gr-osmosdr/lib/uhd/usrp_source.h

581 lines
20 KiB
C++

/* -*- c++ -*- */
/*
* Copyright 2010-2013 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#ifndef INCLUDED_GR_UHD_USRP_SOURCE_H
#define INCLUDED_GR_UHD_USRP_SOURCE_H
#include <gnuradio/sync_block.h>
#include <uhd/usrp/multi_usrp.hpp>
#ifndef INCLUDED_UHD_STREAM_HPP
namespace uhd {
struct stream_args_t
{
stream_args_t(const std::string &cpu = "",
const std::string &otw = "")
{
cpu_format = cpu;
otw_format = otw;
}
std::string cpu_format;
std::string otw_format;
device_addr_t args;
std::vector<size_t> channels;
};
}
# define INCLUDED_UHD_STREAM_HPP
#else
# define GR_UHD_USE_STREAM_API
#endif
namespace gr {
namespace uhd {
class uhd_usrp_source;
class usrp_source : virtual public sync_block
{
public:
// gr::uhd::usrp_source::sptr
typedef boost::shared_ptr<usrp_source> sptr;
/*!
* \brief Make a new USRP source block.
* \ingroup uhd_blk
*
* The USRP source block receives samples and writes to a stream.
* The source block also provides API calls for receiver settings.
*
* RX Stream tagging:
*
* The following tag keys will be produced by the work function:
* - pmt::string_to_symbol("rx_time")
* - pmt::string_to_symbol("rx_rate")
* - pmt::string_to_symbol("rx_freq")
*
* The timstamp tag value is a pmt tuple of the following:
* (uint64 seconds, and double fractional seconds).
* A timestamp tag is produced at start() and after overflows.
*
* The sample rate and center frequency tags are doubles,
* representing the sample rate in Sps and frequency in Hz.
* These tags are produced upon the user changing parameters.
*
* See the UHD manual for more detailed documentation:
* http://code.ettus.com/redmine/ettus/projects/uhd/wiki
*
* \param device_addr the address to identify the hardware
* \param io_type the desired output data type
* \param num_channels number of stream from the device
* \return a new USRP source block object
*/
static sptr make(const ::uhd::device_addr_t &device_addr,
const ::uhd::io_type_t &io_type,
size_t num_channels);
/*!
* \brief Make a new USRP source block.
*
* The USRP source block receives samples and writes to a stream.
* The source block also provides API calls for receiver settings.
*
* RX Stream tagging:
*
* The following tag keys will be produced by the work function:
* - pmt::string_to_symbol("rx_time")
*
* The timstamp tag value is a pmt tuple of the following:
* (uint64 seconds, and double fractional seconds).
* A timestamp tag is produced at start() and after overflows.
*
* See the UHD manual for more detailed documentation:
* http://code.ettus.com/redmine/ettus/projects/uhd/wiki
*
* \param device_addr the address to identify the hardware
* \param stream_args the IO format and channel specification
* \return a new USRP source block object
*/
static sptr make(const ::uhd::device_addr_t &device_addr,
const ::uhd::stream_args_t &stream_args);
/*!
* Set the start time for incoming samples.
* To control when samples are received,
* set this value before starting the flow graph.
* The value is cleared after each run.
* When not specified, the start time will be:
* - Immediately for the one channel case
* - in the near future for multi-channel
*
* \param time the absolute time for reception to begin
*/
virtual void set_start_time(const ::uhd::time_spec_t &time) = 0;
/*!
* *Advanced use only:*
* Issue a stream command to all channels in this source block.
*
* This method is intended to override the default "always on"
* behavior. After starting the flow graph, the user should
* call stop() on this block, then issue any desired arbitrary
* stream_cmd_t structs to the device. The USRP will be able to
* enqueue several stream commands in the FPGA.
*
* \param cmd the stream command to issue to all source channels
*/
virtual void issue_stream_cmd(const ::uhd::stream_cmd_t &cmd) = 0;
/*!
* Returns identifying information about this USRP's configuration.
* Returns motherboard ID, name, and serial.
* Returns daughterboard RX ID, subdev name and spec, serial, and antenna.
* \param chan channel index 0 to N-1
* \return RX info
*/
virtual ::uhd::dict<std::string, std::string> get_usrp_info(size_t chan = 0) = 0;
/*!
