wireshark/epan/dissectors/packet-erf.c

3967 lines
178 KiB
C

/* packet-erf.c
* Routines for ERF encapsulation dissection
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include "config.h"
#include <epan/packet.h>
#include <epan/expert.h>
#include <epan/prefs.h>
#include <epan/ipproto.h>
#include <epan/to_str.h>
#include <wsutil/str_util.h>
#include <wiretap/wtap.h>
#include <wiretap/erf_record.h>
#include "packet-erf.h"
#include "packet-ptp.h"
/*
*/
void proto_register_erf(void);
void proto_reg_handoff_erf(void);
#define DECHAN_MAX_LINE_RATE 5
#define DECHAN_MAX_VC_SIZE 5
#define DECHAN_MAX_AUG_INDEX 4
typedef struct sdh_g707_format_s
{
guint8 m_sdh_line_rate;
guint8 m_vc_size ;
gint8 m_vc_index_array[DECHAN_MAX_AUG_INDEX];
/* i = 3 --> ITU-T letter #D - index of AUG-16
* i = 2 --> ITU-T letter #C - index of AUG-4,
* i = 1 --> ITU-T letter #B - index of AUG-1
* i = 0 --> ITU-T letter #A - index of AU3*/
} sdh_g707_format_t;
static dissector_handle_t erf_handle;
static dissector_table_t erf_dissector_table;
/* Initialize the protocol and registered fields */
static int proto_erf;
static int hf_erf_ts;
static int hf_erf_rectype;
static int hf_erf_type;
static int hf_erf_ehdr;
static int hf_erf_ehdr_t;
static int hf_erf_flags;
static int hf_erf_flags_cap;
static int hf_erf_flags_if_raw;
static int hf_erf_flags_vlen;
static int hf_erf_flags_trunc;
static int hf_erf_flags_rxe;
static int hf_erf_flags_dse;
static int hf_erf_flags_res;
static int hf_erf_rlen;
static int hf_erf_lctr;
static int hf_erf_color;
static int hf_erf_wlen;
/* Classification extension header */
/* InterceptID extension header */
static int hf_erf_ehdr_int_res1;
static int hf_erf_ehdr_int_id;
static int hf_erf_ehdr_int_res2;
/* Raw Link extension header */
static int hf_erf_ehdr_raw_link_res;
static int hf_erf_ehdr_raw_link_seqnum;
static int hf_erf_ehdr_raw_link_rate;
static int hf_erf_ehdr_raw_link_type;
/* Classification extension header */
static int hf_erf_ehdr_class_flags;
static int hf_erf_ehdr_class_flags_sh;
static int hf_erf_ehdr_class_flags_shm;
static int hf_erf_ehdr_class_flags_res1;
static int hf_erf_ehdr_class_flags_user;
static int hf_erf_ehdr_class_flags_res2;
static int hf_erf_ehdr_class_flags_drop;
static int hf_erf_ehdr_class_flags_str;
static int hf_erf_ehdr_class_seqnum;
/* BFS extension header */
static int hf_erf_ehdr_bfs_hash;
static int hf_erf_ehdr_bfs_color;
static int hf_erf_ehdr_bfs_raw_hash;
/* Channelised extension header */
static int hf_erf_ehdr_chan_morebits;
static int hf_erf_ehdr_chan_morefrag;
static int hf_erf_ehdr_chan_seqnum;
static int hf_erf_ehdr_chan_res;
static int hf_erf_ehdr_chan_virt_container_id;
static int hf_erf_ehdr_chan_assoc_virt_container_size;
static int hf_erf_ehdr_chan_rate;
static int hf_erf_ehdr_chan_type;
/* Filter Hash extension header */
static int hf_erf_ehdr_signature_payload_hash;
static int hf_erf_ehdr_signature_color;
static int hf_erf_ehdr_signature_flow_hash;
/* Flow ID extension header */
static int hf_erf_ehdr_flow_id_source_id;
static int hf_erf_ehdr_flow_id_hash_type;
static int hf_erf_ehdr_flow_id_hash_type_type;
static int hf_erf_ehdr_flow_id_hash_type_inner;
static int hf_erf_ehdr_flow_id_stack_type;
static int hf_erf_ehdr_flow_id_flow_hash;
/* Host ID extension header */
static int hf_erf_ehdr_host_id_sourceid;
static int hf_erf_ehdr_host_id_hostid;
/* Anchor ID extension header */
static int hf_erf_ehdr_anchor_id_definition;
static int hf_erf_ehdr_anchor_id_reserved;
static int hf_erf_ehdr_anchor_id_anchorid;
static int hf_erf_ehdr_anchor_id_flags;
static int hf_erf_anchor_linked;
static int hf_erf_anchor_anchorid;
static int hf_erf_anchor_hostid;
/* Generated Host ID/Source ID */
static int hf_erf_sourceid;
static int hf_erf_hostid;
static int hf_erf_source_current;
static int hf_erf_source_next;
static int hf_erf_source_prev;
/* Entropy extension header */
static int hf_erf_ehdr_entropy_entropy;
static int hf_erf_ehdr_entropy_entropy_raw;
static int hf_erf_ehdr_entropy_reserved;
/* Unknown extension header */
static int hf_erf_ehdr_unk;
/* MC HDLC Header */
static int hf_erf_mc_hdlc;
static int hf_erf_mc_hdlc_cn;
static int hf_erf_mc_hdlc_res1;
static int hf_erf_mc_hdlc_res2;
static int hf_erf_mc_hdlc_fcse;
static int hf_erf_mc_hdlc_sre;
static int hf_erf_mc_hdlc_lre;
static int hf_erf_mc_hdlc_afe;
static int hf_erf_mc_hdlc_oe;
static int hf_erf_mc_hdlc_lbe;
static int hf_erf_mc_hdlc_first;
static int hf_erf_mc_hdlc_res3;
/* MC RAW Header */
static int hf_erf_mc_raw;
static int hf_erf_mc_raw_int;
static int hf_erf_mc_raw_res1;
static int hf_erf_mc_raw_sre;
static int hf_erf_mc_raw_lre;
static int hf_erf_mc_raw_res2;
static int hf_erf_mc_raw_lbe;
static int hf_erf_mc_raw_first;
static int hf_erf_mc_raw_res3;
/* MC ATM Header */
static int hf_erf_mc_atm;
static int hf_erf_mc_atm_cn;
static int hf_erf_mc_atm_res1;
static int hf_erf_mc_atm_mul;
static int hf_erf_mc_atm_port;
static int hf_erf_mc_atm_res2;
static int hf_erf_mc_atm_lbe;
static int hf_erf_mc_atm_hec;
static int hf_erf_mc_atm_crc10;
static int hf_erf_mc_atm_oamcell;
static int hf_erf_mc_atm_first;
static int hf_erf_mc_atm_res3;
/* MC Raw link Header */
static int hf_erf_mc_rawl;
static int hf_erf_mc_rawl_cn;
static int hf_erf_mc_rawl_res1;
static int hf_erf_mc_rawl_lbe;
static int hf_erf_mc_rawl_first;
static int hf_erf_mc_rawl_res2;
/* MC AAL5 Header */
static int hf_erf_mc_aal5;
static int hf_erf_mc_aal5_cn;
static int hf_erf_mc_aal5_res1;
static int hf_erf_mc_aal5_port;
static int hf_erf_mc_aal5_crcck;
static int hf_erf_mc_aal5_crce;
static int hf_erf_mc_aal5_lenck;
static int hf_erf_mc_aal5_lene;
static int hf_erf_mc_aal5_res2;
static int hf_erf_mc_aal5_first;
static int hf_erf_mc_aal5_res3;
/* MC AAL2 Header */
static int hf_erf_mc_aal2;
static int hf_erf_mc_aal2_cn;
static int hf_erf_mc_aal2_res1;
static int hf_erf_mc_aal2_res2;
static int hf_erf_mc_aal2_port;
static int hf_erf_mc_aal2_res3;
static int hf_erf_mc_aal2_first;
static int hf_erf_mc_aal2_maale;
static int hf_erf_mc_aal2_lene;
static int hf_erf_mc_aal2_cid;
/* AAL2 Header */
static int hf_erf_aal2;
static int hf_erf_aal2_cid;
static int hf_erf_aal2_maale;
static int hf_erf_aal2_maalei;
static int hf_erf_aal2_first;
static int hf_erf_aal2_res1;
/* ERF Ethernet header/pad */
static int hf_erf_eth;
static int hf_erf_eth_off;
static int hf_erf_eth_pad;
/* ERF Meta record tag */
static int hf_erf_meta_tag_type;
static int hf_erf_meta_tag_len;
static int hf_erf_meta_tag_unknown;
/* Initialize the subtree pointers */
static gint ett_erf;
static gint ett_erf_pseudo_hdr;
static gint ett_erf_rectype;
static gint ett_erf_hash_type;
static gint ett_erf_flags;
static gint ett_erf_mc_hdlc;
static gint ett_erf_mc_raw;
static gint ett_erf_mc_atm;
static gint ett_erf_mc_rawlink;
static gint ett_erf_mc_aal5;
static gint ett_erf_mc_aal2;
static gint ett_erf_aal2;
static gint ett_erf_eth;
static gint ett_erf_meta;
static gint ett_erf_meta_tag;
static gint ett_erf_source;
static gint ett_erf_anchor;
static gint ett_erf_anchor_flags;
static gint ett_erf_entropy_value;
static expert_field ei_erf_extension_headers_not_shown;
static expert_field ei_erf_packet_loss;
static expert_field ei_erf_mc_hdlc_checksum_error;
static expert_field ei_erf_mc_hdlc_short_error;
static expert_field ei_erf_mc_hdlc_long_error;
static expert_field ei_erf_mc_hdlc_abort_error;
static expert_field ei_erf_mc_hdlc_octet_error;
static expert_field ei_erf_mc_hdlc_lost_byte_error;
static expert_field ei_erf_rx_error;
static expert_field ei_erf_ds_error;
static expert_field ei_erf_truncation_error;
static expert_field ei_erf_meta_section_len_error;
static expert_field ei_erf_meta_truncated_record;
static expert_field ei_erf_meta_truncated_tag;
static expert_field ei_erf_meta_zero_len_tag;
static expert_field ei_erf_meta_reset;
typedef enum {
ERF_HDLC_CHDLC = 0,
ERF_HDLC_PPP = 1,
ERF_HDLC_FRELAY = 2,
ERF_HDLC_MTP2 = 3,
ERF_HDLC_GUESS = 4,
ERF_HDLC_MAX = 5
} erf_hdlc_type_vals;
static gint erf_hdlc_type = ERF_HDLC_GUESS;
static dissector_handle_t chdlc_handle, ppp_handle, frelay_handle, mtp2_handle;
static gboolean erf_rawcell_first = FALSE;
typedef enum {
ERF_AAL5_GUESS = 0,
ERF_AAL5_LLC = 1,
ERF_AAL5_UNSPEC = 2
} erf_aal5_type_val;
static gint erf_aal5_type = ERF_AAL5_GUESS;
static dissector_handle_t atm_untruncated_handle;
static dissector_handle_t sdh_handle;
/* ERF Extension Header */
#define ERF_EHDR_FLOW_ID_HASH_TYPE_TYPE_MASK 0x7f
#define ERF_EHDR_FLOW_ID_HASH_TYPE_INNER_MASK 0x80
/* Classification */
#define EHDR_CLASS_FLAGS_MASK 0x00ffffff
#define EHDR_CLASS_SH_MASK 0x00800000
#define EHDR_CLASS_SHM_MASK 0x00400000
#define EHDR_CLASS_RES1_MASK 0x00300000
#define EHDR_CLASS_USER_MASK 0x000FFFF0
#define EHDR_CLASS_RES2_MASK 0x00000008
#define EHDR_CLASS_DROP_MASK 0x00000004
#define EHDR_CLASS_STER_MASK 0x00000003
/* Header for ATM traffic identification */
#define ATM_HDR_LENGTH 4
/* Multi Channel HDLC */
#define MC_HDLC_CN_MASK 0x000003ff
#define MC_HDLC_RES1_MASK 0x0000fc00
#define MC_HDLC_RES2_MASK 0x00ff0000
#define MC_HDLC_FCSE_MASK 0x01000000
#define MC_HDLC_SRE_MASK 0x02000000
#define MC_HDLC_LRE_MASK 0x04000000
#define MC_HDLC_AFE_MASK 0x08000000
#define MC_HDLC_OE_MASK 0x10000000
#define MC_HDLC_LBE_MASK 0x20000000
#define MC_HDLC_FIRST_MASK 0x40000000
#define MC_HDLC_RES3_MASK 0x80000000
/* Multi Channel RAW */
#define MC_RAW_INT_MASK 0x0000000f
#define MC_RAW_RES1_MASK 0x01fffff0
#define MC_RAW_SRE_MASK 0x02000000
#define MC_RAW_LRE_MASK 0x04000000
#define MC_RAW_RES2_MASK 0x18000000
#define MC_RAW_LBE_MASK 0x20000000
#define MC_RAW_FIRST_MASK 0x40000000
#define MC_RAW_RES3_MASK 0x80000000
/* Multi Channel ATM */
#define MC_ATM_CN_MASK 0x000003ff
#define MC_ATM_RES1_MASK 0x00007c00
#define MC_ATM_MUL_MASK 0x00008000
#define MC_ATM_PORT_MASK 0x000f0000
#define MC_ATM_RES2_MASK 0x00f00000
#define MC_ATM_LBE_MASK 0x01000000
#define MC_ATM_HEC_MASK 0x02000000
#define MC_ATM_CRC10_MASK 0x04000000
#define MC_ATM_OAMCELL_MASK 0x08000000
#define MC_ATM_FIRST_MASK 0x10000000
#define MC_ATM_RES3_MASK 0xe0000000
/* Multi Channel RAW Link */
#define MC_RAWL_CN_MASK 0x000003ff
#define MC_RAWL_RES1_MASK 0x1ffffc00
#define MC_RAWL_LBE_MASK 0x20000000
#define MC_RAWL_FIRST_MASK 0x40000000
#define MC_RAWL_RES2_MASK 0x80000000
/* Multi Channel AAL5 */
#define MC_AAL5_CN_MASK 0x000003ff
#define MC_AAL5_RES1_MASK 0x0000fc00
#define MC_AAL5_PORT_MASK 0x000f0000
#define MC_AAL5_CRCCK_MASK 0x00100000
#define MC_AAL5_CRCE_MASK 0x00200000
#define MC_AAL5_LENCK_MASK 0x00400000
#define MC_AAL5_LENE_MASK 0x00800000
#define MC_AAL5_RES2_MASK 0x0f000000
#define MC_AAL5_FIRST_MASK 0x10000000
#define MC_AAL5_RES3_MASK 0xe0000000
/* Multi Channel AAL2 */
#define MC_AAL2_CN_MASK 0x000003ff
#define MC_AAL2_RES1_MASK 0x00001c00
#define MC_AAL2_RES2_MASK 0x0000e000
#define MC_AAL2_PORT_MASK 0x000f0000
#define MC_AAL2_RES3_MASK 0x00100000
#define MC_AAL2_FIRST_MASK 0x00200000
#define MC_AAL2_MAALE_MASK 0x00400000
#define MC_AAL2_LENE_MASK 0x00800000
#define MC_AAL2_CID_MASK 0xff000000
#define MC_AAL2_CID_SHIFT 24
/* AAL2 */
#define AAL2_CID_MASK 0x000000ff
#define AAL2_CID_SHIFT 0
#define AAL2_MAALE_MASK 0x0000ff00
#define AAL2_MAALEI_MASK 0x00010000
#define AAL2_FIRST_MASK 0x00020000
#define AAL2_RES1_MASK 0xfffc0000
/* ETH */
#define ETH_OFF_MASK 0x00
#define ETH_RES1_MASK 0x00
/* Invalid Provenance sections used for special lookup */
#define ERF_META_SECTION_NONE 0
#define ERF_META_SECTION_UNKNOWN 1
#define NS_PER_S 1000000000
/* Record type defines */
static const value_string erf_type_vals[] = {
{ ERF_TYPE_LEGACY ,"LEGACY"},
{ ERF_TYPE_HDLC_POS ,"HDLC_POS"},
{ ERF_TYPE_ETH ,"ETH"},
{ ERF_TYPE_ATM ,"ATM"},
{ ERF_TYPE_AAL5 ,"AAL5"},
{ ERF_TYPE_MC_HDLC ,"MC_HDLC"},
{ ERF_TYPE_MC_RAW ,"MC_RAW"},
{ ERF_TYPE_MC_ATM ,"MC_ATM"},
{ ERF_TYPE_MC_RAW_CHANNEL ,"MC_RAW_CHANNEL"},
{ ERF_TYPE_MC_AAL5 ,"MC_AAL5"},
{ ERF_TYPE_COLOR_HDLC_POS ,"COLOR_HDLC_POS"},
{ ERF_TYPE_COLOR_ETH ,"COLOR_ETH"},
{ ERF_TYPE_COLOR_HASH_POS ,"COLOR_HASH_POS"},
{ ERF_TYPE_COLOR_HASH_ETH ,"COLOR_HASH_ETH"},
{ ERF_TYPE_MC_AAL2 ,"MC_AAL2 "},
{ ERF_TYPE_IP_COUNTER ,"IP_COUNTER"},
{ ERF_TYPE_TCP_FLOW_COUNTER ,"TCP_FLOW_COUNTER"},
{ ERF_TYPE_DSM_COLOR_HDLC_POS ,"DSM_COLOR_HDLC_POS"},
{ ERF_TYPE_DSM_COLOR_ETH ,"DSM_COLOR_ETH "},
{ ERF_TYPE_COLOR_MC_HDLC_POS ,"COLOR_MC_HDLC_POS"},
{ ERF_TYPE_AAL2 ,"AAL2"},
{ ERF_TYPE_PAD ,"PAD"},
{ ERF_TYPE_INFINIBAND , "INFINIBAND"},
{ ERF_TYPE_IPV4 , "IPV4"},
{ ERF_TYPE_IPV6 , "IPV6"},
{ ERF_TYPE_RAW_LINK , "RAW_LINK"},
{ ERF_TYPE_INFINIBAND_LINK , "INFINIBAND_LINK"},
{ ERF_TYPE_META , "META"},
{ ERF_TYPE_OPA_SNC , "OMNI-PATH_SNC"},
{ ERF_TYPE_OPA_9B , "OMNI-PATH"},
{0, NULL}
};
/* Extended headers type defines */
static const value_string ehdr_type_vals[] = {
{ ERF_EXT_HDR_TYPE_CLASSIFICATION , "Classification"},
{ ERF_EXT_HDR_TYPE_INTERCEPTID , "InterceptID"},
{ ERF_EXT_HDR_TYPE_RAW_LINK , "Raw Link"},
{ ERF_EXT_HDR_TYPE_BFS , "BFS Filter/Hash"},
{ ERF_EXT_HDR_TYPE_CHANNELISED , "Channelised"},
{ ERF_EXT_HDR_TYPE_SIGNATURE , "Signature"},
{ ERF_EXT_HDR_TYPE_PKT_ID , "Packet ID"},
{ ERF_EXT_HDR_TYPE_FLOW_ID , "Flow ID"},
{ ERF_EXT_HDR_TYPE_HOST_ID , "Host ID"},
{ ERF_EXT_HDR_TYPE_ANCHOR_ID , "Anchor ID"},
{ ERF_EXT_HDR_TYPE_ENTROPY , "Entropy"},
{ 0, NULL }
};
/* Used for Provenance ext_hdrs_added/removed, should match the field abbreviation */
static const value_string ehdr_type_vals_short[] = {
{ ERF_EXT_HDR_TYPE_CLASSIFICATION , "class"},
{ ERF_EXT_HDR_TYPE_INTERCEPTID , "int"},
{ ERF_EXT_HDR_TYPE_RAW_LINK , "raw"},
{ ERF_EXT_HDR_TYPE_BFS , "bfs"},
{ ERF_EXT_HDR_TYPE_CHANNELISED , "chan"},
{ ERF_EXT_HDR_TYPE_SIGNATURE , "signature"},
{ ERF_EXT_HDR_TYPE_PKT_ID , "packetid"},
{ ERF_EXT_HDR_TYPE_FLOW_ID , "flowid"},
{ ERF_EXT_HDR_TYPE_HOST_ID , "hostid"},
{ ERF_EXT_HDR_TYPE_ANCHOR_ID , "anchorid"},
{ ERF_EXT_HDR_TYPE_ENTROPY , "entropy"},
{ 0, NULL }
};
/* XXX: Must be at least array_length(ehdr_type_vals). */
#define ERF_HF_VALUES_PER_TAG 32
static const value_string raw_link_types[] = {
{ 0x00, "raw SONET"},
{ 0x01, "raw SDH"},
{ 0x02, "SONET spe"},
{ 0x03, "SDH spe"},
{ 0x04, "ds3"},
{ 0x05, "SONET spe w/o POH"},
{ 0x06, "SDH spe w/o POH"},
{ 0x07, "SONET line mode 2"},
{ 0x08, "SHD line mode 2"},
{ 0x09, "raw bit-level"},
{ 0x0A, "raw 10Gbe 66b"},
{ 0, NULL },
};
static const value_string raw_link_rates[] = {
{ 0x00, "reserved"},
{ 0x01, "oc3/stm1"},
{ 0x02, "oc12/stm4"},
{ 0x03, "oc48/stm16"},
{ 0x04, "oc192/stm64"},
{ 0, NULL },
};
static const value_string channelised_assoc_virt_container_size[] = {
{ 0x00, "unused field"},
{ 0x01, "VC-3 / STS-1"},
{ 0x02, "VC-4 / STS-3"},
{ 0x03, "VC-4-4c / STS-12"},
{ 0x04, "VC-4-16c / STS-48"},
{ 0x05, "VC-4-64c / STS-192"},
{ 0, NULL }
};
static const value_string channelised_rate[] = {
{ 0x00, "Reserved"},
{ 0x01, "STM-0 / STS-1"},
{ 0x02, "STM-1 / STS-3"},
{ 0x03, "STM-4 / STS-12"},
{ 0x04, "STM-16 / STS-48"},
{ 0x05, "STM-64 / STS-192"},
{ 0, NULL}
};
static const value_string channelised_type[] = {
{ 0x00, "SOH / TOH"},
{ 0x01, "POH"},
{ 0x02, "Container"},
{ 0x03, "POS Packet"},
{ 0x04, "ATM Cell"},
{ 0x05, "Positive justification bytes"},
{ 0x06, "Raw demultiplexed channel"},
{ 0, NULL}
};
static const value_string erf_hash_type[] = {
{ 0x00, "Not set"},
{ 0x01, "Non-IP (Src/Dst MACs, EtherType)"},
{ 0x02, "2-tuple (Src/Dst IPs)"},
{ 0x03, "3-tuple (Src/Dst IPs, IP Protocol)"},
{ 0x04, "4-tuple (Src/Dst IPs, IP Protocol, Interface ID)"},
{ 0x05, "5-tuple (Src/Dst IPs, IP Protocol, Src/Dst L4 Ports)"},
{ 0x06, "6-tuple (Src/Dst IPs, IP Protocol, Src/Dst L4 Ports, Interface ID)"},
{ 0, NULL}
};
static const value_string erf_hash_mode[] = {
{ 0x00, "Reserved"},
{ 0x01, "Reserved"},
{ 0x02, "2-tuple (Src/Dst IPs)"},
{ 0x03, "3-tuple (Src/Dst IPs, IP Protocol)"},
{ 0x04, "4-tuple (Src/Dst IPs, IP Protocol, Interface ID)"},
{ 0x05, "5-tuple (Src/Dst IPs, IP Protocol, Src/Dst L4 Ports)"},
{ 0x06, "6-tuple (Src/Dst IPs, IP Protocol, Src/Dst L4 Ports, Interface ID)"},
{ 0x07, "2-tuple (Inner Src/Dst IPs)"},
{ 0x08, "4-tuple (Inner Src/Dst IPs, Outer Src/Dst IPs)"},
{ 0x09, "4-tuple (Inner Src/Dst IPs, Inner Src/Dst L4 Ports)"},
{ 0x0A, "6-tuple (Inner Src/Dst IPs, Outer Src/Dst IPs, Inner Src/Dst L4 Ports)"},
{ 0, NULL}
};
static const value_string erf_stack_type[] = {
{ 0x00, "Not set"},
{ 0x01, "Non-IP"},
{ 0x02, "No VLAN, IPv4"},
{ 0x03, "No VLAN, IPv6"},
{ 0x04, "One VLAN, IPv4"},
{ 0x05, "One VLAN, IPv6"},
{ 0x06, "Two VLANs, IPv4"},
{ 0x07, "Two VLANs, IPv6"},
{ 0, NULL}
};
static const value_string erf_port_type[] = {
{ 0x00, "Reserved"},
{ 0x01, "Capture Port"},
{ 0x02, "Timing Port"},
{ 0, NULL}
};
static const value_string erf_clk_source[] = {
{ 0x00, "Invalid"},
{ 0x01, "None" },
{ 0x02, "External"},
{ 0x03, "Host"},
{ 0x04, "Link Cable"},
{ 0x05, "PTP"},
{ 0x06, "Internal"},
{ 0, NULL}
};
static const value_string erf_clk_state[] = {
{ 0x00, "Invalid" },
{ 0x01, "Unsynchronized"},
{ 0x02, "Synchronized"},
{ 0, NULL}
};
static const value_string erf_clk_link_mode[] = {
{ 0x00, "Invalid"},
{ 0x01, "Not Connected"},
{ 0x02, "Master"},
{ 0x03, "Disabled Master"},
{ 0x04, "Slave"},
{ 0, NULL}
};
static const value_string erf_clk_port_proto[] = {
{ 0x00, "Invalid" },
{ 0x01, "None" },
{ 0x02, "1PPS" },
{ 0x03, "IRIG-B" },
{ 0x04, "Ethernet" },
{ 0, NULL }
};
static const value_string erf_tap_mode[] = {
{ 0x00, "Invalid" },
{ 0x01, "Off" },
{ 0x02, "Active" },
{ 0x03, "Monitor" },
{ 0x04, "Bypass" },
{ 0x05, "Blocking" },
{ 0, NULL }
};
static const value_string erf_tap_fail_mode[] = {
{ 0x00, "Invalid" },
{ 0x01, "Off" },
{ 0x02, "Open" },
{ 0x03, "Closed" },
{ 0, NULL }
};
static const value_string erf_dpi_state[] = {
{ 0x00, "Terminated"},
{ 0x01, "Inspecting"},
{ 0x02, "Monitoring"},
{ 0x03, "Classified"},
{ 0, NULL}
};
static const value_string erf_flow_state[] = {
{ 0x00, "Active"},
{ 0x01, "Terminated"},
{ 0x02, "Expired"},
{ 0, NULL}
};
/* Used as templates for ERF_META_TAG_tunneling_mode */
static const header_field_info erf_tunneling_modes[] = {
{ "IP-in-IP", "ip_in_ip", FT_BOOLEAN, 32, NULL, 0x1, NULL, HFILL },
/* 0x02 is currently unused and reserved */
{ "VXLAN", "vxlan", FT_BOOLEAN, 32, NULL, 0x4, NULL, HFILL },
{ "GRE", "gre", FT_BOOLEAN, 32, NULL, 0x8, NULL, HFILL },
{ "GTP", "gtp", FT_BOOLEAN, 32, NULL, 0x10, NULL, HFILL },
{ "MPLS over VLAN", "mpls_vlan", FT_BOOLEAN, 32, NULL, 0x20, NULL, HFILL }
};
/* Used as templates for ERF_META_TAG_if_link_status */
static const header_field_info erf_link_status[] = {
{ "Link", "link", FT_BOOLEAN, 32, TFS(&tfs_up_down), 0x1, NULL, HFILL }
};
/* Used as templates for ERF_META_TAG_ptp_time_properties */
static const header_field_info erf_ptp_time_properties_flags[] = {
{ "Leap61", "leap61", FT_BOOLEAN, 32, NULL, 0x1, NULL, HFILL },
{ "Leap59", "leap59", FT_BOOLEAN, 32, NULL, 0x2, NULL, HFILL },
{ "Current UTC Offset Valid", "currentUtcOffsetValid", FT_BOOLEAN, 32, NULL, 0x4, NULL, HFILL },
{ "PTP Timescale", "ptpTimescale", FT_BOOLEAN, 32, NULL, 0x8, NULL, HFILL },
