part of GNU Radio
//
// GNU Radio is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either asversion 3, or (at your option)
// any later version.
//
// GNU Radio is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with GNU Radio; see the file COPYING. If not, write to
// the Free Software Foundation, Inc., 51 Franklin Street,
// Boston, MA 02110-1301, USA.
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <usrp/db_tv_rx.h>
#include <db_base_impl.h>
/*****************************************************************************/
int
control_byte_1(bool fast_tuning_p, int reference_divisor)
{
int c = 0x88;
if(fast_tuning_p) {
c |= 0x40;
}
if(reference_divisor == 512) {
c |= 0x3 << 1;
}
else if(reference_divisor == 640) {
c |= 0x0 << 1;
}
else if(reference_divisor == 1024) {
c |= 0x1 << 1;
}
else {
assert(0);
}
return c;
}
int
control_byte_2(double target_freq, bool shutdown_tx_PGA)
{
int c;
if(target_freq < 158e6) { // VHF low
c = 0xa0;
}
else if(target_freq < 464e6) { // VHF high
c = 0x90;
}
else { // UHF
c = 0x30;
}
if(shutdown_tx_PGA) {
c |= 0x08;
}
return c;
}
/*****************************************************************************/
db_tv_rx::db_tv_rx(usrp_basic_sptr usrp, int which,
double first_IF, double second_IF)
: db_base(usrp, which)
{
// Handler for Tv Rx daughterboards.
//
// @param usrp: instance of usrp.source_c
// @param which: which side: 0, 1 corresponding to RX_A or RX_B respectively
if(which == 0) {
d_i2c_addr = 0x60;
}
else {
d_i2c_addr = 0x61;
}
d_first_IF = first_IF;
d_second_IF = second_IF;
d_reference_divisor = 640;
d_fast_tuning = false;
d_inverted = false; // FIXME get rid of this
set_gain((gain_min() + gain_max()) / 2.0); // initialize gain
bypass_adc_buffers(false);
}
db_tv_rx::~db_tv_rx()
{
}
// Gain setting
void
db_tv_rx::_set_rfagc(float gain)
{
float voltage;
assert(gain <= 60 && gain >= 0);
// FIXME this has a 0.5V step between gain = 60 and gain = 59.
// Why are there two cases instead of a single linear case?
if(gain == 60) {
voltage = 4;
}
else {
voltage = gain/60.0 * 2.25 + 1.25;
}
int dacword = int(4096*voltage/1.22/3.3); // 1.22 = opamp gain
assert(dacword>=0 && dacword<4096);
usrp()->write_aux_dac(d_which, 1, dacword);
}
void
db_tv_rx::_set_ifagc(float gain)
{
float voltage;
assert(gain <= 35 && gain >= 0);
voltage = gain/35.0 * 2.1 + 1.4;
int dacword = int(4096*voltage/1.22/3.3); // 1.22 = opamp gain
assert(dacword>=0 && dacword<4096);
usrp()->write_aux_dac(d_which, 0, dacword);
}
void
db_tv_rx::_set_pga(float pga_gain)
{
assert(pga_gain >=0 && pga_gain <=20);
if(d_which == 0) {
usrp()->set_pga(0, pga_gain);
}
else {
usrp()->set_pga (2, pga_gain);
}
}
double
db_tv_rx::freq_min()
{
return 50e6;
}
double
db_tv_rx::freq_max()
{
return 860e6;
}
struct freq_result_t
db_tv_rx::set_freq(double target_freq)
{
// Set the frequency.
//
// @param freq: target RF frequency in Hz
// @type freq: double
//
// @returns (ok, actual_baseband_freq) where:
// ok is True or False and indicates success or failure,
// actual_baseband_freq is RF frequency that corresponds to DC in the IF.
freq_result_t args = {false, 0};
double fmin = freq_min();
double fmax = freq_max();
if((target_freq < fmin) || (target_freq > fmax)) {
return args;
}
double target_lo_freq = target_freq + d_first_IF; // High side mixing
double f_ref = 4.0e6 / (double)(d_reference_divisor); // frequency steps
int divisor = int((target_lo_freq + (f_ref * 4)) / (f_ref * 8));
double actual_lo_freq = (f_ref * 8 * divisor);
double actual_freq = actual_lo_freq - d_first_IF;
if((divisor & ~0x7fff) != 0) { // must be 15-bits or less
return args;
}
// build i2c command string
std::vector<int> buf(4);
buf[0] = (divisor >> 8) & 0xff; // DB1
buf[1] = divisor & 0xff; // DB2
buf[2] = control_byte_1(d_fast_tuning, d_reference_divisor);
buf[3] = control_byte_2(actual_freq, true);
args.ok = usrp()->write_i2c(d_i2c_addr, int_seq_to_str (buf));
args.baseband_freq = actual_freq - d_second_IF;
return args;
}
float
db_tv_rx::gain_min()
{
return 0;
}
float
db_tv_rx::gain_max()
{
return 115;
}
float
db_tv_rx::gain_db_per_step()
{
return 1;
}
bool
db_tv_rx::set_gain(float gain)
{
// Set the gain.
//
// @param gain: gain in decibels
// @returns True/False
float rfgain, ifgain, pgagain;
assert(gain>=0 && gain<=115);
if(gain>60) {
rfgain = 60;
gain = gain - 60;
}
else {
rfgain = gain;
gain = 0;
}
if(gain > 35) {
ifgain = 35;
gain = gain - 35;
}
else {
ifgain = gain;
gain = 0;
}
pgagain = gain;
_set_rfagc(rfgain);
_set_ifagc(ifgain);
_set_pga(pgagain);
return true;
}
bool
db_tv_rx::is_quadrature()
{
// Return True if this board requires both I & Q analog channels.
return false;
}
bool
db_tv_rx::spectrum_inverted()
{
// The 43.75 MHz version is inverted
return d_inverted;
}