* Set the frontend specification.
* \param spec the subdev spec markup string
* \param mboard the motherboard index 0 to M-1
*/
virtual void set_subdev_spec(const std::string &spec, size_t mboard = 0) = 0;
/*!
* Get the RX frontend specification.
* \param mboard the motherboard index 0 to M-1
* \return the frontend specification in use
*/
virtual std::string get_subdev_spec(size_t mboard = 0) = 0;
/*!
* Set the sample rate for the usrp device.
* \param rate a new rate in Sps
*/
virtual void set_samp_rate(double rate) = 0;
/*!
* Get the sample rate for the usrp device.
* This is the actual sample rate and may differ from the rate set.
* \return the actual rate in Sps
*/
virtual double get_samp_rate(void) = 0;
/*!
* Get the possible sample rates for the usrp device.
* \return a range of rates in Sps
*/
virtual ::uhd::meta_range_t get_samp_rates(void) = 0;
/*!
* Tune the usrp device to the desired center frequency.
* \param tune_request the tune request instructions
* \param chan the channel index 0 to N-1
* \return a tune result with the actual frequencies
*/
virtual ::uhd::tune_result_t set_center_freq
(const ::uhd::tune_request_t tune_request, size_t chan = 0) = 0;
/*!
* Tune the usrp device to the desired center frequency.
* This is a wrapper around set center freq so that in this case,
* the user can pass a single frequency in the call through swig.
* \param freq the desired frequency in Hz
* \param chan the channel index 0 to N-1
* \return a tune result with the actual frequencies
*/
::uhd::tune_result_t set_center_freq(double freq, size_t chan = 0)
{
return set_center_freq(::uhd::tune_request_t(freq), chan);
}
/*!
* Get the center frequency.
* \param chan the channel index 0 to N-1
* \return the frequency in Hz
*/
virtual double get_center_freq(size_t chan = 0) = 0;
/*!
* Get the tunable frequency range.
* \param chan the channel index 0 to N-1
* \return the frequency range in Hz
*/
virtual ::uhd::freq_range_t get_freq_range(size_t chan = 0) = 0;
/*!
* Set the gain for the dboard.
* \param gain the gain in dB
* \param chan the channel index 0 to N-1
*/
virtual void set_gain(double gain, size_t chan = 0) = 0;
/*!
* Set the named gain on the dboard.
* \param gain the gain in dB
* \param name the name of the gain stage
* \param chan the channel index 0 to N-1
*/
virtual void set_gain(double gain,
const std::string &name,
size_t chan = 0) = 0;
/*!
* Get the actual dboard gain setting.
* \param chan the channel index 0 to N-1
* \return the actual gain in dB
*/
virtual double get_gain(size_t chan = 0) = 0;
/*!
* Get the actual dboard gain setting of named stage.
* \param name the name of the gain stage
* \param chan the channel index 0 to N-1
* \return the actual gain in dB
*/
virtual double get_gain(const std::string &name,
size_t chan = 0) = 0;
/*!
* Get the actual dboard gain setting of named stage.
* \param chan the channel index 0 to N-1
* \return the actual gain in dB
*/
virtual std::vector<std::string> get_gain_names(size_t chan = 0) = 0;
/*!
* Get the settable gain range.
* \param chan the channel index 0 to N-1
* \return the gain range in dB
*/
virtual ::uhd::gain_range_t get_gain_range(size_t chan = 0) = 0;
/*!
* Get the settable gain range.
* \param name the name of the gain stage
* \param chan the channel index 0 to N-1
* \return the gain range in dB
*/
virtual ::uhd::gain_range_t get_gain_range(const std::string &name,
size_t chan = 0) = 0;
/*!
* Set the antenna to use.
* \param ant the antenna string
* \param chan the channel index 0 to N-1
*/
virtual void set_antenna(const std::string &ant,
size_t chan = 0) = 0;
/*!
* Get the antenna in use.
* \param chan the channel index 0 to N-1
* \return the antenna string
*/
virtual std::string get_antenna(size_t chan = 0) = 0;
/*!
* Get a list of possible antennas.
* \param chan the channel index 0 to N-1
* \return a vector of antenna strings
*/
virtual std::vector<std::string> get_antennas(size_t chan = 0) = 0;
/*!
* Set the bandpass filter on the RF frontend.