{ "Time Traceable", "timeTraceable", FT_BOOLEAN, 32, NULL, 0x10, NULL, HFILL },
{ "Frequency Traceable", "frequencyTraceable", FT_BOOLEAN, 32, NULL, 0x20, NULL, HFILL }
};
/* Used as templates for ERF_META_TAG_ptp_gm_clock_quality */
static const header_field_info erf_ptp_clock_quality[] = {
{ "Clock Class", "clockClass", FT_UINT32, BASE_DEC, NULL, 0xFF000000, NULL, HFILL },
{ "Clock Accuracy", "clockAccuracy", FT_UINT32, BASE_DEC | BASE_EXT_STRING, &ptp_v2_clockAccuracy_vals_ext, 0x00FF0000, NULL, HFILL },
{ "Offset Scaled Log Variance","offsetScaledLogVariance", FT_UINT32, BASE_DEC, NULL, 0x0000FFFF, NULL, HFILL },
};
/* Used as templates for ERF_META_TAG_parent_section */
static const header_field_info erf_parent_section[] = {
{ "Section Type", "section_type", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL },
{ "Section ID", "section_id", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }
};
/* Used as templates for ERF_META_TAG_stream_flags */
static const header_field_info erf_stream_flags[] = {
{ "Relative Snapping", "relative_snap", FT_BOOLEAN, 32, NULL, 0x1, NULL, HFILL },
{ "Entropy Snapping", "entropy_snap", FT_BOOLEAN, 32, NULL, 0x2, NULL, HFILL }
};
/* Used as templates for ERF_META_TAG_ext_hdrs_added/removed subtrees */
static const header_field_info erf_ext_hdr_items[] = {
{ "Extension Headers 0 to 31", "0_31", FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL },
{ "Extension Headers 32 to 63", "32_63", FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL },
{ "Extension Headers 64 to 95", "64_95", FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL },
{ "Extension Headers 96 to 127", "96_127", FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL }
};
/* Used as templates for ERF_META_TAG_smart_trunc_default */
static const header_field_info erf_smart_trunc_default_flags[] = {
{ "Truncation Candidate", "trunc_candidate", FT_BOOLEAN, 32, &tfs_yes_no, 0x1, NULL, HFILL }
};
typedef struct {
guint16 code;
header_field_info hfinfo;
} erf_meta_hf_template_t;
typedef struct {
gint ett_value;
/*
* XXX: Must be at least array_length(ehdr_type_vals). Should change to
* dynamic (possibly using new proto tree API) if many more fields defined.
* Non-trivial as bitmask functions take an array of pointers not values.
* Either that or add a value-string-like automatic bitmask flags proto_item.
*
* Note that this struct is only added for tags that need it.
*/
int hf_values[ERF_HF_VALUES_PER_TAG];
} erf_meta_tag_info_ex_t;
typedef struct {
guint16 code;
guint16 section;
const erf_meta_hf_template_t* tag_template;
const erf_meta_hf_template_t* section_template;
gint ett;
int hf_value;
erf_meta_tag_info_ex_t *extra;
/* TODO: could add a type_value and callback here for greater flexibility */
} erf_meta_tag_info_t;
typedef struct {
wmem_map_t* tag_table;
wmem_array_t* hfri;
wmem_array_t* ett;
wmem_array_t* vs_list;
wmem_array_t* vs_abbrev_list;
erf_meta_tag_info_t* unknown_section_info;
} erf_meta_index_t;
typedef struct {
wmem_map_t* source_map;
wmem_map_t* host_anchor_map;
guint64 implicit_host_id;
} erf_state_t;
typedef struct {
wmem_tree_t* meta_tree;
wmem_list_t* meta_list;
} erf_source_info_t;
typedef struct {
guint frame_num;
} erf_anchored_info_t;
typedef struct {
wmem_tree_t* anchored_tree;
wmem_list_t* anchored_list;
} erf_host_anchor_info_t;
typedef struct {
guint64 host_id;
guint64 anchor_id;
} erf_anchor_key_t;
#define ERF_SOURCE_KEY(host_id, source_id) (((guint64) host_id << 16) | source_id)
#define ERF_TAG_INFO_KEY(tag_info) (((guint32) (tag_info)->section << 16) | (tag_info)->code)
static erf_meta_index_t erf_meta_index;
static erf_state_t erf_state;
/*
* XXX: These header_field_info are used as templates for dynamically building
* per-section fields for each tag, as well as appropriate value_string arrays.
* We abuse the abbrev field to store the short name of the tags.
*/
static const erf_meta_hf_template_t erf_meta_tags[] = {
{ ERF_META_TAG_padding, { "Padding", "padding", FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_comment, { "Comment", "comment", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_gen_time, { "Metadata Generation Time", "gen_time", FT_ABSOLUTE_TIME, ABSOLUTE_TIME_UTC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_parent_section, { "Parent Section", "parent_section", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_reset, { "Metadata Reset", "reset", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_event_time, { "Event Time", "event_time", FT_ABSOLUTE_TIME, ABSOLUTE_TIME_UTC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_host_id, { "Host ID", "host_id", FT_UINT64, BASE_HEX, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_attribute, { "Attribute", "attribute", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_fcs_len, { "FCS Length (bits)", "fcs_len", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_mask_ipv4, { "Subnet Mask (IPv4)", "mask_ipv4", FT_IPv4, BASE_NETMASK, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_mask_cidr, { "Subnet Mask (CIDR)", "mask_cidr", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_org_name, { "Organisation", "org_name", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_name, { "Name", "name", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_descr, { "Description", "descr", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_config, { "Configuration", "config", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_datapipe, { "Datapipe Name", "datapipe", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_app_name, { "Application Name", "app_name", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_os, { "Operating System", "os", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_hostname, { "Hostname", "hostname", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_user, { "User", "user", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_model, { "Model", "model", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_fw_version, { "Firmware Version", "fw_version", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_serial_no, { "Serial Number", "serial_no", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_ts_offset, { "Timestamp Offset", "ts_offset", FT_RELATIVE_TIME, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_ts_clock_freq, { "Timestamp Clock Frequency (Hz)", "ts_clock_freq", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_tzone, { "Timezone Offset", "tzone", FT_INT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_tzone_name, { "Timezone Name", "tzone_name", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_loc_lat, { "Location Latitude", "loc_lat", FT_INT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_loc_long, { "Location Longitude", "loc_long", FT_INT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_snaplen, { "Snap Length", "snaplen", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_card_num, { "Card Number", "card_num", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_module_num, { "Module Number", "module_num", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_access_num, { "Access Number", "access_num", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_stream_num, { "Stream Number", "stream_num", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_loc_name, { "Location Name", "loc_name", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_parent_file, { "Parent Filename", "parent_file", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_filter, { "Filter", "filter", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_flow_hash_mode, { "Flow Hash Mode", "flow_hash_mode", FT_UINT32, BASE_DEC, VALS(erf_hash_mode), 0x0, NULL, HFILL } },
{ ERF_META_TAG_tunneling_mode, { "Tunneling Mode", "tunneling_mode", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_npb_format, { "NPB Format", "npb_format", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_mem, { "Memory", "mem", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_datamine_id, { "Datamine ID", "datamine_id", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_rotfile_id, { "Rotfile ID", "rotfile_id", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_rotfile_name, { "Rotfile Name", "rotfile_name", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_dev_name, { "Device Name", "dev_name", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_dev_path, { "Device Canonical Path", "dev_path", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_loc_descr, { "Location Description", "loc_descr", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_app_version, { "Application Version", "app_version", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_cpu_affinity, { "CPU Affinity Mask", "cpu_affinity", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_cpu, { "CPU Model", "cpu", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_cpu_phys_cores, { "CPU Physical Cores", "cpu_phys_cores", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_cpu_numa_nodes, { "CPU NUMA Nodes", "cpu_numa_nodes", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_dag_attribute, { "DAG Attribute", "dag_attribute", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_dag_version, { "DAG Software Version", "dag_version", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_stream_flags, { "Stream Flags", "stream_flags", FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_entropy_threshold, { "Entropy Threshold", "entropy_threshold", FT_FLOAT, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_smart_trunc_default, { "Smart Truncation Default", "smart_trunc_default",FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_ext_hdrs_added, { "Extension Headers Added", "ext_hdrs_added", FT_BYTES, BASE_NO_DISPLAY_VALUE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_ext_hdrs_removed, { "Extension Headers Removed", "ext_hdrs_removed", FT_BYTES, BASE_NO_DISPLAY_VALUE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_relative_snaplen, { "Relative Snap Length", "relative_snaplen", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_temperature, { "Temperature", "temperature", FT_FLOAT, BASE_NONE|BASE_UNIT_STRING, &units_degree_celsius, 0x0, NULL, HFILL } },
{ ERF_META_TAG_power, { "Power Consumption", "power", FT_FLOAT, BASE_NONE|BASE_UNIT_STRING, &units_watt, 0x0, NULL, HFILL } },
{ ERF_META_TAG_vendor, { "Vendor", "vendor", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_cpu_threads, { "CPU Threads", "cpu_threads", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_if_num, { "Interface Number", "if_num", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_if_vc, { "Interface Virtual Circuit", "if_vc", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_if_speed, { "Interface Line Rate", "if_speed", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_if_ipv4, { "Interface IPv4 address", "if_ipv4", FT_IPv4, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_if_ipv6, { "Interface IPv6 address", "if_ipv6", FT_IPv6, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_if_mac, { "Interface MAC address", "if_mac", FT_ETHER, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_if_eui, { "Interface EUI-64 address", "if_eui", FT_EUI64, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_if_ib_gid, { "Interface InfiniBand GID", "if_ib_gid", FT_IPv6, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_if_ib_lid, { "Interface InfiniBand LID", "if_ib_lid", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_if_wwn, { "Interface WWN", "if_wwn", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_if_fc_id, { "Interface FCID address", "if_fc_id", FT_BYTES, SEP_DOT, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_if_tx_speed, { "Interface TX Line Rate", "if_tx_speed", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_if_erf_type, { "Interface ERF type", "if_erf_type", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_if_link_type, { "Interface link type", "if_link_type", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_if_sfp_type, { "Interface Transceiver type", "if_sfp_type", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_if_rx_power, { "Interface RX Optical Power", "if_rx_power", FT_INT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_if_tx_power, { "Interface TX Optical Power", "if_tx_power", FT_INT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_if_link_status, { "Interface Link Status", "if_link_status", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_if_phy_mode, { "Interface Endace PHY Mode", "if_phy_mode", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_if_port_type, { "Interface Port Type", "if_port_type", FT_UINT32, BASE_DEC, VALS(erf_port_type), 0x0, NULL, HFILL } },
{ ERF_META_TAG_if_rx_latency, { "Interface Uncorrected RX Latency", "if_rx_latency", FT_RELATIVE_TIME, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_tap_mode, { "Tap Mode", "tap_mode", FT_UINT32, BASE_DEC, VALS(erf_tap_mode), 0x0, NULL, HFILL } },
{ ERF_META_TAG_tap_fail_mode, { "Tap Failover Mode", "tap_fail_mode", FT_UINT32, BASE_DEC, VALS(erf_tap_fail_mode), 0x0, NULL, HFILL } },
{ ERF_META_TAG_watchdog_expired, { "Watchdog Expired", "watchdog_expired", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_watchdog_interval, { "Watchdog Interval (ms)", "watchdog_interval", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_src_ipv4, { "Source IPv4 address", "src_ipv4", FT_IPv4, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_dest_ipv4, { "Destination IPv4 address", "dest_ipv4", FT_IPv4, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_src_ipv6, { "Source IPv6 address", "src_ipv6", FT_IPv6, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_dest_ipv6, { "Destination IPv6 address", "dest_ipv6", FT_IPv6, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_src_mac, { "Source MAC address", "src_mac", FT_ETHER, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_dest_mac, { "Destination MAC address", "dest_mac", FT_ETHER, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_src_eui, { "Source EUI-64 address", "src_eui", FT_EUI64, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_dest_eui, { "Destination EUI-64 address", "dest_eui", FT_EUI64, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_src_ib_gid, { "Source InfiniBand GID address", "src_ib_gid", FT_IPv6, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_dest_ib_gid, { "Destination InfiniBand GID address", "dest_ib_gid", FT_IPv6, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_src_ib_lid, { "Source InfiniBand LID address", "src_ib_lid", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_dest_ib_lid, { "Destination InfiniBand LID address", "dest_ib_lid", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_src_wwn, { "Source WWN address", "src_wwn", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_dest_wwn, { "Destination WWN address", "dest_wwn", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_src_fc_id, { "Source FCID address", "src_fc_id", FT_BYTES, SEP_DOT, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_dest_fc_id, { "Destination FCID address", "dest_fc_id", FT_BYTES, SEP_DOT, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_src_port, { "Source Port", "src_port", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_dest_port, { "Destination Port", "dest_port", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_ip_proto, { "IP Protocol", "ip_proto", FT_UINT32, BASE_DEC|BASE_EXT_STRING, &ipproto_val_ext, 0x0, NULL, HFILL } },
{ ERF_META_TAG_flow_hash, { "Flow Hash", "flow_hash", FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_filter_match, { "Filter Match", "filter_match", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_filter_match_name, { "Filter Match Name", "filter_match_name", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_error_flags, { "Error Flags", "error_flags", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_initiator_pkts, { "Initiator Packets", "initiator_pkts", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_responder_pkts, { "Responder Packets", "responder_pkts", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_initiator_bytes, { "Initiator Bytes", "initiator_bytes", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_responder_bytes, { "Responder Bytes", "responder_bytes", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_initiator_min_entropy, { "Initiator Minimum Entropy", "initiator_min_entropy", FT_FLOAT, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_responder_min_entropy, { "Responder Minimum Entropy", "responder_min_entropy", FT_FLOAT, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_initiator_avg_entropy, { "Initiator Average Entropy", "initiator_avg_entropy", FT_FLOAT, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_responder_avg_entropy, { "Responder Average Entropy", "responder_avg_entropy", FT_FLOAT, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_initiator_max_entropy, { "Initiator Maximum Entropy", "initiator_max_entropy", FT_FLOAT, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_responder_max_entropy, { "Responder Maximum Entropy", "responder_max_entropy", FT_FLOAT, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_dpi_application, { "DPI Application", "dpi_application", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_dpi_confidence, { "DPI Confidence", "dpi_confidence", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_dpi_state, { "DPI State", "dpi_state", FT_UINT32, BASE_NONE, VALS(erf_dpi_state), 0x0, NULL, HFILL } },
{ ERF_META_TAG_dpi_protocol_stack, { "DPI Protocol Stack", "dpi_protocol_stack", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_flow_state, { "Flow State", "flow_state", FT_UINT32, BASE_NONE, VALS(erf_flow_state), 0x0, NULL, HFILL } },