* \param bandwidth the filter bandwidth in Hz
* \param chan the channel index 0 to N-1
*/
virtual void set_bandwidth(double bandwidth, size_t chan = 0) = 0;
/*!
* Get the bandpass filter setting on the RF frontend.
* \param chan the channel index 0 to N-1
* \return bandwidth of the filter in Hz
*/
virtual double get_bandwidth(size_t chan = 0) = 0;
/*!
* Get the bandpass filter range of the RF frontend.
* \param chan the channel index 0 to N-1
* \return the range of the filter bandwidth in Hz
*/
virtual ::uhd::freq_range_t get_bandwidth_range(size_t chan = 0) = 0;
/*!
* Enable/disable the automatic DC offset correction.
* The automatic correction subtracts out the long-run average.
*
* When disabled, the averaging option operation is halted.
* Once halted, the average value will be held constant until
* the user re-enables the automatic correction or overrides the
* value by manually setting the offset.
*
* \param enb true to enable automatic DC offset correction
* \param chan the channel index 0 to N-1
*/
virtual void set_auto_dc_offset(const bool enb, size_t chan = 0) = 0;
/*!
* Set a constant DC offset value.
* The value is complex to control both I and Q.
* Only set this when automatic correction is disabled.
* \param offset the dc offset (1.0 is full-scale)
* \param chan the channel index 0 to N-1
*/
virtual void set_dc_offset(const std::complex<double> &offset, size_t chan = 0) = 0;
/*!
* Set the RX frontend IQ imbalance correction.
* Use this to adjust the magnitude and phase of I and Q.
*
* \param correction the complex correction value
* \param chan the channel index 0 to N-1
*/
virtual void set_iq_balance(const std::complex<double> &correction,
size_t chan = 0) = 0;
/*!
* Get a RF frontend sensor value.
* \param name the name of the sensor
* \param chan the channel index 0 to N-1
* \return a sensor value object
*/
virtual ::uhd::sensor_value_t get_sensor(const std::string &name,
size_t chan = 0) = 0;
/*!
* Get a list of possible RF frontend sensor names.
* \param chan the channel index 0 to N-1
* \return a vector of sensor names
*/
virtual std::vector<std::string> get_sensor_names(size_t chan = 0) = 0;
//! DEPRECATED use get_sensor
::uhd::sensor_value_t get_dboard_sensor(const std::string &name,
size_t chan = 0)
{
return this->get_sensor(name, chan);
}
//! DEPRECATED use get_sensor_names
std::vector<std::string> get_dboard_sensor_names(size_t chan = 0)
{
return this->get_sensor_names(chan);
}
/*!
* Get a motherboard sensor value.
* \param name the name of the sensor
* \param mboard the motherboard index 0 to M-1
* \return a sensor value object
*/
virtual ::uhd::sensor_value_t get_mboard_sensor(const std::string &name,
size_t mboard = 0) = 0;
/*!
* Get a list of possible motherboard sensor names.
* \param mboard the motherboard index 0 to M-1
* \return a vector of sensor names
*/
virtual std::vector<std::string> get_mboard_sensor_names(size_t mboard = 0) = 0;
/*!
* Set the clock configuration.
* DEPRECATED for set_time/clock_source.
* \param clock_config the new configuration
* \param mboard the motherboard index 0 to M-1
*/
virtual void set_clock_config(const ::uhd::clock_config_t &clock_config,
size_t mboard = 0) = 0;
/*!
* Set the time source for the usrp device.
* This sets the method of time synchronization,
* typically a pulse per second or an encoded time.
* Typical options for source: external, MIMO.
* \param source a string representing the time source
* \param mboard which motherboard to set the config
*/
virtual void set_time_source(const std::string &source,
const size_t mboard = 0) = 0;
/*!
* Get the currently set time source.
* \param mboard which motherboard to get the config
* \return the string representing the time source
*/
virtual std::string get_time_source(const size_t mboard) = 0;
/*!
* Get a list of possible time sources.
* \param mboard which motherboard to get the list
* \return a vector of strings for possible settings
*/
virtual std::vector<std::string> get_time_sources(const size_t mboard) = 0;
/*!
* Set the clock source for the usrp device.
* This sets the source for a 10 Mhz reference clock.
* Typical options for source: internal, external, MIMO.
* \param source a string representing the clock source
* \param mboard which motherboard to set the config
*/
virtual void set_clock_source(const std::string &source,
const size_t mboard = 0) = 0;
/*!
* Get the currently set clock source.
* \param mboard which motherboard to get the config
* \return the string representing the clock source
*/
virtual std::string get_clock_source(const size_t mboard) = 0;
/*!
* Get a list of possible clock sources.
* \param mboard which motherboard to get the list
* \return a vector of strings for possible settings
*/
virtual std::vector<std::string> get_clock_sources(const size_t mboard) = 0;
/*!
* Get the master clock rate.
* \param mboard the motherboard index 0 to M-1
* \return the clock rate in Hz
*/
virtual double get_clock_rate(size_t mboard = 0) = 0;
/*!
* Set the master clock rate.
* \param rate the new rate in Hz
* \param mboard the motherboard index 0 to M-1
*/
virtual void set_clock_rate(double rate, size_t mboard = 0) = 0;
/*!
* Get the current time registers.
* \param mboard the motherboard index 0 to M-1
* \return the current usrp time
*/
virtual ::uhd::time_spec_t get_time_now(size_t mboard = 0) = 0;
/*!
* Get the time when the last pps pulse occured.
* \param mboard the motherboard index 0 to M-1
* \return the current usrp time
*/
virtual ::uhd::time_spec_t get_time_last_pps(size_t mboard = 0) = 0;
/*!
* Sets the time registers immediately.
* \param time_spec the new time
* \param mboard the motherboard index 0 to M-1
*/
virtual void set_time_now(const ::uhd::time_spec_t &time_spec,
size_t mboard = 0) = 0;
/*!
* Set the time registers at the next pps.
* \param time_spec the new time
*/
virtual void set_time_next_pps(const ::uhd::time_spec_t &time_spec) = 0;
/*!
* Sync the time registers with an unknown pps edge.
* \param time_spec the new time
*/
virtual void set_time_unknown_pps(const ::uhd::time_spec_t &time_spec) = 0;
/*!
* Set the time at which the control commands will take effect.
*
* A timed command will back-pressure all subsequent timed
* commands, assuming that the subsequent commands occur within
* the time-window. If the time spec is late, the command will
* be activated upon arrival.
*
* \param time_spec the time at which the next command will activate
* \param mboard which motherboard to set the config
*/
virtual void set_command_time(const ::uhd::time_spec_t &time_spec,
size_t mboard = 0) = 0;
/*!
* Clear the command time so future commands are sent ASAP.
*
* \param mboard which motherboard to set the config
*/
virtual void clear_command_time(size_t mboard = 0) = 0;
/*!
* Get access to the underlying uhd dboard iface object.
* \return the dboard_iface object
*/
virtual ::uhd::usrp::dboard_iface::sptr get_dboard_iface(size_t chan = 0) = 0;
/*!
* Get access to the underlying uhd device object.
* \return the multi usrp device object
*/
virtual ::uhd::usrp::multi_usrp::sptr get_device(void) = 0;
/*!
* Perform write on the user configuration register bus. These
* only exist if the user has implemented custom setting
* registers in the device FPGA.
* \param addr 8-bit register address
* \param data 32-bit register value
* \param mboard which motherboard to set the user register
*/
virtual void set_user_register(const uint8_t addr,
const uint32_t data,
size_t mboard = 0) = 0;
/*!
* Convenience function for finite data acquisition.
* This is not to be used with the scheduler; rather,
* one can request samples from the USRP in python.
* //TODO assumes fc32
* \param nsamps the number of samples
* \return a vector of complex float samples
*/
virtual std::vector<std::complex<float> >
finite_acquisition(const size_t nsamps) = 0;
/*!
* Convenience function for finite data acquisition. This is the
* multi-channel version of finite_acquisition; This is not to
* be used with the scheduler; rather, one can request samples
* from the USRP in python.
* //TODO assumes fc32
* \param nsamps the number of samples per channel
* \return a vector of buffers, where each buffer represents a channel
*/
virtual std::vector<std::vector<std::complex<float> > >
finite_acquisition_v(const size_t nsamps) = 0;
};
} /* namespace uhd */
} /* namespace gr */
#endif /* INCLUDED_GR_UHD_USRP_SOURCE_H */