{ ERF_META_TAG_vlan_id, { "VLAN ID", "vlan_id", FT_INT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_mpls_label, { "MPLS Label", "mpls_label", FT_INT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_vlan_pcp, { "VLAN PCP", "vlan_pcp", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_mpls_tc, { "MPLS_TC", "mpls_tc", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_dscp, { "DSCP", "dscp", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_initiator_mpls_label, { "Initiator MPLS Label", "initiator_mpls_label", FT_INT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_responder_mpls_label, { "Responder MPLS Label", "responder_mpls_label", FT_INT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_initiator_mpls_tc, { "Initiator MPLS TC", "initiator_mpls_tc", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_responder_mpls_tc, { "Responder MPLS TC", "responder_mpls_tc", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_initiator_ipv4, { "Initiator IPv4", "initiator_ipv4", FT_IPv4, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_responder_ipv4, { "Responder IPv4", "responder_ipv4", FT_IPv4, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_initiator_ipv6, { "Initiator IPv6", "initiator_ipv6", FT_IPv6, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_responder_ipv6, { "Responder IPv6", "responder_ipv6", FT_IPv6, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_initiator_mac, { "Initiator MAC Address", "initiator_mac", FT_ETHER, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_responder_mac, { "Responder MAC Address", "responder_mac", FT_ETHER, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_initiator_port, { "Initiator Port", "initiator_port", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_responder_port, { "Responder Port", "responder_port", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_initiator_retx, { "Initiator Retransmissions", "initiator_retx", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_responder_retx, { "Responder Retransmissions", "responder_retx", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_initiator_zwin, { "Initiator Zero Window Count", "initiator_zwin", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_responder_zwin, { "Responder Zero Window Count", "responder_zwin", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_initiator_tcp_flags, { "Initiator TCP Flags", "initiator_flags", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_responder_tcp_flags, { "Responder TCP Flags", "responder_flags", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_tcp_irtt, { "TCP Initial Round Trip Time", "tcp_irtt", FT_RELATIVE_TIME, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_start_time, { "Start Time", "start_time", FT_ABSOLUTE_TIME, ABSOLUTE_TIME_UTC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_end_time, { "End Time", "end_time", FT_ABSOLUTE_TIME, ABSOLUTE_TIME_UTC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_stat_if_drop, { "Interface Drop", "stat_if_drop", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_stat_frames, { "Packets Received", "stat_frames", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_stat_bytes, { "Bytes Received", "stat_bytes", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_stat_cap, { "Packets Captured", "stat_cap", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_stat_cap_bytes, { "Bytes Captured", "stat_cap_bytes", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_stat_os_drop, { "OS Drop", "stat_os_drop", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_stat_ds_lctr, { "Internal Error Drop", "stat_ds_lctr", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_stat_filter_match, { "Filter Match", "stat_filter_match", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_stat_filter_drop, { "Filter Drop", "stat_filter_drop", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_stat_too_short, { "Packets Too Short", "stat_too_short", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_stat_too_long, { "Packets Too Long", "stat_too_long", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_stat_rx_error, { "Packets RX Error", "stat_rx_error", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_stat_fcs_error, { "Packets FCS Error", "stat_fcs_error", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_stat_aborted, { "Packets Aborted", "stat_aborted", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_stat_proto_error, { "Packets Protocol Error", "stat_proto_error", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_stat_b1_error, { "SDH B1 Errors", "stat_b1_error", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_stat_b2_error, { "SDH B2 Errors", "stat_b2_error", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_stat_b3_error, { "SDH B3 Errors", "stat_b3_error", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_stat_rei_error, { "SDH REI Errors", "stat_rei_error", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_stat_drop, { "Packets Dropped", "stat_drop", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_stat_buf_drop, { "Buffer Drop", "stat_buf_drop", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_stream_drop, { "Stream Drop", "stream_drop", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_stream_buf_drop, { "Stream Buffer Drop", "stream_buf_drop", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_pkt_drop, { "Packet Drop", "packet_drop", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_record_drop, { "Record Drop", "record_drop", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_bandwidth, { "Bandwidth", "bandwidth", FT_UINT64, BASE_DEC|BASE_UNIT_STRING, &units_bit_sec, 0x0, NULL, HFILL } },
{ ERF_META_TAG_duration, { "Duration", "duration", FT_RELATIVE_TIME, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_top_index, { "Top N Index", "top_index", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_concurrent_flows, { "Concurrent Flows", "concurrent_flows", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_active_flows, { "Active Flows", "active_flows", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_created_flows, { "Created Flows", "created_flows", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_deleted_flows, { "Deleted Flows", "deleted_flows", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_active_endpoints, { "Active Endpoints", "active_endpoints", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_tx_pkts, { "Transmitted Packets", "tx_packets", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_tx_bytes, { "Transmitted Bytes", "tx_bytes", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_rx_bandwidth, { "Receive Bandwidth", "rx_bandwidth", FT_UINT64, BASE_DEC|BASE_UNIT_STRING, &units_bit_sec, 0x0, NULL, HFILL } },
{ ERF_META_TAG_tx_bandwidth, { "Transmit Bandwidth", "tx_bandwidth", FT_UINT64, BASE_DEC|BASE_UNIT_STRING, &units_bit_sec, 0x0, NULL, HFILL } },
{ ERF_META_TAG_records, { "Records", "records", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_record_bytes, { "Record Bytes", "record_bytes", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_pkt_drop_bytes, { "Packet Drop Bytes", "packet_drop_bytes", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_record_drop_bytes, { "Record Drop Bytes", "record_drop_bytes", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_drop_bandwidth, { "Drop Bandwidth", "drop_bandwidth", FT_UINT64, BASE_DEC|BASE_UNIT_STRING, &units_bit_sec, 0x0, NULL, HFILL } },
{ ERF_META_TAG_retx_pkts, { "Retransmitted Packets", "retx_packets", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_zwin_pkts, { "Zero-Window Packets", "zwin_packets", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_ns_host_ipv4, { "IPv4 Name", "ns_host_ipv4", FT_IPv4, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_ns_host_ipv6, { "IPv6 Name", "ns_host_ipv6", FT_IPv6, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_ns_host_mac, { "MAC Name", "ns_host_mac", FT_ETHER, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_ns_host_eui, { "EUI Name", "ns_host_eui", FT_EUI64, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_ns_host_ib_gid, { "InfiniBand GID Name", "ns_host_ib_gid", FT_IPv6, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_ns_host_ib_lid, { "InfiniBand LID Name", "ns_host_ib_lid", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_ns_host_wwn, { "WWN Name", "ns_host_wwn", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_ns_host_fc_id, { "FCID Name", "ns_host_fc_id", FT_BYTES, SEP_DOT, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_ns_dns_ipv4, { "Nameserver IPv4 address", "ns_dns_ipv4", FT_IPv4, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_ns_dns_ipv6, { "Nameserver IPv6 address", "ns_dns_ipv6", FT_IPv6, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_exthdr, { "ERF Extension Header", "exthdr", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_pcap_ng_block, { "Pcapng Block", "pcap_ng_block", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_asn1, { "ASN.1", "asn1", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_section_ref, { "Section Reference", "section_ref", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_clk_source, { "Clock Source", "clk_source", FT_UINT32, BASE_DEC, VALS(erf_clk_source), 0x0, NULL, HFILL } },
{ ERF_META_TAG_clk_state, { "Clock State", "clk_state", FT_UINT32, BASE_DEC, VALS(erf_clk_state), 0x0, NULL, HFILL } },
{ ERF_META_TAG_clk_threshold, { "Clock Threshold", "clk_threshold", FT_RELATIVE_TIME, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_clk_correction, { "Clock Correction", "clk_correction", FT_RELATIVE_TIME, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_clk_failures, { "Clock Failures", "clk_failures", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_clk_resyncs, { "Clock Resyncs", "clk_resyncs", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_clk_phase_error, { "Clock Phase Error", "clk_phase_error", FT_RELATIVE_TIME, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_clk_input_pulses, { "Clock Input Pulses", "clk_input_pulses", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_clk_rejected_pulses, { "Clock Rejected Pulses", "clk_rejected_pulses", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_clk_phc_index, { "Clock PHC Index", "clk_phc_index", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_clk_phc_offset, { "Clock PHC Offset", "clk_phc_offset", FT_RELATIVE_TIME, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_clk_timebase, { "Clock Timebase", "clk_timebase", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_clk_descr, { "Clock Description", "clk_descr", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_clk_out_source, { "Clock Output Source", "clk_out_source", FT_UINT32, BASE_DEC, VALS(erf_clk_source), 0x0, NULL, HFILL } },
{ ERF_META_TAG_clk_link_mode, { "Clock Link Cable Mode", "clk_link_mode", FT_UINT32, BASE_DEC, VALS(erf_clk_link_mode), 0x0, NULL, HFILL } },
/*
* PTP tags use the native PTPv2 format to preserve precision
* (except expanding integers to 32-bit).
*/
{ ERF_META_TAG_ptp_domain_num, { "PTP Domain Number", "ptp_domain_num", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_ptp_steps_removed, { "PTP Steps Removed", "ptp_steps_removed", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
/* PTP TimeInterval scaled nanoseconds, using FT_RELATIVE_TIME so can compare with clk_threshold */
{ ERF_META_TAG_ptp_offset_from_master, { "PTP Offset From Master", "ptp_offset_from_master", FT_RELATIVE_TIME, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_ptp_mean_path_delay, { "PTP Mean Path Delay", "ptp_mean_path_delay", FT_RELATIVE_TIME, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_ptp_parent_identity, { "PTP Parent Clock Identity", "ptp_parent_identity", FT_EUI64, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_ptp_parent_port_num, { "PTP Parent Port Number", "ptp_parent_port_num", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_ptp_gm_identity, { "PTP Grandmaster Identity", "ptp_gm_identity", FT_EUI64, BASE_NONE, NULL, 0x0, NULL, HFILL } },
/* PTP ClockQuality combined field, see erf_ptp_clock_quality */
{ ERF_META_TAG_ptp_gm_clock_quality, { "PTP Grandmaster Clock Quality", "ptp_gm_clock_quality", FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL } },
/* Integer seconds, using FT_RELATIVE_TIME so can compare with clk_phc_offset */
{ ERF_META_TAG_ptp_current_utc_offset, { "PTP Current UTC Offset", "ptp_current_utc_offset", FT_RELATIVE_TIME, BASE_NONE, NULL, 0x0, NULL, HFILL } },
/* PTP TIME_PROPERTIES_DATA_SET flags, see erf_ptp_time_properties_flags */
{ ERF_META_TAG_ptp_time_properties, { "PTP Time Properties", "ptp_time_properties", FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_ptp_time_source, { "PTP Time Source", "ptp_time_source", FT_UINT32, BASE_DEC | BASE_EXT_STRING, &ptp_v2_timeSource_vals_ext, 0x0, NULL, HFILL } },
{ ERF_META_TAG_ptp_clock_identity, { "PTP Clock Identity", "ptp_clock_identity", FT_EUI64, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_ptp_port_num, { "PTP Port Number", "ptp_port_num", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_ptp_port_state, { "PTP Port State", "ptp_port_state", FT_UINT32, BASE_DEC | BASE_EXT_STRING, &ptp_v2_portState_vals_ext, 0x0, NULL, HFILL } },
{ ERF_META_TAG_ptp_delay_mechanism, { "PTP Delay Mechanism", "ptp_delay_mechanism", FT_UINT32, BASE_DEC, VALS(ptp_v2_delayMechanism_vals), 0x0, NULL, HFILL } },
{ ERF_META_TAG_clk_port_proto, { "Clock Input Port Protocol", "clk_port_proto", FT_UINT32, BASE_DEC, VALS(erf_clk_port_proto), 0x0, NULL, HFILL } },
{ ERF_META_TAG_ntp_status, { "NTP Status", "ntp_status", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_ntp_stratum, { "NTP Stratum", "ntp_stratum", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_ntp_rootdelay, { "NTP Root Delay", "ntp_root_delay", FT_INT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_ntp_rootdisp, { "NTP Root Dispersion", "ntp_root_dispersion", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_ntp_offset, { "NTP Offset", "ntp_offset", FT_INT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_ntp_frequency, { "NTP Frequency", "ntp_frequency", FT_INT32, BASE_DEC|BASE_UNIT_STRING, &units_hz, 0x0, NULL, HFILL } },
{ ERF_META_TAG_ntp_sys_jitter, { "NTP System Jitter", "ntp_sys_jitter", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_ntp_peer_remote, { "NTP Peer Remote", "ntp_peer_remote", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_TAG_ntp_peer_refid, { "NTP Peer Refid", "ntp_peer_refid", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } }
};
/* Sections are also tags, but enumerate them separately to make logic simpler */
static const erf_meta_hf_template_t erf_meta_sections[] = {
/*
* Some tags (such as generation time) can appear before the first section,
* we group these together into a fake section for consistency.
*/
{ ERF_META_SECTION_NONE, { "No Section", "section_none", FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_SECTION_UNKNOWN, { "Unknown Section", "section_unknown", FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_SECTION_CAPTURE, { "Capture Section", "section_capture", FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_SECTION_HOST, { "Host Section", "section_host", FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_SECTION_MODULE, { "Module Section", "section_module", FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_SECTION_INTERFACE, { "Interface Section", "section_interface", FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_SECTION_FLOW, { "Flow Section", "section_flow", FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_SECTION_STATS, { "Statistics Section", "section_stats", FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_SECTION_INFO, { "Information Section", "section_info", FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_SECTION_CONTEXT, { "Context Section", "section_context", FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_SECTION_STREAM, { "Stream Section", "section_stream", FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_SECTION_TRANSFORM, { "Transform Section", "section_transform", FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_SECTION_DNS, { "DNS Section", "section_dns", FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_SECTION_SOURCE, { "Source Section", "section_source", FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_SECTION_NETWORK, { "Network Section", "section_network", FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_SECTION_ENDPOINT, { "Endpoint Section", "section_endpoint", FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_SECTION_INPUT, { "Input Section", "section_input", FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ ERF_META_SECTION_OUTPUT, { "Output Section", "section_output", FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL } }
};
static int erf_type_has_color(unsigned int type) {
switch (type & ERF_HDR_TYPE_MASK) {
case ERF_TYPE_COLOR_HDLC_POS:
case ERF_TYPE_COLOR_ETH:
case ERF_TYPE_COLOR_HASH_POS:
case ERF_TYPE_COLOR_HASH_ETH:
case ERF_TYPE_DSM_COLOR_HDLC_POS:
case ERF_TYPE_DSM_COLOR_ETH:
case ERF_TYPE_COLOR_MC_HDLC_POS:
return 1;
}
return 0;
}
static erf_meta_tag_info_ex_t* erf_meta_tag_info_ex_new(wmem_allocator_t *allocator) {
gsize i = 0;
erf_meta_tag_info_ex_t *extra = wmem_new0(allocator, erf_meta_tag_info_ex_t);
extra->ett_value = -1;
for (i = 0; i < array_length(extra->hf_values); i++) {
extra->hf_values[i] = -1;
}
return extra;
}
static erf_meta_tag_info_t* erf_meta_tag_info_new(wmem_allocator_t *allocator, const erf_meta_hf_template_t *section, const erf_meta_hf_template_t *tag) {
erf_meta_tag_info_t *tag_info = wmem_new0(allocator, erf_meta_tag_info_t);
tag_info->code = tag->code;
tag_info->section = section->code;
tag_info->ett = -1;
tag_info->hf_value = -1;
tag_info->tag_template = tag;
tag_info->section_template = section;
tag_info->extra = NULL;
return tag_info;
}
static erf_meta_tag_info_t*
init_section_fields(wmem_array_t *hfri_table, wmem_array_t *ett_table, const erf_meta_hf_template_t *section)
{
erf_meta_tag_info_t *section_info;
gint *ett_tmp; /* wmem_array_append needs actual memory to copy from */
hf_register_info hfri_tmp[] = {
{ NULL, { "Section ID", NULL, FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }}, /* Section ID */
{ NULL, { "Section Length", NULL, FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }}, /* Section Length */
{ NULL, { "Reserved", NULL, FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }} /* Reserved extra bytes */
};
section_info = erf_meta_tag_info_new(wmem_epan_scope(), section, section /*Needed for lookup commonality*/);
section_info->extra = erf_meta_tag_info_ex_new(wmem_epan_scope());
/*Can't use the generic functions here because directly at section level*/
hfri_tmp[0].hfinfo.abbrev = wmem_strconcat(wmem_epan_scope(), "erf.meta.", section->hfinfo.abbrev, ".section_id", NULL);
hfri_tmp[0].p_id = &section_info->hf_value;
hfri_tmp[1].hfinfo.abbrev = wmem_strconcat(wmem_epan_scope(), "erf.meta.", section->hfinfo.abbrev, ".section_len", NULL);
hfri_tmp[1].p_id = &section_info->extra->hf_values[0];
hfri_tmp[2].hfinfo.abbrev = wmem_strconcat(wmem_epan_scope(), "erf.meta.", section->hfinfo.abbrev, ".section_hdr_rsvd", NULL);
hfri_tmp[2].p_id = &section_info->extra->hf_values[1];
/* Add hf_register_info, ett entries */
wmem_array_append(hfri_table, hfri_tmp, array_length(hfri_tmp));
ett_tmp = &section_info->ett;
wmem_array_append(ett_table, &ett_tmp, 1);
ett_tmp = &section_info->extra->ett_value;
wmem_array_append(ett_table, &ett_tmp, 1);
return section_info;
}
static erf_meta_tag_info_t*
init_tag_value_field(wmem_array_t *hfri_table, erf_meta_tag_info_t *tag_info)
{
hf_register_info hfri_tmp = { NULL, { NULL, NULL, FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL }}; /* Value, will be filled from template */
/* Add value field */
hfri_tmp.p_id = &tag_info->hf_value;
hfri_tmp.hfinfo = tag_info->tag_template->hfinfo;
hfri_tmp.hfinfo.abbrev = wmem_strconcat(wmem_epan_scope(), "erf.meta.", tag_info->section_template->hfinfo.abbrev, ".", tag_info->tag_template->hfinfo.abbrev, NULL);
wmem_array_append_one(hfri_table, hfri_tmp);
return tag_info;
}
static erf_meta_tag_info_t*
init_tag_value_subfields(wmem_array_t *hfri_table, erf_meta_tag_info_t *tag_info, const header_field_info *extra_fields, int extra_fields_len)
{
int i = 0;
hf_register_info hfri_tmp = { NULL, { NULL, NULL, FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL }}; /* Value, will be filled from template */
if (extra_fields) {
tag_info->extra = erf_meta_tag_info_ex_new(wmem_epan_scope());
for (i = 0; i < extra_fields_len; i++) {
/* Add value subfield */
hfri_tmp.p_id = &tag_info->extra->hf_values[i];
hfri_tmp.hfinfo = extra_fields[i];
hfri_tmp.hfinfo.abbrev = wmem_strconcat(wmem_epan_scope(), "erf.meta.", tag_info->section_template->hfinfo.abbrev, ".", tag_info->tag_template->hfinfo.abbrev, ".", extra_fields[i].abbrev, NULL);
wmem_array_append_one(hfri_table, hfri_tmp);
}
}
return tag_info;
}
static erf_meta_tag_info_t*
init_ext_hdrs_tag_value_subfields(wmem_array_t *hfri_table, erf_meta_tag_info_t *tag_info)
{
gsize i = 0;
gsize num_known_ext_hdrs = array_length(ehdr_type_vals) -1 /*null terminated*/;
hf_register_info hfri_tmp = { NULL, { NULL, NULL, FT_BOOLEAN, 32, NULL, 0x1, NULL, HFILL } }; /* Value, will be filled from template */
DISSECTOR_ASSERT(array_length(ehdr_type_vals_short) > num_known_ext_hdrs);
/* XXX: this currently supports only up to 27 known extension headers */
DISSECTOR_ASSERT(ERF_HF_VALUES_PER_TAG > num_known_ext_hdrs - 4); /* -1 sentinel terminated */
/* Use the first 4 hf_values for 32-bit subtree */
init_tag_value_subfields(hfri_table, tag_info, erf_ext_hdr_items, array_length(erf_ext_hdr_items));
DISSECTOR_ASSERT(tag_info->extra);
/*Fill in the rest of the remaining 27 entries with any known tag entries values */
for (i = 0; i < num_known_ext_hdrs; i++) {
/* Add value subfield */
hfri_tmp.p_id = &tag_info->extra->hf_values[4+i];
hfri_tmp.hfinfo.bitmask = (guint64)1 << ehdr_type_vals[i].value;
hfri_tmp.hfinfo.name = ehdr_type_vals[i].strptr;
hfri_tmp.hfinfo.abbrev = wmem_strconcat(wmem_epan_scope(),
"erf.meta.", tag_info->section_template->hfinfo.abbrev, ".", tag_info->tag_template->hfinfo.abbrev, ".", ehdr_type_vals_short[i].strptr, NULL);
wmem_array_append_one(hfri_table, hfri_tmp);
}
return tag_info;
}
static erf_meta_tag_info_t*
init_ns_addr_tag_value_fields(wmem_array_t *hfri_table, erf_meta_tag_info_t *tag_info)
{
header_field_info ns_addr_extra_fields[] = {
{ NULL, NULL, FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL }, /* Address value, will be filled from template */
{ "Name", "name", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL } /* Name value */
};
tag_info->extra = erf_meta_tag_info_ex_new(wmem_epan_scope());
/* Set address subfield type, etc. from template based on address type */
ns_addr_extra_fields[0] = tag_info->tag_template->hfinfo;
ns_addr_extra_fields[0].name = "Address";
ns_addr_extra_fields[0].abbrev = "addr";
/* Don't need a main value as we just use a text subtree */
/* Init subfields */
init_tag_value_subfields(hfri_table, tag_info, ns_addr_extra_fields, array_length(ns_addr_extra_fields));
return tag_info;
}
static erf_meta_tag_info_t*
init_tag_fields(wmem_array_t *hfri_table, wmem_array_t *ett_table, const erf_meta_hf_template_t *section, const erf_meta_hf_template_t *tag)
{
erf_meta_tag_info_t *tag_info;
gint *ett_tmp; /* wmem_array_append needs actual memory to copy from */
tag_info = erf_meta_tag_info_new(wmem_epan_scope(), section, tag);
/*Tags with subfields (only)*/
/*XXX: Can't currently easily be described in the template because
* there is curently no dissect bitfield equivalent that supports arbitrary
* types/offsets*/
switch (tag->code) {
/*Special case: parent_section*/
case ERF_META_TAG_parent_section:
/*Don't need a main value*/
/*Init subfields*/
init_tag_value_subfields(hfri_table, tag_info, erf_parent_section, array_length(erf_parent_section));
break;
/* Special case: name entry */
case ERF_META_TAG_ns_dns_ipv4:
case ERF_META_TAG_ns_dns_ipv6:
case ERF_META_TAG_ns_host_ipv4:
case ERF_META_TAG_ns_host_ipv6:
case ERF_META_TAG_ns_host_mac:
case ERF_META_TAG_ns_host_eui:
case ERF_META_TAG_ns_host_wwn:
case ERF_META_TAG_ns_host_ib_gid:
case ERF_META_TAG_ns_host_ib_lid:
case ERF_META_TAG_ns_host_fc_id:
init_ns_addr_tag_value_fields(hfri_table, tag_info);
break;
/* Usual case: init single field template */
default:
init_tag_value_field(hfri_table, tag_info);
break;
}
/*Tags that need additional subfields*/
switch (tag->code) {
/*Special case: bitfields*/
/*TODO: Maybe put extra_fields in template with dissect callback?*/
case ERF_META_TAG_tunneling_mode:
init_tag_value_subfields(hfri_table, tag_info, erf_tunneling_modes, array_length(erf_tunneling_modes));
break;
case ERF_META_TAG_if_link_status:
init_tag_value_subfields(hfri_table, tag_info, erf_link_status, array_length(erf_link_status));
break;
case ERF_META_TAG_ptp_time_properties:
init_tag_value_subfields(hfri_table, tag_info, erf_ptp_time_properties_flags, array_length(erf_ptp_time_properties_flags));
break;
case ERF_META_TAG_ptp_gm_clock_quality:
init_tag_value_subfields(hfri_table, tag_info, erf_ptp_clock_quality, array_length(erf_ptp_clock_quality));
break;
case ERF_META_TAG_stream_flags:
init_tag_value_subfields(hfri_table, tag_info, erf_stream_flags, array_length(erf_stream_flags));
break;
case ERF_META_TAG_smart_trunc_default:
init_tag_value_subfields(hfri_table, tag_info, erf_smart_trunc_default_flags, array_length(erf_smart_trunc_default_flags));
break;
case ERF_META_TAG_ext_hdrs_added:
case ERF_META_TAG_ext_hdrs_removed:
init_ext_hdrs_tag_value_subfields(hfri_table, tag_info);
break;
}
/* Add ett entries */
ett_tmp = &tag_info->ett;
wmem_array_append_one(ett_table, ett_tmp);
return tag_info;
}
static void
init_meta_tags(void)
{
unsigned int i, j = 0;
const erf_meta_hf_template_t *section = NULL;
const erf_meta_hf_template_t *tag = NULL;
erf_meta_tag_info_t *tag_info;
value_string vs_tmp = {0, NULL};
erf_meta_index.tag_table = wmem_map_new(wmem_epan_scope(), g_direct_hash, g_direct_equal);
erf_meta_index.vs_list = wmem_array_new(wmem_epan_scope(), sizeof(value_string));
erf_meta_index.vs_abbrev_list = wmem_array_new(wmem_epan_scope(), sizeof(value_string));
erf_meta_index.hfri = wmem_array_new(wmem_epan_scope(), sizeof(hf_register_info));
erf_meta_index.ett = wmem_array_new(wmem_epan_scope(), sizeof(gint*));
/* Generate tag fields */
for (j = 0; j < array_length(erf_meta_tags); j++) {
tag = &erf_meta_tags[j];
/* Generate copy of the tag for each section */
for (i = 0; i < array_length(erf_meta_sections); i++) {
section = &erf_meta_sections[i];
tag_info = init_tag_fields(erf_meta_index.hfri, erf_meta_index.ett, section, tag);
/* Add to hash table */
wmem_map_insert(erf_meta_index.tag_table, GUINT_TO_POINTER(ERF_TAG_INFO_KEY(tag_info)), tag_info);
}
/* Add value string entries */
vs_tmp.value = tag->code;
vs_tmp.strptr = tag->hfinfo.name;
wmem_array_append_one(erf_meta_index.vs_list, vs_tmp);
vs_tmp.value = tag->code;
vs_tmp.strptr = tag->hfinfo.abbrev;
wmem_array_append_one(erf_meta_index.vs_abbrev_list, vs_tmp);
}
/* Generate section fields (skipping section_none and parts of section_unknown) */
for (i = 1; i < array_length(erf_meta_sections); i++) {
section = &erf_meta_sections[i];
tag_info = init_section_fields(erf_meta_index.hfri, erf_meta_index.ett, section);
if (i != 1) { /* don't add value string for unknown section as it doesn't correspond to one section type code */
/* Add to hash table */
wmem_map_insert(erf_meta_index.tag_table, GUINT_TO_POINTER(ERF_TAG_INFO_KEY(tag_info)), tag_info);
/* Add value string entries */
vs_tmp.value = section->code;
vs_tmp.strptr = section->hfinfo.name;
wmem_array_append_one(erf_meta_index.vs_list, vs_tmp);
vs_tmp.value = section->code;
vs_tmp.strptr = section->hfinfo.abbrev;
wmem_array_append_one(erf_meta_index.vs_abbrev_list, vs_tmp);
} else {
/* Store section_unknown separately to simplify logic later */
erf_meta_index.unknown_section_info = tag_info;
}
}
/* Terminate value string lists with {0, NULL} */
vs_tmp.value = 0;
vs_tmp.strptr = NULL;
wmem_array_append_one(erf_meta_index.vs_list, vs_tmp);
wmem_array_append_one(erf_meta_index.vs_abbrev_list, vs_tmp);
/* TODO: try value_string_ext, requires sorting first */
}
static inline value_string *erf_to_value_string(wmem_array_t *array) {
return (value_string *)wmem_array_get_raw(array);
}
static guint erf_anchor_key_hash(gconstpointer key) {
const erf_anchor_key_t *anchor_key = (const erf_anchor_key_t*) key;
return ((guint32)anchor_key->host_id ^ (guint32)anchor_key->anchor_id);
}
static gboolean erf_anchor_key_equal(gconstpointer a, gconstpointer b) {
const erf_anchor_key_t *anchor_key_a = (const erf_anchor_key_t*) a ;
const erf_anchor_key_t *anchor_key_b = (const erf_anchor_key_t*) b ;
return (anchor_key_a->host_id) == (anchor_key_b->host_id) &&
(anchor_key_a->anchor_id & ERF_EXT_HDR_TYPE_ANCHOR_ID) == (anchor_key_b->anchor_id & ERF_EXT_HDR_TYPE_ANCHOR_ID);
}
static void erf_host_anchor_info_insert(packet_info *pinfo, guint64 host_id, guint64 anchor_id, guint8 flags _U_) {
erf_host_anchor_info_t *anchor_info;
erf_anchor_key_t key = {host_id, anchor_id};
erf_anchored_info_t *anchored_info;
anchor_info = (erf_host_anchor_info_t*)wmem_map_lookup(erf_state.host_anchor_map, &key);
if(!anchor_info) {
erf_anchor_key_t *key_ptr = wmem_new(wmem_file_scope(), erf_anchor_key_t);
*key_ptr = key;
anchor_info = (erf_host_anchor_info_t*) wmem_new(wmem_file_scope(), erf_host_anchor_info_t);
anchor_info->anchored_tree = wmem_tree_new(wmem_file_scope());
anchor_info->anchored_list = wmem_list_new(wmem_file_scope());
wmem_map_insert(erf_state.host_anchor_map, key_ptr, anchor_info);
}
/* Information about this frame associated with the Anchor ID */
anchored_info = (erf_anchored_info_t*)wmem_tree_lookup32(anchor_info->anchored_tree, pinfo->num);
if(!anchored_info) {
/* anchored_info not found */
anchored_info = (erf_anchored_info_t*)wmem_new(wmem_file_scope(), erf_anchored_info_t);
anchored_info->frame_num = pinfo->num;
wmem_list_append(anchor_info->anchored_list, anchored_info);
wmem_tree_insert32(anchor_info->anchored_tree, pinfo->num, anchored_info);
}
else {
return;
}
}
static int
erf_source_append(guint64 host_id, guint8 source_id, guint32 num)
{
erf_source_info_t *source_info;
guint64 source_key = ERF_SOURCE_KEY(host_id, source_id);
source_info = (erf_source_info_t*) wmem_map_lookup(erf_state.source_map, &source_key);
if (!source_info) {
guint64 *source_key_ptr = wmem_new(wmem_file_scope(), guint64);
*source_key_ptr = source_key;
source_info = (erf_source_info_t*) wmem_new(wmem_file_scope(), erf_source_info_t);
source_info->meta_tree = wmem_tree_new(wmem_file_scope());
source_info->meta_list = wmem_list_new(wmem_file_scope());
wmem_map_insert(erf_state.source_map, source_key_ptr, source_info);
}
/* Add the frame to the list for that source */
wmem_list_append(source_info->meta_list, GUINT_TO_POINTER(num));
/*
* XXX: This assumes we are inserting fd_num in order, which we are as we use
* PINFO_FD_VISITED in caller.
*/
wmem_tree_insert32(source_info->meta_tree, num, wmem_list_tail(source_info->meta_list));
return 0;
}
static guint32
erf_source_find_closest(guint64 host_id, guint8 source_id, guint32 fnum, guint32 *fnum_next_ptr) {
wmem_list_frame_t *list_frame = NULL;
wmem_list_frame_t *list_frame_prev = NULL;
erf_source_info_t *source_info = NULL;
guint64 source_key = ERF_SOURCE_KEY(host_id, source_id);
guint32 fnum_prev = G_MAXUINT32;
guint32 fnum_next = G_MAXUINT32;
source_info = (erf_source_info_t*) wmem_map_lookup(erf_state.source_map, &source_key);
if (source_info) {
list_frame = (wmem_list_frame_t*) wmem_tree_lookup32_le(source_info->meta_tree, fnum);
if (list_frame) {
fnum_prev = GPOINTER_TO_UINT(wmem_list_frame_data(list_frame));
/* If looking at a metadata record, get the real previous meta frame */
if (fnum_prev == fnum) {
list_frame_prev = wmem_list_frame_prev(list_frame);
fnum_prev = list_frame_prev ? GPOINTER_TO_UINT(wmem_list_frame_data(list_frame_prev)) : G_MAXUINT32;
}
list_frame = wmem_list_frame_next(list_frame);
fnum_next = list_frame ? GPOINTER_TO_UINT(wmem_list_frame_data(list_frame)) : G_MAXUINT32;
} else {
/*
* XXX: Edge case: still need the first meta record to find the next one at the
* beginning of the file.
*/
list_frame = wmem_list_head(source_info->meta_list);
fnum_next = list_frame ? GPOINTER_TO_UINT(wmem_list_frame_data(list_frame)) : G_MAXUINT32;
fnum_prev = G_MAXUINT32;
}
}
if (fnum_next_ptr)
*fnum_next_ptr = fnum_next;
return fnum_prev;
}
/* Copy of atm_guess_traffic_type from atm.c in /wiretap */
static void
erf_atm_guess_lane_type(tvbuff_t *tvb, int offset, guint len,
struct atm_phdr *atm_info)
{
if (len >= 2) {
if (tvb_get_ntohs(tvb, offset) == 0xFF00) {
/*
* Looks like LE Control traffic.
*/
atm_info->subtype = TRAF_ST_LANE_LE_CTRL;
} else {
/*
* XXX - Ethernet, or Token Ring?
* Assume Ethernet for now; if we see earlier
* LANE traffic, we may be able to figure out
* the traffic type from that, but there may
* still be situations where the user has to
* tell us.
*/
atm_info->subtype = TRAF_ST_LANE_802_3;
}
}
}
static void
erf_atm_guess_traffic_type(tvbuff_t *tvb, int offset, guint len,
struct atm_phdr *atm_info)
{
/*
* Start out assuming nothing other than that it's AAL5.
*/
atm_info->aal = AAL_5;
atm_info->type = TRAF_UNKNOWN;
atm_info->subtype = TRAF_ST_UNKNOWN;
if (atm_info->vpi == 0) {
/*
* Traffic on some PVCs with a VPI of 0 and certain
* VCIs is of particular types.
*/
switch (atm_info->vci) {
case 5:
/*
* Signalling AAL.
*/
atm_info->aal = AAL_SIGNALLING;
return;
case 16:
/*
* ILMI.
*/
atm_info->type = TRAF_ILMI;
return;
}
}
/*
* OK, we can't tell what it is based on the VPI/VCI; try
* guessing based on the contents, if we have enough data
* to guess.
*/
if (len >= 3) {
guint8 mtp3b;
if (tvb_get_ntoh24(tvb, offset) == 0xAAAA03) {
/*
* Looks like a SNAP header; assume it's LLC
* multiplexed RFC 1483 traffic.
*/
atm_info->type = TRAF_LLCMX;
} else if ((atm_info->aal5t_len &&
atm_info->aal5t_len < 16) || len<16) {
/*
* As this cannot be a LANE Ethernet frame (less
* than 2 bytes of LANE header + 14 bytes of
* Ethernet header) we can try it as a SSCOP frame.
*/
atm_info->aal = AAL_SIGNALLING;
} else if (((mtp3b = tvb_get_guint8(tvb, offset)) == 0x83) || (mtp3b == 0x81)) {
/*
* MTP3b headers often encapsulate
* a SCCP or MTN in the 3G network.
* This should cause 0x83 or 0x81
* in the first byte.
*/
atm_info->aal = AAL_SIGNALLING;
} else {
/*
* Assume it's LANE.
*/
atm_info->type = TRAF_LANE;
erf_atm_guess_lane_type(tvb, offset, len, atm_info);
}
} else {
/*
* Not only VCI 5 is used for signaling. It might be
* one of these VCIs.
*/
atm_info->aal = AAL_SIGNALLING;
}
}
static void
dissect_classification_ex_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, int idx)
{
proto_item *flags_item;
proto_tree *flags_tree;
guint64 hdr = pinfo->pseudo_header->erf.ehdr_list[idx].ehdr;
guint32 value = ((guint32)(hdr >> 32)) & EHDR_CLASS_FLAGS_MASK;
flags_item = proto_tree_add_uint(tree, hf_erf_ehdr_class_flags, tvb, 0, 0, value);
flags_tree = proto_item_add_subtree(flags_item, ett_erf_flags);
proto_tree_add_uint(flags_tree, hf_erf_ehdr_class_flags_sh, tvb, 0, 0, value);
proto_tree_add_uint(flags_tree, hf_erf_ehdr_class_flags_shm, tvb, 0, 0, value);
proto_tree_add_uint(flags_tree, hf_erf_ehdr_class_flags_res1, tvb, 0, 0, value);
proto_tree_add_uint(flags_tree, hf_erf_ehdr_class_flags_user, tvb, 0, 0, value);
proto_tree_add_uint(flags_tree, hf_erf_ehdr_class_flags_res2, tvb, 0, 0, value);
proto_tree_add_uint(flags_tree, hf_erf_ehdr_class_flags_drop, tvb, 0, 0, value);
proto_tree_add_uint(flags_tree, hf_erf_ehdr_class_flags_str, tvb, 0, 0, value);
proto_tree_add_uint(tree, hf_erf_ehdr_class_seqnum, tvb, 0, 0, (guint32)hdr);
}
static void
dissect_intercept_ex_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, int idx)
{
guint64 hdr = pinfo->pseudo_header->erf.ehdr_list[idx].ehdr;
proto_tree_add_uint(tree, hf_erf_ehdr_int_res1, tvb, 0, 0, (guint8)((hdr >> 48) & 0xFF));
proto_tree_add_uint(tree, hf_erf_ehdr_int_id, tvb, 0, 0, (guint16)((hdr >> 32 ) & 0xFFFF));
proto_tree_add_uint(tree, hf_erf_ehdr_int_res2, tvb, 0, 0, (guint32)hdr);
}
static void
dissect_raw_link_ex_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, int idx)
{
guint64 hdr = pinfo->pseudo_header->erf.ehdr_list[idx].ehdr;
proto_tree_add_uint(tree, hf_erf_ehdr_raw_link_res , tvb, 0, 0, (guint32)((hdr >> 32) & 0xFFFFFF));
proto_tree_add_uint(tree, hf_erf_ehdr_raw_link_seqnum , tvb, 0, 0, (guint32)((hdr >> 16) & 0xffff));
proto_tree_add_uint(tree, hf_erf_ehdr_raw_link_rate, tvb, 0, 0, (guint32)((hdr >> 8) & 0x00ff));
proto_tree_add_uint(tree, hf_erf_ehdr_raw_link_type, tvb, 0, 0, (guint32)(hdr & 0x00ff));
}
static void
dissect_bfs_ex_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, int idx)
{
guint64 hdr = pinfo->pseudo_header->erf.ehdr_list[idx].ehdr;
proto_tree_add_uint(tree, hf_erf_ehdr_bfs_hash, tvb, 0, 0, (guint32)((hdr >> 48) & 0xFF));
proto_tree_add_uint(tree, hf_erf_ehdr_bfs_color, tvb, 0, 0, (guint32)((hdr >> 32) & 0xFFFF));
proto_tree_add_uint(tree, hf_erf_ehdr_bfs_raw_hash, tvb, 0, 0, (guint32)(hdr & 0xFFFFFFFF));
}
static int
channelised_fill_sdh_g707_format(sdh_g707_format_t* in_fmt, guint16 bit_flds, guint8 vc_size, guint8 rate)
{
int i = 0; /* i = 3 --> ITU-T letter #D - index of AUG-16
* i = 2 --> ITU-T letter #C - index of AUG-4,
* i = 1 --> ITU-T letter #B - index of AUG-1
* i = 0 --> ITU-T letter #A - index of AU3*/
if ( (0 == vc_size) || (vc_size > DECHAN_MAX_VC_SIZE) || (rate > DECHAN_MAX_LINE_RATE) )
{
/* unknown / unused / invalid container size or invalid line rate */
in_fmt->m_vc_size = 0;
in_fmt->m_sdh_line_rate = 0;
memset(&(in_fmt->m_vc_index_array[0]), 0x00, DECHAN_MAX_AUG_INDEX);
return -1;
}
in_fmt->m_vc_size = vc_size;
in_fmt->m_sdh_line_rate = rate;
memset(&(in_fmt->m_vc_index_array[0]), 0xff, DECHAN_MAX_AUG_INDEX);
/* for STM64 traffic,from #D and so on .. */
for (i = (rate - 2); i >= 0; i--)
{
guint8 aug_n_index = 0;
/*if AUG-n is bigger than vc-size*/
if ( i >= (vc_size - 1))
{
/* check the value in bit flds */
aug_n_index = ((bit_flds >> (2 *i))& 0x3) +1;
}
else
{
aug_n_index = 0;
}
in_fmt->m_vc_index_array[i] = aug_n_index;
}
return 0;
}
static void
channelised_fill_vc_id_string(wmem_strbuf_t* out_string, sdh_g707_format_t* in_fmt)
{
int i;
gboolean is_printed = FALSE;
static const char* g_vc_size_strings[] = {
"unknown", /*0x0*/
"VC3", /*0x1*/
"VC4", /*0x2*/
"VC4-4c", /*0x3*/
"VC4-16c", /*0x4*/
"VC4-64c", /*0x5*/};
wmem_strbuf_truncate(out_string, 0);
if ( (in_fmt->m_vc_size > DECHAN_MAX_VC_SIZE) || (in_fmt->m_sdh_line_rate > DECHAN_MAX_LINE_RATE) )
{
wmem_strbuf_append_printf(out_string, "Malformed");
return;
}
wmem_strbuf_append_printf(out_string, "%s(",
(in_fmt->m_vc_size < array_length(g_vc_size_strings)) ?
g_vc_size_strings[in_fmt->m_vc_size] : g_vc_size_strings[0] );
if (in_fmt->m_sdh_line_rate <= 0 )
{
/* line rate is not given */
for (i = (DECHAN_MAX_AUG_INDEX -1); i >= 0; i--)
{
if ((in_fmt->m_vc_index_array[i] > 0) || (is_printed) )
{
wmem_strbuf_append_printf(out_string, "%s%d",
((is_printed)?", ":""),
in_fmt->m_vc_index_array[i]);
is_printed = TRUE;
}
}
}
else
{
for (i = in_fmt->m_sdh_line_rate - 2; i >= 0; i--)
{
wmem_strbuf_append_printf(out_string, "%s%d",
((is_printed)?", ":""),
in_fmt->m_vc_index_array[i]);
is_printed = TRUE;
}
}
if ( ! is_printed )
{
/* Not printed . possibly it's a ocXc packet with (0,0,0...) */
for ( i =0; i < in_fmt->m_vc_size - 2; i++)
{
wmem_strbuf_append_printf(out_string, "%s0",
((is_printed)?", ":""));
is_printed = TRUE;
}
}
wmem_strbuf_append_c(out_string, ')');
return;
}
static void
dissect_channelised_ex_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, int idx)
{
guint64 hdr = pinfo->pseudo_header->erf.ehdr_list[idx].ehdr;
guint8 vc_id = (guint8)((hdr >> 24) & 0xFF);
guint8 vc_size = (guint8)((hdr >> 16) & 0xFF);
guint8 line_rate = (guint8)((hdr >> 8) & 0xFF);
sdh_g707_format_t g707_format;
wmem_strbuf_t *vc_id_string = wmem_strbuf_create(pinfo->pool);
channelised_fill_sdh_g707_format(&g707_format, vc_id, vc_size, line_rate);
channelised_fill_vc_id_string(vc_id_string, &g707_format);
proto_tree_add_boolean(tree, hf_erf_ehdr_chan_morebits, tvb, 0, 0, (guint8)((hdr >> 63) & 0x1));
proto_tree_add_boolean(tree, hf_erf_ehdr_chan_morefrag, tvb, 0, 0, (guint8)((hdr >> 55) & 0x1));
proto_tree_add_uint(tree, hf_erf_ehdr_chan_seqnum, tvb, 0, 0, (guint16)((hdr >> 40) & 0x7FFF));
proto_tree_add_uint(tree, hf_erf_ehdr_chan_res, tvb, 0, 0, (guint8)((hdr >> 32) & 0xFF));
proto_tree_add_uint_format_value(tree, hf_erf_ehdr_chan_virt_container_id, tvb, 0, 0, vc_id,
"0x%.2x (g.707: %s)", vc_id, wmem_strbuf_get_str(vc_id_string));
proto_tree_add_uint(tree, hf_erf_ehdr_chan_assoc_virt_container_size, tvb, 0, 0, vc_size);
proto_tree_add_uint(tree, hf_erf_ehdr_chan_rate, tvb, 0, 0, line_rate);
proto_tree_add_uint(tree, hf_erf_ehdr_chan_type, tvb, 0, 0, (guint8)((hdr >> 0) & 0xFF));
}
static void
dissect_signature_ex_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, int idx)
{
guint64 hdr = pinfo->pseudo_header->erf.ehdr_list[idx].ehdr;
proto_tree_add_uint(tree, hf_erf_ehdr_signature_payload_hash, tvb, 0, 0, (guint32)((hdr >> 32) & 0xFFFFFF));
proto_tree_add_uint(tree, hf_erf_ehdr_signature_color, tvb, 0, 0, (guint8)((hdr >> 24) & 0xFF));
proto_tree_add_uint(tree, hf_erf_ehdr_signature_flow_hash, tvb, 0, 0, (guint32)(hdr & 0xFFFFFF));
}
static void
dissect_host_id_ex_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, int idx)
{
guint64 hdr = pinfo->pseudo_header->erf.ehdr_list[idx].ehdr;
proto_tree_add_uint(tree, hf_erf_ehdr_host_id_sourceid, tvb, 0, 0, (guint8)((hdr >> 48) & 0xFF));
proto_tree_add_uint64(tree, hf_erf_ehdr_host_id_hostid, tvb, 0, 0, (hdr & ERF_EHDR_HOST_ID_MASK));
}
static void
dissect_anchor_id_ex_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, int idx)
{
static int * const anchor_flags[] =
{
&hf_erf_ehdr_anchor_id_definition,
&hf_erf_ehdr_anchor_id_reserved,
NULL
};
guint64 hdr = pinfo->pseudo_header->erf.ehdr_list[idx].ehdr;
proto_tree_add_bitmask_value(tree, tvb, 0, hf_erf_ehdr_anchor_id_flags, ett_erf_anchor_flags, anchor_flags, (guint8)(hdr >> 48) & 0xff);
proto_tree_add_uint64(tree, hf_erf_ehdr_anchor_id_anchorid, tvb, 0, 0, (hdr & ERF_EHDR_ANCHOR_ID_MASK));
}
static void
dissect_flow_id_ex_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, int idx)
{
guint64 hdr = pinfo->pseudo_header->erf.ehdr_list[idx].ehdr;
guint8 hash_type = (guint8)((hdr >> 40) & 0xFF);
proto_item *hash_type_item;
proto_tree *hash_type_tree;
proto_tree_add_uint(tree, hf_erf_ehdr_flow_id_source_id, tvb, 0, 0, (guint8)((hdr >> 48) & 0xFF));
hash_type_item = proto_tree_add_uint_format_value(tree, hf_erf_ehdr_flow_id_hash_type, tvb, 0, 0, hash_type,
"0x%02x (%s%s)",
hash_type,
(hash_type & ERF_EHDR_FLOW_ID_HASH_TYPE_INNER_MASK) ? "Inner " : "",
val_to_str_const(
(hash_type & ERF_EHDR_FLOW_ID_HASH_TYPE_TYPE_MASK),
erf_hash_type,
"Unknown Type"));
hash_type_tree = proto_item_add_subtree(hash_type_item, ett_erf_hash_type);
proto_tree_add_uint(hash_type_tree, hf_erf_ehdr_flow_id_hash_type_type, tvb, 0, 0, hash_type);
proto_tree_add_uint(hash_type_tree, hf_erf_ehdr_flow_id_hash_type_inner, tvb, 0, 0, hash_type);
proto_tree_add_uint(tree, hf_erf_ehdr_flow_id_stack_type, tvb, 0, 0, (guint8)((hdr >> 32) & 0xFF));
proto_tree_add_uint(tree, hf_erf_ehdr_flow_id_flow_hash, tvb, 0, 0, (guint32)(hdr & 0xFFFFFFFF));
}
static float
entropy_from_entropy_header_value(guint8 entropy_hdr_value)
{
/* mapping 1-255 to 0.0-8.0 */
/* 255 is 8.0 */
/* 1 represent any value less than 2/32 */
/* 0 represents not calculated */
return (float)((entropy_hdr_value == 0)?0.0f: (((float)entropy_hdr_value+1) / 32.0f));
}
static void
dissect_entropy_ex_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, int idx)
{
guint64 hdr = pinfo->pseudo_header->erf.ehdr_list[idx].ehdr;
guint8 entropy_hdr_value = (guint8)((hdr >> 48) & 0xFF);
float entropy;
proto_item *pi;
proto_tree *entropy_value_tree;
entropy = entropy_from_entropy_header_value(entropy_hdr_value);
pi = proto_tree_add_float_format_value(tree, hf_erf_ehdr_entropy_entropy, tvb, 0, 0, entropy,
"%.2f %s", (double) entropy, entropy == 0.0f ? "(not calculated)":"bits");
entropy_value_tree = proto_item_add_subtree(pi, ett_erf_entropy_value);
proto_tree_add_uint(entropy_value_tree, hf_erf_ehdr_entropy_entropy_raw, tvb, 0, 0, entropy_hdr_value);
proto_tree_add_uint64(tree, hf_erf_ehdr_entropy_reserved, tvb, 0, 0, (hdr & 0xFFFFFFFFFFFF));
}
static guint64
find_host_id(packet_info *pinfo, gboolean *has_anchor_definition) {
guint64 hdr;
guint8 type;
guint8 has_more = pinfo->pseudo_header->erf.phdr.type & 0x80;
int i = 0;
guint64 host_id = ERF_META_HOST_ID_IMPLICIT;
gboolean anchor_definition = FALSE;
while(has_more && (i < MAX_ERF_EHDR)) {
hdr = pinfo->pseudo_header->erf.ehdr_list[i].ehdr;
type = (guint8) (hdr >> 56);
switch (type & 0x7f) {
case ERF_EXT_HDR_TYPE_HOST_ID:
if (host_id == ERF_META_HOST_ID_IMPLICIT)
host_id = hdr & ERF_EHDR_HOST_ID_MASK;
break;
case ERF_EXT_HDR_TYPE_ANCHOR_ID:
if ((hdr & ERF_EHDR_ANCHOR_ID_DEFINITION_MASK))
anchor_definition = TRUE;
break;
}
has_more = type & 0x80;
i += 1;
}
if (has_anchor_definition)
*has_anchor_definition = anchor_definition;
return host_id;
}
static void dissect_host_anchor_id(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, guint64 host_id, guint64 anchor_id, guint8 anchor _U_) {
erf_anchor_key_t key = {host_id, anchor_id};
erf_host_anchor_info_t *anchor_info;
erf_anchored_info_t *anchored_info;
wmem_list_frame_t *frame;
wmem_list_t *frame_list;
proto_item *pi = NULL;
proto_tree *subtree;
/* TODO: top level linking to most recent frame like we have for Host ID? */
subtree = proto_tree_add_subtree_format(tree, tvb, 0, 0, ett_erf_anchor, &pi, "Host ID: 0x%012" PRIx64 ", Anchor ID: 0x%012" PRIx64, host_id & ERF_EHDR_HOST_ID_MASK, anchor_id & ERF_EHDR_ANCHOR_ID_MASK);
proto_item_set_generated(pi);
pi = proto_tree_add_uint64(subtree, hf_erf_anchor_hostid, tvb, 0, 0, host_id & ERF_EHDR_HOST_ID_MASK);
proto_item_set_generated(pi);
pi = proto_tree_add_uint64(subtree, hf_erf_anchor_anchorid, tvb, 0, 0, anchor_id & ERF_EHDR_ANCHOR_ID_MASK);
proto_item_set_generated(pi);
anchor_info = (erf_host_anchor_info_t*)wmem_map_lookup(erf_state.host_anchor_map, &key);
if(!anchor_info) {
return;
}
frame_list = anchor_info->anchored_list;
/* Try to link frames */
frame = wmem_list_head(frame_list);
while(frame != NULL) {
anchored_info = (erf_anchored_info_t*)wmem_list_frame_data(frame);
if(pinfo->num != anchored_info->frame_num) {
/* Don't list the frame itself */
pi = proto_tree_add_uint(subtree, hf_erf_anchor_linked, tvb, 0, 0, anchored_info->frame_num);
proto_item_set_generated(pi);
/* XXX: Need to do this each time because pinfo is discarded. Filtering does not reset visited as it does not do a full redissect.
We also might not catch all frames in the first pass (e.g. comment after record). */
mark_frame_as_depended_upon(pinfo->fd, anchored_info->frame_num);
}
frame = wmem_list_frame_next(frame);
}
}
static void
dissect_host_id_source_id(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, guint64 host_id, guint8 source_id)
{
proto_tree *hostid_tree;
proto_item *pi = NULL;
guint32 fnum_current = G_MAXUINT32;
guint32 fnum = G_MAXUINT32;
guint32 fnum_next = G_MAXUINT32;
fnum = erf_source_find_closest(host_id, source_id, pinfo->num, &fnum_next);
if (fnum != G_MAXUINT32) {
fnum_current = fnum;
} else {
/* XXX: Possibly undesirable side effect: first metadata record links to next */
fnum_current = fnum_next;
}
if (fnum_current != G_MAXUINT32) {
pi = proto_tree_add_uint_format(tree, hf_erf_source_current, tvb, 0, 0, fnum_current,
"Host ID: 0x%012" PRIx64 ", Source ID: %u", host_id, source_id&0xFF);
hostid_tree = proto_item_add_subtree(pi, ett_erf_source);
} else {
/* If we have no frame number to link against, just add a static subtree */
hostid_tree = proto_tree_add_subtree_format(tree, tvb, 0, 0, ett_erf_source, &pi,
"Host ID: 0x%012" PRIx64 ", Source ID: %u", host_id, source_id&0xFF);
}
proto_item_set_generated(pi);
pi = proto_tree_add_uint64(hostid_tree, hf_erf_hostid, tvb, 0, 0, host_id);
proto_item_set_generated(pi);
pi = proto_tree_add_uint(hostid_tree, hf_erf_sourceid, tvb, 0, 0, source_id);
proto_item_set_generated(pi);
if (fnum_next != G_MAXUINT32) {
pi = proto_tree_add_uint(hostid_tree, hf_erf_source_next, tvb, 0, 0, fnum_next);
proto_item_set_generated(pi);
/* XXX: Save the surrounding nearest periodic records when we do a filtered save so we keep native ERF metadata */
mark_frame_as_depended_upon(pinfo->fd, fnum_next);
}
if (fnum != G_MAXUINT32) {
pi = proto_tree_add_uint(hostid_tree, hf_erf_source_prev, tvb, 0, 0, fnum);
proto_item_set_generated(pi);
mark_frame_as_depended_upon(pinfo->fd, fnum);
}
}
static void
dissect_unknown_ex_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, int idx)
{
guint64 hdr = pinfo->pseudo_header->erf.ehdr_list[idx].ehdr;
proto_tree_add_uint64(tree, hf_erf_ehdr_unk, tvb, 0, 0, hdr);
}
static void
dissect_mc_hdlc_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
proto_item *mc_hdlc_item;
proto_tree *mc_hdlc_tree;
guint32 mc_hdlc;
proto_item *pi;
/* Multi Channel HDLC Header */
mc_hdlc_item = proto_tree_add_uint(tree, hf_erf_mc_hdlc, tvb, 0, 0, pinfo->pseudo_header->erf.subhdr.mc_hdr);
mc_hdlc_tree = proto_item_add_subtree(mc_hdlc_item, ett_erf_mc_hdlc);
mc_hdlc = pinfo->pseudo_header->erf.subhdr.mc_hdr;
proto_tree_add_uint(mc_hdlc_tree, hf_erf_mc_hdlc_cn, tvb, 0, 0, mc_hdlc);
proto_tree_add_uint(mc_hdlc_tree, hf_erf_mc_hdlc_res1, tvb, 0, 0, mc_hdlc);
proto_tree_add_uint(mc_hdlc_tree, hf_erf_mc_hdlc_res2, tvb, 0, 0, mc_hdlc);
pi=proto_tree_add_uint(mc_hdlc_tree, hf_erf_mc_hdlc_fcse, tvb, 0, 0, mc_hdlc);
if (mc_hdlc & MC_HDLC_FCSE_MASK)
expert_add_info(pinfo, pi, &ei_erf_mc_hdlc_checksum_error);
pi=proto_tree_add_uint(mc_hdlc_tree, hf_erf_mc_hdlc_sre, tvb, 0, 0, mc_hdlc);
if (mc_hdlc & MC_HDLC_SRE_MASK)
expert_add_info(pinfo, pi, &ei_erf_mc_hdlc_short_error);
pi=proto_tree_add_uint(mc_hdlc_tree, hf_erf_mc_hdlc_lre, tvb, 0, 0, mc_hdlc);
if (mc_hdlc & MC_HDLC_LRE_MASK)
expert_add_info(pinfo, pi, &ei_erf_mc_hdlc_long_error);
pi=proto_tree_add_uint(mc_hdlc_tree, hf_erf_mc_hdlc_afe, tvb, 0, 0, mc_hdlc);
if (mc_hdlc & MC_HDLC_AFE_MASK)
expert_add_info(pinfo, pi, &ei_erf_mc_hdlc_abort_error);
pi=proto_tree_add_uint(mc_hdlc_tree, hf_erf_mc_hdlc_oe, tvb, 0, 0, mc_hdlc);
if (mc_hdlc & MC_HDLC_OE_MASK)
expert_add_info(pinfo, pi, &ei_erf_mc_hdlc_octet_error);
pi=proto_tree_add_uint(mc_hdlc_tree, hf_erf_mc_hdlc_lbe, tvb, 0, 0, mc_hdlc);
if (mc_hdlc & MC_HDLC_LBE_MASK)
expert_add_info(pinfo, pi, &ei_erf_mc_hdlc_lost_byte_error);
proto_tree_add_uint(mc_hdlc_tree, hf_erf_mc_hdlc_first, tvb, 0, 0, mc_hdlc);
proto_tree_add_uint(mc_hdlc_tree, hf_erf_mc_hdlc_res3, tvb, 0, 0, mc_hdlc);
}
static void
dissect_mc_raw_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
proto_item *mc_raw_item;
proto_tree *mc_raw_tree;
guint32 mc_raw;
/* Multi Channel RAW Header */
mc_raw_item = proto_tree_add_uint(tree, hf_erf_mc_raw, tvb, 0, 0, pinfo->pseudo_header->erf.subhdr.mc_hdr);
mc_raw_tree = proto_item_add_subtree(mc_raw_item, ett_erf_mc_raw);
mc_raw = pinfo->pseudo_header->erf.subhdr.mc_hdr;
proto_tree_add_uint(mc_raw_tree, hf_erf_mc_raw_int, tvb, 0, 0, mc_raw);
proto_tree_add_uint(mc_raw_tree, hf_erf_mc_raw_res1, tvb, 0, 0, mc_raw);
proto_tree_add_uint(mc_raw_tree, hf_erf_mc_raw_sre, tvb, 0, 0, mc_raw);
proto_tree_add_uint(mc_raw_tree, hf_erf_mc_raw_lre, tvb, 0, 0, mc_raw);
proto_tree_add_uint(mc_raw_tree, hf_erf_mc_raw_res2, tvb, 0, 0, mc_raw);
proto_tree_add_uint(mc_raw_tree, hf_erf_mc_raw_lbe, tvb, 0, 0, mc_raw);
proto_tree_add_uint(mc_raw_tree, hf_erf_mc_raw_first, tvb, 0, 0, mc_raw);
proto_tree_add_uint(mc_raw_tree, hf_erf_mc_raw_res3, tvb, 0, 0, mc_raw);
}
static void
dissect_mc_atm_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
proto_item *mc_atm_item;
proto_tree *mc_atm_tree;
guint32 mc_atm;
/*"Multi Channel ATM Header"*/
mc_atm_item = proto_tree_add_uint(tree, hf_erf_mc_atm, tvb, 0, 0, pinfo->pseudo_header->erf.subhdr.mc_hdr);
mc_atm_tree = proto_item_add_subtree(mc_atm_item, ett_erf_mc_atm);
mc_atm = pinfo->pseudo_header->erf.subhdr.mc_hdr;
proto_tree_add_uint(mc_atm_tree, hf_erf_mc_atm_cn, tvb, 0, 0, mc_atm);
proto_tree_add_uint(mc_atm_tree, hf_erf_mc_atm_res1, tvb, 0, 0, mc_atm);
proto_tree_add_uint(mc_atm_tree, hf_erf_mc_atm_mul, tvb, 0, 0, mc_atm);
proto_tree_add_uint(mc_atm_tree, hf_erf_mc_atm_port, tvb, 0, 0, mc_atm);
proto_tree_add_uint(mc_atm_tree, hf_erf_mc_atm_res2, tvb, 0, 0, mc_atm);
proto_tree_add_uint(mc_atm_tree, hf_erf_mc_atm_lbe, tvb, 0, 0, mc_atm);
proto_tree_add_uint(mc_atm_tree, hf_erf_mc_atm_hec, tvb, 0, 0, mc_atm);
proto_tree_add_uint(mc_atm_tree, hf_erf_mc_atm_crc10, tvb, 0, 0, mc_atm);
proto_tree_add_uint(mc_atm_tree, hf_erf_mc_atm_oamcell, tvb, 0, 0, mc_atm);
proto_tree_add_uint(mc_atm_tree, hf_erf_mc_atm_first, tvb, 0, 0, mc_atm);
proto_tree_add_uint(mc_atm_tree, hf_erf_mc_atm_res3, tvb, 0, 0, mc_atm);
}
static void
dissect_mc_rawlink_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
proto_item *mc_rawl_item;
proto_tree *mc_rawl_tree;
guint32 mc_rawl;
/* Multi Channel RAW Link Header */
mc_rawl_item = proto_tree_add_uint(tree, hf_erf_mc_rawl, tvb, 0, 0, pinfo->pseudo_header->erf.subhdr.mc_hdr);
mc_rawl_tree = proto_item_add_subtree(mc_rawl_item, ett_erf_mc_rawlink);
mc_rawl = pinfo->pseudo_header->erf.subhdr.mc_hdr;
proto_tree_add_uint(mc_rawl_tree, hf_erf_mc_rawl_cn, tvb, 0, 0, mc_rawl);
proto_tree_add_uint(mc_rawl_tree, hf_erf_mc_rawl_res1, tvb, 0, 0, mc_rawl);
proto_tree_add_uint(mc_rawl_tree, hf_erf_mc_rawl_lbe, tvb, 0, 0, mc_rawl);
proto_tree_add_uint(mc_rawl_tree, hf_erf_mc_rawl_first, tvb, 0, 0, mc_rawl);
proto_tree_add_uint(mc_rawl_tree, hf_erf_mc_rawl_res2, tvb, 0, 0, mc_rawl);
}
static void
dissect_mc_aal5_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
proto_item *mc_aal5_item;
proto_tree *mc_aal5_tree;
guint32 mc_aal5;
/* Multi Channel AAL5 Header */
mc_aal5_item = proto_tree_add_uint(tree, hf_erf_mc_aal5, tvb, 0, 0, pinfo->pseudo_header->erf.subhdr.mc_hdr);
mc_aal5_tree = proto_item_add_subtree(mc_aal5_item, ett_erf_mc_aal5);
mc_aal5 = pinfo->pseudo_header->erf.subhdr.mc_hdr;
proto_tree_add_uint(mc_aal5_tree, hf_erf_mc_aal5_cn, tvb, 0, 0, mc_aal5);
proto_tree_add_uint(mc_aal5_tree, hf_erf_mc_aal5_res1, tvb, 0, 0, mc_aal5);
proto_tree_add_uint(mc_aal5_tree, hf_erf_mc_aal5_port, tvb, 0, 0, mc_aal5);
proto_tree_add_uint(mc_aal5_tree, hf_erf_mc_aal5_crcck, tvb, 0, 0, mc_aal5);
proto_tree_add_uint(mc_aal5_tree, hf_erf_mc_aal5_crce, tvb, 0, 0, mc_aal5);
proto_tree_add_uint(mc_aal5_tree, hf_erf_mc_aal5_lenck, tvb, 0, 0, mc_aal5);
proto_tree_add_uint(mc_aal5_tree, hf_erf_mc_aal5_lene, tvb, 0, 0, mc_aal5);
proto_tree_add_uint(mc_aal5_tree, hf_erf_mc_aal5_res2, tvb, 0, 0, mc_aal5);
proto_tree_add_uint(mc_aal5_tree, hf_erf_mc_aal5_first, tvb, 0, 0, mc_aal5);
proto_tree_add_uint(mc_aal5_tree, hf_erf_mc_aal5_res3, tvb, 0, 0, mc_aal5);
}
static void
dissect_mc_aal2_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
proto_item *mc_aal2_item;
proto_tree *mc_aal2_tree;
guint32 mc_aal2;
/* Multi Channel AAL2 Header */
mc_aal2_item = proto_tree_add_uint(tree, hf_erf_mc_aal2, tvb, 0, 0, pinfo->pseudo_header->erf.subhdr.mc_hdr);
mc_aal2_tree = proto_item_add_subtree(mc_aal2_item, ett_erf_mc_aal2);
mc_aal2 = pinfo->pseudo_header->erf.subhdr.mc_hdr;
proto_tree_add_uint(mc_aal2_tree, hf_erf_mc_aal2_cn, tvb, 0, 0, mc_aal2);
proto_tree_add_uint(mc_aal2_tree, hf_erf_mc_aal2_res1, tvb, 0, 0, mc_aal2);
proto_tree_add_uint(mc_aal2_tree, hf_erf_mc_aal2_res2, tvb, 0, 0, mc_aal2);
proto_tree_add_uint(mc_aal2_tree, hf_erf_mc_aal2_port, tvb, 0, 0, mc_aal2);
proto_tree_add_uint(mc_aal2_tree, hf_erf_mc_aal2_res3, tvb, 0, 0, mc_aal2);
proto_tree_add_uint(mc_aal2_tree, hf_erf_mc_aal2_first, tvb, 0, 0, mc_aal2);
proto_tree_add_uint(mc_aal2_tree, hf_erf_mc_aal2_maale, tvb, 0, 0, mc_aal2);
proto_tree_add_uint(mc_aal2_tree, hf_erf_mc_aal2_lene, tvb, 0, 0, mc_aal2);
proto_tree_add_uint(mc_aal2_tree, hf_erf_mc_aal2_cid, tvb, 0, 0, mc_aal2);
}
static void
dissect_aal2_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
proto_item *aal2_item;
proto_tree *aal2_tree;
guint32 aal2;
/* AAL2 Header */
aal2_item = proto_tree_add_uint(tree, hf_erf_aal2, tvb, 0, 0, pinfo->pseudo_header->erf.subhdr.mc_hdr);
aal2_tree = proto_item_add_subtree(aal2_item, ett_erf_aal2);
aal2 = pinfo->pseudo_header->erf.subhdr.aal2_hdr;
proto_tree_add_uint(aal2_tree, hf_erf_aal2_cid, tvb, 0, 0, aal2);
proto_tree_add_uint(aal2_tree, hf_erf_aal2_maale, tvb, 0, 0, aal2);
proto_tree_add_uint(aal2_tree, hf_erf_aal2_maalei, tvb, 0, 0, aal2);
proto_tree_add_uint(aal2_tree, hf_erf_aal2_first, tvb, 0, 0, aal2);
proto_tree_add_uint(aal2_tree, hf_erf_aal2_res1, tvb, 0, 0, aal2);
}
static void
dissect_eth_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
proto_item *eth_item;
proto_tree *eth_tree;
guint8 eth_offset, eth_pad;
eth_item = proto_tree_add_item(tree, hf_erf_eth, tvb, 0, 0, ENC_NA);
eth_tree = proto_item_add_subtree(eth_item, ett_erf_eth);
eth_offset = pinfo->pseudo_header->erf.subhdr.eth_hdr.offset;
eth_pad = pinfo->pseudo_header->erf.subhdr.eth_hdr.pad;
proto_tree_add_uint(eth_tree, hf_erf_eth_off, tvb, 0, 0, eth_offset);
proto_tree_add_uint(eth_tree, hf_erf_eth_pad, tvb, 0, 0, eth_pad);
}
static void
dissect_erf_pseudo_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
proto_item *pi;
proto_item *flags_item, *rectype_item;
proto_tree *flags_tree, *rectype_tree;
gboolean has_flags = FALSE;
proto_tree_add_uint64(tree, hf_erf_ts, tvb, 0, 0, pinfo->pseudo_header->erf.phdr.ts);
rectype_item = proto_tree_add_uint_format_value(tree, hf_erf_rectype, tvb, 0, 0, pinfo->pseudo_header->erf.phdr.type,
"0x%02x (Type %d: %s)",
pinfo->pseudo_header->erf.phdr.type,
pinfo->pseudo_header->erf.phdr.type & ERF_HDR_TYPE_MASK,
val_to_str_const(
pinfo->pseudo_header->erf.phdr.type & ERF_HDR_TYPE_MASK,
erf_type_vals,
"Unknown Type"));
rectype_tree = proto_item_add_subtree(rectype_item, ett_erf_rectype);
proto_tree_add_uint(rectype_tree, hf_erf_type, tvb, 0, 0, pinfo->pseudo_header->erf.phdr.type);
proto_tree_add_uint(rectype_tree, hf_erf_ehdr, tvb, 0, 0, pinfo->pseudo_header->erf.phdr.type);
flags_item=proto_tree_add_uint(tree, hf_erf_flags, tvb, 0, 0, pinfo->pseudo_header->erf.phdr.flags);
flags_tree = proto_item_add_subtree(flags_item, ett_erf_flags);
proto_tree_add_uint(flags_tree, hf_erf_flags_if_raw, tvb, 0, 0, pinfo->pseudo_header->erf.phdr.flags);
proto_tree_add_uint(flags_tree, hf_erf_flags_vlen, tvb, 0, 0, pinfo->pseudo_header->erf.phdr.flags);
pi=proto_tree_add_uint(flags_tree, hf_erf_flags_trunc, tvb, 0, 0, pinfo->pseudo_header->erf.phdr.flags);
if (pinfo->pseudo_header->erf.phdr.flags & ERF_HDR_TRUNC_MASK) {
proto_item_append_text(flags_item, "(ERF Truncation Error");
expert_add_info(pinfo, pi, &ei_erf_truncation_error);
has_flags = TRUE;
}
pi=proto_tree_add_uint(flags_tree, hf_erf_flags_rxe, tvb, 0, 0, pinfo->pseudo_header->erf.phdr.flags);
if (pinfo->pseudo_header->erf.phdr.flags & ERF_HDR_RXE_MASK) {
proto_item_append_text(flags_item, "%sERF Rx Error", has_flags ? "; " : "(");
expert_add_info(pinfo, pi, &ei_erf_rx_error);
has_flags = TRUE;
}
pi=proto_tree_add_uint(flags_tree, hf_erf_flags_dse, tvb, 0, 0, pinfo->pseudo_header->erf.phdr.flags);
if (pinfo->pseudo_header->erf.phdr.flags & ERF_HDR_DSE_MASK) {
proto_item_append_text(flags_item, "%sERF DS Error", has_flags ? "; " : "(");
expert_add_info(pinfo, pi, &ei_erf_ds_error);
has_flags = TRUE;
}
if (has_flags) {
proto_item_append_text(flags_item, ")");
}
proto_tree_add_uint(flags_tree, hf_erf_flags_res, tvb, 0, 0, pinfo->pseudo_header->erf.phdr.flags);
proto_tree_add_uint(tree, hf_erf_flags_cap, tvb, 0, 0, erf_interface_id_from_flags(pinfo->pseudo_header->erf.phdr.flags));
proto_tree_add_uint(tree, hf_erf_rlen, tvb, 0, 0, pinfo->pseudo_header->erf.phdr.rlen);
if (erf_type_has_color(pinfo->pseudo_header->erf.phdr.type)) {
proto_tree_add_uint(tree, hf_erf_color, tvb, 0, 0, pinfo->pseudo_header->erf.phdr.lctr);
} else {
pi=proto_tree_add_uint(tree, hf_erf_lctr, tvb, 0, 0, pinfo->pseudo_header->erf.phdr.lctr);
if (pinfo->pseudo_header->erf.phdr.lctr > 0)
expert_add_info(pinfo, pi, &ei_erf_packet_loss);
}
proto_tree_add_uint(tree, hf_erf_wlen, tvb, 0, 0, pinfo->pseudo_header->erf.phdr.wlen);
}
static void
dissect_erf_pseudo_extension_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
proto_item *pi;
proto_item *ehdr_tree;
guint64 hdr;
guint8 type;
guint8 has_more = pinfo->pseudo_header->erf.phdr.type & 0x80;
int i = 0;
int max = sizeof(pinfo->pseudo_header->erf.ehdr_list)/sizeof(struct erf_ehdr);
guint64 host_id = ERF_META_HOST_ID_IMPLICIT;
guint8 source_id = 0;
gboolean found_host_id = FALSE;
gboolean has_anchor_definition = FALSE;
/*
* Get the first Host ID of the record (which may not be the first extension
* header).
*/
host_id = find_host_id(pinfo, &has_anchor_definition);
if (host_id == ERF_META_HOST_ID_IMPLICIT) {
/*
* XXX: We are relying here on the Wireshark doing a second parse any
* time it does anything with tree items (including filtering) to associate
* the records before the first ERF_TYPE_META record. This does not work
* with TShark in one-pass mode, in which case the first few records get
* Host ID 0 (unset).
*/
host_id = erf_state.implicit_host_id;
found_host_id = FALSE;
} else {
found_host_id = TRUE;
}
while(has_more && (i < max)) {
hdr = pinfo->pseudo_header->erf.ehdr_list[i].ehdr;
type = (guint8) (hdr >> 56);
pi = proto_tree_add_uint(tree, hf_erf_ehdr_t, tvb, 0, 0, (type & 0x7f));
ehdr_tree = proto_item_add_subtree(pi, ett_erf_pseudo_hdr);
switch (type & 0x7f) {
case ERF_EXT_HDR_TYPE_CLASSIFICATION:
dissect_classification_ex_header(tvb, pinfo, ehdr_tree, i);
break;
case ERF_EXT_HDR_TYPE_INTERCEPTID:
dissect_intercept_ex_header(tvb, pinfo, ehdr_tree, i);
break;
case ERF_EXT_HDR_TYPE_RAW_LINK:
dissect_raw_link_ex_header(tvb, pinfo, ehdr_tree, i);
break;
case ERF_EXT_HDR_TYPE_BFS:
dissect_bfs_ex_header(tvb, pinfo, ehdr_tree, i);
break;
case ERF_EXT_HDR_TYPE_CHANNELISED:
dissect_channelised_ex_header(tvb, pinfo, ehdr_tree, i);
break;
case ERF_EXT_HDR_TYPE_SIGNATURE:
dissect_signature_ex_header(tvb, pinfo, ehdr_tree, i);
break;
case ERF_EXT_HDR_TYPE_FLOW_ID:
if (source_id == 0) {
source_id = (guint8)((hdr >> 48) & 0xFF);
}
dissect_flow_id_ex_header(tvb, pinfo, ehdr_tree, i);
break;
case ERF_EXT_HDR_TYPE_HOST_ID:
host_id = hdr & ERF_EHDR_HOST_ID_MASK;
source_id = (guint8)((hdr >> 48) & 0xFF);
dissect_host_id_ex_header(tvb, pinfo, ehdr_tree, i);
/* Track and dissect combined Host ID and Source ID(s) */
if (!PINFO_FD_VISITED(pinfo)) {
if ((pinfo->pseudo_header->erf.phdr.type & 0x7f) == ERF_TYPE_META) {
/* Update the implicit Host ID when ERF_TYPE_META */
/* XXX: We currently assume there is only one in the whole file */
if (erf_state.implicit_host_id == 0 && source_id > 0) {
erf_state.implicit_host_id = host_id;
}
/* Add to the sequence of ERF_TYPE_META records if periodic record */
/*
* Adding metadata from comment records makes for unhelpful linking
* and means we miss out on the correct frame when marking surrounding
* metadata as depended upon (e.g. could end up with a comment from
* another frame). We mark the anchor linked records separately.
*/
if (!has_anchor_definition) {
/* XXX: this is a heuristic, technically we could have non-local sections
in the metadata even as an anchor definition record. */
erf_source_append(host_id, source_id, pinfo->num);
}
}
}
dissect_host_id_source_id(tvb, pinfo, tree, host_id, source_id);
break;
case ERF_EXT_HDR_TYPE_ANCHOR_ID:
dissect_anchor_id_ex_header(tvb, pinfo, ehdr_tree, i);
if (!PINFO_FD_VISITED(pinfo)) {
erf_host_anchor_info_insert(pinfo, host_id, hdr & ERF_EHDR_ANCHOR_ID_MASK, (guint8)(hdr >> 48));
}
dissect_host_anchor_id(tvb, pinfo, tree, host_id, hdr & ERF_EHDR_ANCHOR_ID_MASK, (guint8)(hdr >> 48));
break;
case ERF_EXT_HDR_TYPE_ENTROPY:
dissect_entropy_ex_header(tvb, pinfo, ehdr_tree, i);
break;
default:
dissect_unknown_ex_header(tvb, pinfo, ehdr_tree, i);
break;
}
has_more = type & 0x80;
i += 1;
}
if (has_more) {
proto_tree_add_expert(tree, pinfo, &ei_erf_extension_headers_not_shown, tvb, 0, 0);
}
/* If we have no explicit Host ID association, associate with the first Source ID (or 0) and implicit Host ID */
/* XXX: We are allowed to assume there is only one Source ID unless we have
* a Host ID extension header */
if (!found_host_id) {
/*
* TODO: Do we also want to track Host ID 0 Source ID 0 records?
* Don't for now to preserve feel of legacy files.
*/
if (host_id != 0 || source_id != 0) {
if (!PINFO_FD_VISITED(pinfo)) {
if ((pinfo->pseudo_header->erf.phdr.type & 0x7f) == ERF_TYPE_META) {
/* Add to the sequence of ERF_TYPE_META records */
erf_source_append(host_id, source_id, pinfo->num);
}
}
dissect_host_id_source_id(tvb, pinfo, tree, host_id, source_id);
}
}
}
guint64* erf_get_ehdr(packet_info *pinfo, guint8 hdrtype, gint* afterindex) {
guint8 type;
guint8 has_more;
int max;
int i = afterindex ? *afterindex + 1 : 0; /*allow specifying instance to start after for use in loop*/
if (!pinfo) /*XXX: how to determine if erf pseudo_header is valid?*/
return NULL;
has_more = pinfo->pseudo_header->erf.phdr.type & 0x80;
max = sizeof(pinfo->pseudo_header->erf.ehdr_list)/sizeof(struct erf_ehdr);
while(has_more && (i < max)) {
type = (guint8) (pinfo->pseudo_header->erf.ehdr_list[i].ehdr >> 56);
if ((type & 0x7f) == (hdrtype & 0x7f)) {
if (afterindex)
*afterindex = i;
return &pinfo->pseudo_header->erf.ehdr_list[i].ehdr;
}
has_more = type & 0x80;
i += 1;
}
return NULL;
}
static void
check_section_length(packet_info *pinfo, proto_item *sectionlen_pi, int offset, int sectionoffset, int sectionlen) {
if (sectionlen_pi) {
if (offset - sectionoffset == sectionlen) {
proto_item_append_text(sectionlen_pi, " [correct]");
} else if (sectionlen != 0) {
proto_item_append_text(sectionlen_pi, " [incorrect, should be %u]", offset - sectionoffset);
expert_add_info(pinfo, sectionlen_pi, &ei_erf_meta_section_len_error);
}
}
}
static proto_item*
dissect_meta_tag_bitfield(proto_item *section_tree, tvbuff_t *tvb, int offset, erf_meta_tag_info_t *tag_info, proto_item **out_tag_tree)
{
proto_item *tag_pi = NULL;
int* hf_flags[ERF_HF_VALUES_PER_TAG];
int i;
DISSECTOR_ASSERT(tag_info->extra);
for (i = 0; tag_info->extra->hf_values[i] != -1; i++) {
hf_flags[i] = &tag_info->extra->hf_values[i];
}
hf_flags[i] = NULL;
/* use flags variant so we print integers without value_strings */
tag_pi = proto_tree_add_bitmask_with_flags(section_tree, tvb, offset + 4, tag_info->hf_value, tag_info->ett, hf_flags, ENC_BIG_ENDIAN, BMT_NO_FLAGS);
if (out_tag_tree) {
*out_tag_tree = proto_item_get_subtree(tag_pi);
}
return tag_pi;
}
static proto_item*
dissect_meta_tag_ext_hdrs(proto_item *section_tree, tvbuff_t *tvb, int offset, gint taglength, erf_meta_tag_info_t *tag_info, proto_item **out_tag_tree, expert_field **out_truncated_expert)
{
proto_item *tag_pi = NULL;
proto_tree *subtree = NULL;
proto_item *subtree_pi = NULL;
int i;
guint32 ext_hdrs[4] = {0, 0, 0, 0};
int int_offset = 0;
int int_avail = MIN(taglength / 4, 4);
int bit_offset = 0;
int ext_hdr_num = 0;
gboolean first = TRUE;
gboolean all_set = TRUE;
DISSECTOR_ASSERT(tag_info->extra);
tag_pi = proto_tree_add_item(section_tree, tag_info->hf_value, tvb, offset + 4, taglength, ENC_BIG_ENDIAN);
*out_tag_tree = proto_item_add_subtree(tag_pi, tag_info->ett);
for (int_offset = 0; int_offset < int_avail; int_offset++) {
ext_hdrs[int_offset] = tvb_get_guint32(tvb, offset + 4 + int_offset*4, ENC_BIG_ENDIAN);
if (ext_hdrs[int_offset] != G_MAXUINT32)
all_set = FALSE;
}
/* Special case: all specified bits are 1 means all extension headers */
if (all_set)
proto_item_append_text(tag_pi, ": <All>");
/* Add 4 subtrees, one for each uint32 representing 32 extension header numbers */
for (int_offset = 0; int_offset < int_avail; int_offset++) {
/* TODO: Put subtree hf values somewhere better than first 4 hf_values */
subtree_pi = proto_tree_add_item(*out_tag_tree, tag_info->extra->hf_values[int_offset], tvb, offset + 4 + int_offset*4, 4, ENC_BIG_ENDIAN);
/* Add the individual bit dissections */
/* XXX: This currently assumes we only know up to the first 32 */
if (int_offset == 0) {
subtree = proto_item_add_subtree(subtree_pi, tag_info->ett);
for (i = 4; tag_info->extra->hf_values[i] != -1; i++) {
proto_tree_add_boolean(subtree, tag_info->extra->hf_values[i], tvb, offset + 4 + int_offset*4, 4, ext_hdrs[int_offset]);
}
}
/* Add all set bits to the header, including the ones we don't understand */
for (bit_offset = 0; bit_offset < 32; bit_offset++) {
if (ext_hdrs[int_offset] & (1U << bit_offset)) {
proto_item_append_text(subtree_pi, ", %s", val_to_str(ext_hdr_num, ehdr_type_vals, "%d"));
/* Also add to the top level */
if (!all_set)
proto_item_append_text(tag_pi, "%s %s", first ? ":" : ",", val_to_str(ext_hdr_num, ehdr_type_vals, "%d"));
first = FALSE;
}
ext_hdr_num++;
}
}
if (first)
proto_item_append_text(tag_pi, ": <None>");
/* Check for truncated tag (i.e. last uint32 is partial) */
if (int_avail < 4 && taglength % 4 != 0) {
*out_truncated_expert = &ei_erf_meta_truncated_tag;
}
return tag_pi;
}
static void erf_ts_to_nstime(guint64 timestamp, nstime_t* t, gboolean is_relative) {
guint64 ts = timestamp;
/* relative ERF timestamps are signed, convert as if unsigned then flip back */
if (is_relative) {
ts = (guint64) ABS((gint64)timestamp);
}
t->secs = (long) (ts >> 32);
ts = ((ts & 0xffffffff) * 1000 * 1000 * 1000);
ts += (ts & 0x80000000) << 1; /* rounding */
t->nsecs = ((int) (ts >> 32));
if (t->nsecs >= NS_PER_S) {
t->nsecs -= NS_PER_S;
t->secs += 1;
}
if (is_relative && (gint64)timestamp < 0) {
/*
* Set both signs to negative for consistency with other nstime code
* and so -0.123 works.
*/
t->secs = -(t->secs);
t->nsecs = -(t->nsecs);
}
}
/* TODO: Would be nice if default FT_RELATIVE_TIME formatter was prettier */
static proto_item *dissect_relative_time(proto_tree *tree, const int hfindex, tvbuff_t *tvb, gint offset, gint length, nstime_t* t) {
proto_item *pi = NULL;
DISSECTOR_ASSERT(t);
/*Print in nanoseconds if <1ms for small values*/
if (t->secs == 0 && t->nsecs < 1000000 && t->nsecs > -1000000) {
pi = proto_tree_add_time_format_value(tree, hfindex, tvb, offset, length, t, "%d nanoseconds", t->nsecs);
} else {
pi = proto_tree_add_time(tree, hfindex, tvb, offset, length, t);
}
return pi;
}
static proto_item *dissect_ptp_timeinterval(proto_tree *tree, const int hfindex, tvbuff_t *tvb, gint offset, gint length, gint64 timeinterval) {
nstime_t t;
guint64 ti, ti_ns;
ti = (guint64) ABS(timeinterval);
ti += (ti & 0x8000) << 1; /* rounding */
ti_ns = ti >> 16;
t.secs = (time_t) (ti_ns / NS_PER_S);
t.nsecs = (guint32)(ti_ns % NS_PER_S);
if (t.nsecs >= NS_PER_S) {
t.nsecs -= NS_PER_S;
t.secs += 1;
}
if (timeinterval < 0) {
/*
* Set both signs to negative for consistency with other nstime code
* and so -0.123 works.
*/
t.secs = -(t.secs);
t.nsecs = -(t.nsecs);
}
return dissect_relative_time(tree, hfindex, tvb, offset, length, &t);
}
static int
meta_tag_expected_length(erf_meta_tag_info_t *tag_info) {
ftenum_t ftype = tag_info->tag_template->hfinfo.type;
int expected_length = 0;
switch (ftype) {
case FT_ABSOLUTE_TIME:
case FT_RELATIVE_TIME:
/* Timestamps are in ERF timestamp except as below */
expected_length = 8;
break;
default:
expected_length = ftype_wire_size(ftype); /* Returns 0 if unknown */
break;
}
/* Special case overrides */
switch (tag_info->code) {
case ERF_META_TAG_ptp_current_utc_offset:
/*
* PTP tags are in native PTP format, but only current_utc_offset is
* a different length to the ERF timestamp.
*/
expected_length = 4;
break;
case ERF_META_TAG_if_wwn:
case ERF_META_TAG_src_wwn:
case ERF_META_TAG_dest_wwn:
case ERF_META_TAG_ns_host_wwn:
/* 16-byte WWNs */
expected_length = 16;
break;
case ERF_META_TAG_ext_hdrs_added:
case ERF_META_TAG_ext_hdrs_removed:
/* 1 to 4 uint32 fields */
expected_length = 4;
break;
}
return expected_length;
}
static void
dissect_meta_record_tags(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree) {
proto_item *pi = NULL;
proto_item *tag_pi = NULL;
proto_item *tag_tree;
proto_item *section_pi = NULL;
proto_item *section_tree = tree;
proto_item *sectionlen_pi = NULL;
guint16 sectiontype = ERF_META_SECTION_NONE;
guint16 tagtype = 0;
guint16 taglength = 0;
const gchar *tagvalstring = NULL;
erf_meta_tag_info_t *tag_info;
int expected_length = 0;
expert_field *truncated_expert = NULL;
gboolean skip_truncated = FALSE;
/* Used for search entry and unknown tags */
erf_meta_hf_template_t tag_template_unknown = { 0, { "Unknown", "unknown",
FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } };
erf_meta_tag_info_t tag_info_local = { 0, 0, &tag_template_unknown, &tag_template_unknown,
ett_erf_meta_tag, hf_erf_meta_tag_unknown, NULL };
int offset = 0;
int sectionoffset = 0;
guint16 sectionid = 0;
guint16 sectionlen = 0;
int remaining_len = 0;
int captured_length = (int) tvb_captured_length(tvb);
/* Set column heading title*/
col_set_str(pinfo->cinfo, COL_INFO, "Provenance Metadata");
/* Go through the sections and their tags */
/* Not using tvb_captured_length because want to check for overrun */
while ((remaining_len = captured_length - offset) >= 4) {
tagtype = tvb_get_ntohs(tvb, offset);
taglength = tvb_get_ntohs(tvb, offset + 2);
tag_tree = NULL;
tag_pi = NULL;
truncated_expert = NULL;
skip_truncated = FALSE;
if (ERF_META_IS_SECTION(tagtype))
sectiontype = tagtype;
/* Look up per-section tag hf */
tag_info_local.code = tagtype;
tag_info_local.section = sectiontype;
tag_info = (erf_meta_tag_info_t*) wmem_map_lookup(erf_meta_index.tag_table, GUINT_TO_POINTER(ERF_TAG_INFO_KEY(&tag_info_local)));
/* Fall back to unknown tag */
if (tag_info == NULL)
tag_info = &tag_info_local;
/* Get expected length (minimum length in the case of ns_host_*) */
expected_length = meta_tag_expected_length(tag_info);
if (remaining_len < (gint32)taglength + 4 || taglength < expected_length) {
/*
* Malformed tag, just dissect type and length. Top level tag
* dissection means can't add the subtree and type/length first.
*
* Allow too-long tags for now (and proto_tree generally generates
* a warning for these anyway).
*/
skip_truncated = TRUE;
truncated_expert = &ei_erf_meta_truncated_tag;
}
if (taglength == 0) {
/*
* We highlight zero length differently as a special case to indicate
* a deliberately invalid tag.
*/
if (!ERF_META_IS_SECTION(tagtype) && tagtype != ERF_META_TAG_padding) {
truncated_expert = &ei_erf_meta_zero_len_tag;
/* XXX: Still dissect normally too if string/unknown or section header */
if (expected_length != 0) {
skip_truncated = TRUE;
}
}
}
/* Dissect value, length and type */
if (ERF_META_IS_SECTION(tagtype)) { /* Section header tag */
if (section_pi) {
/* Update section item length of last section */
proto_item_set_len(section_pi, offset - sectionoffset);
if (sectionlen_pi) {
check_section_length(pinfo, sectionlen_pi, offset, sectionoffset, sectionlen);
}
}
sectionoffset = offset;
if (tag_info->tag_template == &tag_template_unknown) {
/* Unknown section */
sectiontype = ERF_META_SECTION_UNKNOWN;
tag_info = erf_meta_index.unknown_section_info;
}
DISSECTOR_ASSERT(tag_info->extra);
tagvalstring = val_to_str(tagtype, erf_to_value_string(erf_meta_index.vs_list), "Unknown Section (0x%x)");
col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "%s", tagvalstring);
section_tree = proto_tree_add_subtree(tree, tvb, offset, 0, tag_info->extra->ett_value, &section_pi, tagvalstring);
tag_tree = proto_tree_add_subtree_format(section_tree, tvb, offset, MIN(taglength + 4, remaining_len), tag_info->ett, &tag_pi, "Provenance %s Header", tagvalstring);
/* XXX: Value may have been truncated (avoiding exception so get custom expertinfos) */
if (taglength >= 4 && !skip_truncated) {
sectionid = tvb_get_ntohs(tvb, offset + 4);
sectionlen = tvb_get_ntohs(tvb, offset + 6);
/* Add section_id */
proto_tree_add_uint(tag_tree, tag_info->hf_value, tvb, offset + 4, 2, sectionid);
if (sectionid != 0) {
if(sectionid & 0x8000U) {
/* Local section */
proto_item_append_text(section_pi, " (Local) %u", sectionid & 0x7FFFU);
}
else {
proto_item_append_text(section_pi, " %u", sectionid);
}
}
/* Add section_len */
sectionlen_pi = proto_tree_add_uint(tag_tree, tag_info->extra->hf_values[0], tvb, offset + 6, 2, sectionlen);
/* Reserved extra section header information */
if (taglength > 4) {
proto_tree_add_item(tag_tree, tag_info->extra->hf_values[1], tvb, offset + 8, taglength - 4, ENC_NA);
}
} else if (taglength != 0) {
/* Section Header value is too short */
truncated_expert = &ei_erf_meta_truncated_tag;
}
} else if (!skip_truncated) { /* Not section header tag (and not truncated) */
enum ftenum tag_ft;
char pi_label[ITEM_LABEL_LENGTH+1];
gboolean dissected = TRUE;
guint32 value32;
guint64 value64;
float float_value;
gchar *tmp = NULL;
tag_ft = tag_info->tag_template->hfinfo.type;
pi_label[0] = '\0';
/* Group tags before first section header into a fake section */
if (offset == 0) {
section_tree = proto_tree_add_subtree(tree, tvb, offset, 0, ett_erf_meta, &section_pi, "No Section");
}
/* Handle special cases */
/* TODO: might want to do this dynamically via tag_info callback */
switch (tagtype) {
/* TODO: use get_tcp_port in epan/addr_resolv.h etc */
case ERF_META_TAG_if_speed:
case ERF_META_TAG_if_tx_speed:
value64 = tvb_get_ntoh64(tvb, offset + 4);
tmp = format_size((int64_t)value64, FORMAT_SIZE_UNIT_BITS_S, FORMAT_SIZE_PREFIX_SI);
tag_pi = proto_tree_add_uint64_format_value(section_tree, tag_info->hf_value, tvb, offset + 4, taglength, value64, "%s (%" PRIu64 " bps)", tmp, value64);
g_free(tmp);
break;
case ERF_META_TAG_if_rx_power:
case ERF_META_TAG_if_tx_power:
value32 = tvb_get_ntohl(tvb, offset + 4);
tag_pi = proto_tree_add_int_format_value(section_tree, tag_info->hf_value, tvb, offset + 4, taglength, (gint32) value32, "%.2fdBm", (double)((gint32) value32)/100.0);
break;
case ERF_META_TAG_temperature:
case ERF_META_TAG_power:
value32 = tvb_get_ntohl(tvb, offset + 4);
float_value = (float)((gint32) value32)/1000.0f;
tag_pi = proto_tree_add_float(section_tree, tag_info->hf_value, tvb, offset + 4, taglength, float_value);
break;
case ERF_META_TAG_loc_lat:
case ERF_META_TAG_loc_long:
value32 = tvb_get_ntohl(tvb, offset + 4);
tag_pi = proto_tree_add_int_format_value(section_tree, tag_info->hf_value, tvb, offset + 4, taglength, (gint32) value32, "%.2f", (double)((gint32) value32)*1000000.0);
break;
case ERF_META_TAG_mask_cidr:
value32 = tvb_get_ntohl(tvb, offset + 4);
tag_pi = proto_tree_add_uint_format_value(section_tree, tag_info->hf_value, tvb, offset + 4, taglength, value32, "/%u", value32);
break;
case ERF_META_TAG_mem:
value64 = tvb_get_ntoh64(tvb, offset + 4);
tmp = format_size((int64_t)value64, FORMAT_SIZE_UNIT_BYTES, FORMAT_SIZE_PREFIX_IEC);
tag_pi = proto_tree_add_uint64_format_value(section_tree, tag_info->hf_value, tvb, offset + 4, taglength, value64, "%s (%" PRIu64" bytes)", tmp, value64);
g_free(tmp);
break;
case ERF_META_TAG_parent_section:
DISSECTOR_ASSERT(tag_info->extra);
value32 = tvb_get_ntohs(tvb, offset + 4);
/*
* XXX: Formatting value manually because don't have erf_meta_vs_list
* populated at registration time.
*/
tag_tree = proto_tree_add_subtree_format(section_tree, tvb, offset + 4, taglength, tag_info->ett, &tag_pi, "%s: %s %u", tag_info->tag_template->hfinfo.name,
val_to_str(value32, erf_to_value_string(erf_meta_index.vs_list), "Unknown Section (%u)"), tvb_get_ntohs(tvb, offset + 4 + 2));
proto_tree_add_uint_format_value(tag_tree, tag_info->extra->hf_values[0], tvb, offset + 4, MIN(2, taglength), value32, "%s (%u)",
val_to_str_const(value32, erf_to_value_string(erf_meta_index.vs_abbrev_list), "Unknown"), value32);
proto_tree_add_item(tag_tree, tag_info->extra->hf_values[1], tvb, offset + 6, MIN(2, taglength - 2), ENC_BIG_ENDIAN);
break;
case ERF_META_TAG_reset:
tag_pi = proto_tree_add_item(section_tree, tag_info->hf_value, tvb, offset + 4, taglength, ENC_NA);
expert_add_info(pinfo, tag_pi, &ei_erf_meta_reset);
break;
case ERF_META_TAG_if_link_status:
case ERF_META_TAG_tunneling_mode:
case ERF_META_TAG_ptp_time_properties:
case ERF_META_TAG_ptp_gm_clock_quality:
case ERF_META_TAG_stream_flags:
case ERF_META_TAG_smart_trunc_default:
tag_pi = dissect_meta_tag_bitfield(section_tree, tvb, offset, tag_info, &tag_tree);
break;
case ERF_META_TAG_ns_dns_ipv4:
case ERF_META_TAG_ns_dns_ipv6:
case ERF_META_TAG_ns_host_ipv4:
case ERF_META_TAG_ns_host_ipv6:
case ERF_META_TAG_ns_host_mac:
case ERF_META_TAG_ns_host_eui:
case ERF_META_TAG_ns_host_wwn:
case ERF_META_TAG_ns_host_ib_gid:
case ERF_META_TAG_ns_host_ib_lid:
case ERF_META_TAG_ns_host_fc_id:
{
int addr_len = ftype_wire_size(tag_ft);
DISSECTOR_ASSERT(tag_info->extra);
tag_tree = proto_tree_add_subtree(section_tree, tvb, offset + 4, taglength, tag_info->ett, &tag_pi, tag_info->tag_template->hfinfo.name);
/* Address */
pi = proto_tree_add_item(tag_tree, tag_info->extra->hf_values[0], tvb, offset + 4, MIN(addr_len, taglength), ENC_BIG_ENDIAN);
/* Name */
proto_tree_add_item(tag_tree, tag_info->extra->hf_values[1], tvb, offset + 4 + addr_len, taglength - addr_len, ENC_UTF_8);
if (pi) {
proto_item_fill_label(PITEM_FINFO(pi), pi_label);
/* Set top level label e.g IPv4 Name: hostname Address: 1.2.3.4 */
/* TODO: Name is unescaped here but escaped in actual field */
proto_item_append_text(tag_pi, ": %s, %s",
tvb_get_stringzpad(pinfo->pool, tvb, offset + 4 + addr_len, taglength - addr_len, ENC_UTF_8), pi_label /* Includes ": " */);
}
break;
}
case ERF_META_TAG_ptp_offset_from_master:
case ERF_META_TAG_ptp_mean_path_delay:
value64 = tvb_get_ntoh64(tvb, offset + 4);
tag_pi = dissect_ptp_timeinterval(section_tree, tag_info->hf_value, tvb, offset + 4, taglength, (gint64) value64);
break;
case ERF_META_TAG_ptp_current_utc_offset:
{
nstime_t t;
value32 = tvb_get_ntohl(tvb, offset + 4);
/* PTP value is signed */
t.secs = (gint32) value32;
t.nsecs = 0;
tag_pi = dissect_relative_time(section_tree, tag_info->hf_value, tvb, offset + 4, taglength, &t);
break;
}
case ERF_META_TAG_entropy_threshold:
case ERF_META_TAG_initiator_min_entropy:
case ERF_META_TAG_responder_min_entropy:
case ERF_META_TAG_initiator_avg_entropy:
case ERF_META_TAG_responder_avg_entropy:
case ERF_META_TAG_initiator_max_entropy:
case ERF_META_TAG_responder_max_entropy:
{
float entropy;
value32 = tvb_get_ntohl(tvb, offset + 4);
entropy = entropy_from_entropy_header_value((guint8) value32);
tag_pi = proto_tree_add_float_format_value(section_tree, tag_info->hf_value, tvb, 0, 0, entropy,
"%.2f %s", (double) entropy, entropy == 0.0f ? "(not calculated)":"bits");
break;
}
case ERF_META_TAG_ext_hdrs_added:
case ERF_META_TAG_ext_hdrs_removed:
tag_pi = dissect_meta_tag_ext_hdrs(section_tree, tvb, offset, taglength, tag_info, &tag_tree, &truncated_expert);
break;
default:
dissected = FALSE;
break;
}
/* If not special case, dissect generically from template */
if (!dissected) {
if (FT_IS_INT(tag_ft) || FT_IS_UINT(tag_ft)) {
tag_pi = proto_tree_add_item(section_tree, tag_info->hf_value, tvb, offset + 4, taglength, ENC_BIG_ENDIAN);
} else if (FT_IS_STRING(tag_ft)) {
tag_pi = proto_tree_add_item(section_tree, tag_info->hf_value, tvb, offset + 4, taglength, ENC_UTF_8);
} else if (FT_IS_TIME(tag_ft)) {
/*
* ERF timestamps are conveniently the same as NTP/PTP timestamps but
* little endian.
*/
/*
* FIXME: ENC_TIME_NTP | ENC_LITTLE_ENDIAN only swaps the
* upper and lower 32 bits. Is that a bug or by design? Should add
* a 'PTP" variant that doesn't round to microseconds and use that
* here. For now do by hand.
*/
nstime_t t;
guint64 ts;
ts = tvb_get_letoh64(tvb, offset + 4);
erf_ts_to_nstime(ts, &t, tag_ft == FT_RELATIVE_TIME);
tag_pi = dissect_relative_time(section_tree, tag_info->hf_value, tvb, offset + 4, taglength, &t);
} else {
tag_pi = proto_tree_add_item(section_tree, tag_info->hf_value, tvb, offset + 4, taglength, ENC_NA);
}
}
}
/* Create subtree for tag if we haven't already */
if (!tag_tree) {
/* Make sure we actually put the subtree in the right place */
if (tag_pi || !tree) {
tag_tree = proto_item_add_subtree(tag_pi, tag_info->ett);
} else {
/* Truncated or error (avoiding exception so get custom expertinfos) */
tag_tree = proto_tree_add_subtree_format(section_tree, tvb, offset, MIN(taglength + 4, remaining_len), tag_info->ett, &tag_pi, "%s: [Invalid]", tag_info->tag_template->hfinfo.name);
}
}
/* Add tag type field to subtree */
/*
* XXX: Formatting value manually because don't have erf_meta_vs_list
* populated at registration time.
*/
proto_tree_add_uint_format_value(tag_tree, hf_erf_meta_tag_type, tvb, offset, 2, tagtype, "%s (%u)", val_to_str_const(tagtype, erf_to_value_string(erf_meta_index.vs_abbrev_list), "Unknown"), tagtype);
proto_tree_add_uint(tag_tree, hf_erf_meta_tag_len, tvb, offset + 2, 2, taglength);
/* Add truncated expertinfo if needed */
if (truncated_expert) {
expert_add_info(pinfo, tag_pi, truncated_expert);
}
offset += (((guint32)taglength + 4) + 0x3U) & ~0x3U;
}
if (remaining_len != 0) {
/* Record itself is truncated */
expert_add_info(pinfo, proto_tree_get_parent(tree), &ei_erf_meta_truncated_record);
/* Continue to setting sectionlen error */
}
/* Check final section length */
proto_item_set_len(section_pi, offset - sectionoffset);
check_section_length(pinfo, sectionlen_pi, offset, sectionoffset, sectionlen);
}
static int
dissect_erf(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* data _U_)
{
guint8 flags;
guint8 erf_type;
guint32 atm_hdr = 0;
proto_tree *erf_tree;
proto_item *erf_item;
erf_hdlc_type_vals hdlc_type;
guint8 first_byte;
tvbuff_t *new_tvb;
guint8 aal2_cid;
struct atm_phdr atm_info;
erf_type=pinfo->pseudo_header->erf.phdr.type & 0x7F;
col_set_str(pinfo->cinfo, COL_PROTOCOL, "ERF");
col_add_fstr(pinfo->cinfo, COL_INFO, "%s",
val_to_str(erf_type, erf_type_vals, "Unknown type %u"));
erf_item = proto_tree_add_item(tree, proto_erf, tvb, 0, -1, ENC_NA);
erf_tree = proto_item_add_subtree(erf_item, ett_erf);
dissect_erf_pseudo_header(tvb, pinfo, erf_tree);
if (pinfo->pseudo_header->erf.phdr.type & 0x80) {
dissect_erf_pseudo_extension_header(tvb, pinfo, erf_tree);
}
flags = pinfo->pseudo_header->erf.phdr.flags;
/*
* Set if frame is Received or Sent.
* XXX - this is really testing the low-order bit of the capture
* interface number, so interface 0 is assumed to be capturing
* in one direction on a bi-directional link, interface 1 is
* assumed to be capturing in the other direction on that link,
* and interfaces 2 and 3 are assumed to be capturing in two
* different directions on another link. We don't distinguish
* between the two links.
*/
pinfo->p2p_dir = ( (flags & 0x01) ? P2P_DIR_RECV : P2P_DIR_SENT);
switch (erf_type) {
case ERF_TYPE_RAW_LINK:
if(sdh_handle) {
call_dissector(sdh_handle, tvb, pinfo, tree);
}
else{
call_data_dissector(tvb, pinfo, tree);
}
break;
case ERF_TYPE_ETH:
case ERF_TYPE_COLOR_ETH:
case ERF_TYPE_DSM_COLOR_ETH:
case ERF_TYPE_COLOR_HASH_ETH:
dissect_eth_header(tvb, pinfo, erf_tree);
/* fall through */
case ERF_TYPE_IPV4:
case ERF_TYPE_IPV6:
case ERF_TYPE_INFINIBAND:
case ERF_TYPE_INFINIBAND_LINK:
case ERF_TYPE_OPA_SNC:
case ERF_TYPE_OPA_9B:
if (!dissector_try_uint(erf_dissector_table, erf_type, tvb, pinfo, tree)) {
call_data_dissector(tvb, pinfo, tree);
}
break;
case ERF_TYPE_LEGACY:
case ERF_TYPE_IP_COUNTER:
case ERF_TYPE_TCP_FLOW_COUNTER:
/* undefined */
break;
case ERF_TYPE_PAD:
/* Nothing to do */
break;
case ERF_TYPE_MC_RAW:
dissect_mc_raw_header(tvb, pinfo, erf_tree);
call_data_dissector(tvb, pinfo, tree);
break;
case ERF_TYPE_MC_RAW_CHANNEL:
dissect_mc_rawlink_header(tvb, pinfo, erf_tree);
call_data_dissector(tvb, pinfo, tree);
break;
case ERF_TYPE_MC_ATM:
dissect_mc_atm_header(tvb, pinfo, erf_tree);
/* continue with type ATM */
/* FALL THROUGH */
case ERF_TYPE_ATM:
memset(&atm_info, 0, sizeof(atm_info));
atm_hdr = tvb_get_ntohl(tvb, 0);
atm_info.vpi = ((atm_hdr & 0x0ff00000) >> 20);
atm_info.vci = ((atm_hdr & 0x000ffff0) >> 4);
atm_info.channel = (flags & 0x03);
/* Work around to have decoding working */
if (erf_rawcell_first) {
new_tvb = tvb_new_subset_remaining(tvb, ATM_HDR_LENGTH);
/* Treat this as a (short) ATM AAL5 PDU */
atm_info.aal = AAL_5;
switch (erf_aal5_type) {
case ERF_AAL5_GUESS:
atm_info.type = TRAF_UNKNOWN;
atm_info.subtype = TRAF_ST_UNKNOWN;
/* Try to guess the type according to the first bytes */
erf_atm_guess_traffic_type(new_tvb, 0, tvb_captured_length(new_tvb), &atm_info);
break;
case ERF_AAL5_LLC:
atm_info.type = TRAF_LLCMX;
atm_info.subtype = TRAF_ST_UNKNOWN;
break;
case ERF_AAL5_UNSPEC:
atm_info.aal = AAL_5;
atm_info.type = TRAF_UNKNOWN;
atm_info.subtype = TRAF_ST_UNKNOWN;
break;
}
call_dissector_with_data(atm_untruncated_handle, new_tvb, pinfo, tree,
&atm_info);
} else {
/* Treat this as a raw cell */
atm_info.flags |= ATM_RAW_CELL;
atm_info.flags |= ATM_NO_HEC;
atm_info.aal = AAL_UNKNOWN;
/* can call atm_untruncated because we set ATM_RAW_CELL flag */
call_dissector_with_data(atm_untruncated_handle, tvb, pinfo, tree,
&atm_info);
}
break;
case ERF_TYPE_MC_AAL5:
dissect_mc_aal5_header(tvb, pinfo, erf_tree);
/* continue with type AAL5 */
/* FALL THROUGH */
case ERF_TYPE_AAL5:
atm_hdr = tvb_get_ntohl(tvb, 0);
memset(&atm_info, 0, sizeof(atm_info));
atm_info.vpi = ((atm_hdr & 0x0ff00000) >> 20);
atm_info.vci = ((atm_hdr & 0x000ffff0) >> 4);
atm_info.channel = (flags & 0x03);
new_tvb = tvb_new_subset_remaining(tvb, ATM_HDR_LENGTH);
/* Work around to have decoding working */
atm_info.aal = AAL_5;
switch (erf_aal5_type) {
case ERF_AAL5_GUESS:
atm_info.type = TRAF_UNKNOWN;
atm_info.subtype = TRAF_ST_UNKNOWN;
/* Try to guess the type according to the first bytes */
erf_atm_guess_traffic_type(new_tvb, 0, tvb_captured_length(new_tvb), &atm_info);
break;
case ERF_AAL5_LLC:
atm_info.type = TRAF_LLCMX;
atm_info.subtype = TRAF_ST_UNKNOWN;
break;
case ERF_AAL5_UNSPEC:
atm_info.aal = AAL_5;
atm_info.type = TRAF_UNKNOWN;
atm_info.subtype = TRAF_ST_UNKNOWN;
break;
}
call_dissector_with_data(atm_untruncated_handle, new_tvb, pinfo, tree,
&atm_info);
break;
case ERF_TYPE_MC_AAL2:
dissect_mc_aal2_header(tvb, pinfo, erf_tree);
/*
* Most of the information is in the ATM header; fetch it.
*/
atm_hdr = tvb_get_ntohl(tvb, 0);
/*
* The channel identification number is in the MC header, so it's
* in the pseudo-header, not in the packet data.
*/
aal2_cid = (pinfo->pseudo_header->erf.subhdr.mc_hdr & MC_AAL2_CID_MASK) >> MC_AAL2_CID_SHIFT;
/* Zero out and fill in the ATM pseudo-header. */
memset(&atm_info, 0, sizeof(atm_info));
atm_info.aal = AAL_2;
atm_info.flags |= ATM_AAL2_NOPHDR;
atm_info.vpi = ((atm_hdr & 0x0ff00000) >> 20);
atm_info.vci = ((atm_hdr & 0x000ffff0) >> 4);
atm_info.channel = (flags & 0x03);
atm_info.aal2_cid = aal2_cid;
atm_info.type = TRAF_UNKNOWN;
atm_info.subtype = TRAF_ST_UNKNOWN;
/* remove ATM cell header from tvb */
new_tvb = tvb_new_subset_remaining(tvb, ATM_HDR_LENGTH);
call_dissector_with_data(atm_untruncated_handle, new_tvb, pinfo, tree,
&atm_info);
break;
case ERF_TYPE_AAL2:
dissect_aal2_header(tvb, pinfo, erf_tree);
/*
* Most of the information is in the ATM header; fetch it.
*/
atm_hdr = tvb_get_ntohl(tvb, 0);
/*
* The channel identification number is in the AAL2 header, so it's
* in the pseudo-header, not in the packet data.
*/
aal2_cid = (pinfo->pseudo_header->erf.subhdr.aal2_hdr & AAL2_CID_MASK) >> AAL2_CID_SHIFT;
/* Zero out and fill in the ATM pseudo-header. */
memset(&atm_info, 0, sizeof(atm_info));
atm_info.aal = AAL_2;
atm_info.flags |= ATM_AAL2_NOPHDR;
atm_info.vpi = ((atm_hdr & 0x0ff00000) >> 20);
atm_info.vci = ((atm_hdr & 0x000ffff0) >> 4);
atm_info.channel = (flags & 0x03);
atm_info.aal2_cid = aal2_cid;
atm_info.type = TRAF_UNKNOWN;
atm_info.subtype = TRAF_ST_UNKNOWN;
/* remove ATM cell header from tvb */
new_tvb = tvb_new_subset_remaining(tvb, ATM_HDR_LENGTH);
call_dissector_with_data(atm_untruncated_handle, new_tvb, pinfo, tree,
&atm_info);
break;
case ERF_TYPE_MC_HDLC:
dissect_mc_hdlc_header(tvb, pinfo, erf_tree);
/* continue with type HDLC */
/* FALL THROUGH */
case ERF_TYPE_HDLC_POS:
case ERF_TYPE_COLOR_HDLC_POS:
case ERF_TYPE_DSM_COLOR_HDLC_POS:
case ERF_TYPE_COLOR_MC_HDLC_POS:
case ERF_TYPE_COLOR_HASH_POS:
hdlc_type = (erf_hdlc_type_vals)erf_hdlc_type;
if (hdlc_type == ERF_HDLC_GUESS) {
/* Try to guess the type. */
first_byte = tvb_get_guint8(tvb, 0);
if (first_byte == 0x0f || first_byte == 0x8f)
hdlc_type = ERF_HDLC_CHDLC;
else {
/* Anything to check for to recognize Frame Relay or MTP2?
Should we require PPP packets to begin with FF 03? */
hdlc_type = ERF_HDLC_PPP;
}
}
/* Clean the pseudo header (if used in subdissector) and call the
appropriate subdissector. */
switch (hdlc_type) {
case ERF_HDLC_CHDLC:
call_dissector(chdlc_handle, tvb, pinfo, tree);
break;
case ERF_HDLC_PPP:
call_dissector(ppp_handle, tvb, pinfo, tree);
break;
case ERF_HDLC_FRELAY:
memset(&pinfo->pseudo_header->dte_dce, 0, sizeof(pinfo->pseudo_header->dte_dce));
call_dissector(frelay_handle, tvb, pinfo, tree);
break;
case ERF_HDLC_MTP2:
/* not used, but .. */
memset(&pinfo->pseudo_header->mtp2, 0, sizeof(pinfo->pseudo_header->mtp2));
call_dissector(mtp2_handle, tvb, pinfo, tree);
break;
default:
break;
}
break;
case ERF_TYPE_META:
dissect_meta_record_tags(tvb, pinfo, erf_tree);
break;
default:
call_data_dissector(tvb, pinfo, tree);
break;
} /* erf type */
return tvb_captured_length(tvb);
}
static void erf_init_dissection(void)
{
erf_state.implicit_host_id = 0;
erf_state.source_map = wmem_map_new(wmem_file_scope(), wmem_int64_hash, g_int64_equal);
erf_state.host_anchor_map = wmem_map_new(wmem_file_scope(), erf_anchor_key_hash, erf_anchor_key_equal);
/* Old map is freed automatically */
}
void
proto_register_erf(void)
{
static hf_register_info hf[] = {
/* ERF Header */
{ &hf_erf_ts,
{ "Timestamp", "erf.ts",
FT_UINT64, BASE_HEX, NULL, 0x0, NULL, HFILL } },
{ &hf_erf_rectype,
{ "Record type", "erf.types",
FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL } },
{ &hf_erf_type,
{ "Type", "erf.types.type",
FT_UINT8, BASE_DEC, VALS(erf_type_vals), ERF_HDR_TYPE_MASK, NULL, HFILL } },
{ &hf_erf_ehdr,
{ "Extension header present", "erf.types.ext_header",
FT_UINT8, BASE_DEC, NULL, ERF_HDR_EHDR_MASK, NULL, HFILL } },
{ &hf_erf_flags,
{ "Flags", "erf.flags",
FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL } },
{ &hf_erf_flags_cap,
{ "Capture interface", "erf.flags.cap",
FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ &hf_erf_flags_if_raw,
{ "Raw interface", "erf.flags.if_raw",
FT_UINT8, BASE_HEX, NULL, ERF_HDR_CAP_MASK, NULL, HFILL } },
{ &hf_erf_flags_vlen,
{ "Varying record length", "erf.flags.vlen",
FT_UINT8, BASE_DEC, NULL, ERF_HDR_VLEN_MASK, NULL, HFILL } },
{ &hf_erf_flags_trunc,
{ "Truncated", "erf.flags.trunc",
FT_UINT8, BASE_DEC, NULL, ERF_HDR_TRUNC_MASK, NULL, HFILL } },
{ &hf_erf_flags_rxe,
{ "RX error", "erf.flags.rxe",
FT_UINT8, BASE_DEC, NULL, ERF_HDR_RXE_MASK, NULL, HFILL } },
{ &hf_erf_flags_dse,
{ "DS error", "erf.flags.dse",
FT_UINT8, BASE_DEC, NULL, ERF_HDR_DSE_MASK, NULL, HFILL } },
{ &hf_erf_flags_res,
{ "Reserved", "erf.flags.res",
FT_UINT8, BASE_DEC, NULL, ERF_HDR_RES_MASK, NULL, HFILL } },
{ &hf_erf_rlen,
{ "Record length", "erf.rlen",
FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ &hf_erf_lctr,
{ "Loss counter", "erf.lctr",
FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ &hf_erf_color,
{ "Color", "erf.color",
FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL } },
{ &hf_erf_wlen,
{ "Wire length", "erf.wlen",
FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ &hf_erf_ehdr_t,
{ "Extension Header", "erf.ehdr.types",
FT_UINT8, BASE_DEC, VALS(ehdr_type_vals), 0x0, NULL, HFILL } },
/* Intercept ID Extension Header */
{ &hf_erf_ehdr_int_res1,
{ "Reserved", "erf.ehdr.int.res1",
FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL } },
{ &hf_erf_ehdr_int_id,
{ "Intercept ID", "erf.ehdr.int.intid",
FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ &hf_erf_ehdr_int_res2,
{ "Reserved", "erf.ehdr.int.res2",
FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL } },
/* Raw Link Extension Header */
{ &hf_erf_ehdr_raw_link_res,
{ "Reserved", "erf.ehdr.raw.res",
FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL } },
{ &hf_erf_ehdr_raw_link_seqnum,
{ "Sequence number", "erf.ehdr.raw.seqnum",
FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ &hf_erf_ehdr_raw_link_rate,
{ "Rate", "erf.ehdr.raw.rate",
FT_UINT8, BASE_DEC, VALS(raw_link_rates), 0x0, NULL, HFILL } },
{ &hf_erf_ehdr_raw_link_type,
{ "Link Type", "erf.ehdr.raw.link_type",
FT_UINT8, BASE_DEC, VALS(raw_link_types), 0x0, NULL, HFILL } },
/* Classification Extension Header */
{ &hf_erf_ehdr_class_flags,
{ "Flags", "erf.ehdr.class.flags",
FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL } },
{ &hf_erf_ehdr_class_flags_sh,
{ "Search hit", "erf.ehdr.class.flags.sh",
FT_UINT32, BASE_DEC, NULL, EHDR_CLASS_SH_MASK, NULL, HFILL } },
{ &hf_erf_ehdr_class_flags_shm,
{ "Multiple search hits", "erf.ehdr.class.flags.shm",
FT_UINT32, BASE_DEC, NULL, EHDR_CLASS_SHM_MASK, NULL, HFILL } },
{ &hf_erf_ehdr_class_flags_res1,
{ "Reserved", "erf.ehdr.class.flags.res1",
FT_UINT32, BASE_HEX, NULL, EHDR_CLASS_RES1_MASK, NULL, HFILL } },
{ &hf_erf_ehdr_class_flags_user,
{ "User classification", "erf.ehdr.class.flags.user",
FT_UINT32, BASE_DEC, NULL, EHDR_CLASS_USER_MASK, NULL, HFILL } },
{ &hf_erf_ehdr_class_flags_res2,
{ "Reserved", "erf.ehdr.class.flags.res2",
FT_UINT32, BASE_HEX, NULL, EHDR_CLASS_RES2_MASK, NULL, HFILL } },
{ &hf_erf_ehdr_class_flags_drop,
{ "Drop Steering Bit", "erf.ehdr.class.flags.drop",
FT_UINT32, BASE_DEC, NULL, EHDR_CLASS_DROP_MASK, NULL, HFILL } },
{ &hf_erf_ehdr_class_flags_str,
{ "Stream Steering Bits", "erf.ehdr.class.flags.str",
FT_UINT32, BASE_DEC, NULL, EHDR_CLASS_STER_MASK, NULL, HFILL } },
{ &hf_erf_ehdr_class_seqnum,
{ "Sequence number", "erf.ehdr.class.seqnum",
FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } },
/* BFS Extension Header */
{ &hf_erf_ehdr_bfs_hash,
{ "Hash", "erf.ehdr.bfs.hash",
FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL } },
{ &hf_erf_ehdr_bfs_color,
{ "Filter Color", "erf.ehdr.bfs.color",
FT_UINT16, BASE_HEX, NULL, 0, NULL, HFILL } },
{ &hf_erf_ehdr_bfs_raw_hash,
{ "Raw Hash", "erf.ehdr.bfs.rawhash",
FT_UINT32, BASE_HEX, NULL, 0, NULL, HFILL } },
/* Channelised Extension Header */
{ &hf_erf_ehdr_chan_morebits,
{ "More Bits", "erf.ehdr.chan.morebits",
FT_BOOLEAN, BASE_NONE, NULL, 0, NULL, HFILL } },
{ &hf_erf_ehdr_chan_morefrag,
{ "More Fragments", "erf.ehdr.chan.morefrag",
FT_BOOLEAN, BASE_NONE, NULL, 0, NULL, HFILL } },
{ &hf_erf_ehdr_chan_seqnum,
{ "Sequence Number", "erf.ehdr.chan.seqnum",
FT_UINT16, BASE_DEC, NULL, 0, NULL, HFILL } },
{ &hf_erf_ehdr_chan_res,
{ "Reserved", "erf.ehdr.chan.res",
FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL } },
{ &hf_erf_ehdr_chan_virt_container_id,
{ "Virtual Container ID", "erf.ehdr.chan.vcid",
FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL } },
{ &hf_erf_ehdr_chan_assoc_virt_container_size,
{ "Associated Virtual Container Size", "erf.ehdr.chan.vcsize",
FT_UINT8, BASE_HEX, VALS(channelised_assoc_virt_container_size), 0, NULL, HFILL } },
{ &hf_erf_ehdr_chan_rate,
{ "Origin Line Type/Rate", "erf.ehdr.chan.rate",
FT_UINT8, BASE_HEX, VALS(channelised_rate), 0, NULL, HFILL } },
{ &hf_erf_ehdr_chan_type,
{ "Frame Part Type", "erf.ehdr.chan.type",
FT_UINT8, BASE_HEX, VALS(channelised_type), 0, NULL, HFILL } },
/* Signature Extension Header */
{ &hf_erf_ehdr_signature_payload_hash,
{ "Payload Hash", "erf.ehdr.signature.payloadhash",
FT_UINT24, BASE_HEX, NULL, 0, NULL, HFILL } },
{ &hf_erf_ehdr_signature_color,
{ "Filter Color", "erf.ehdr.signature.color",
FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL } },
{ &hf_erf_ehdr_signature_flow_hash,
{ "Flow Hash", "erf.ehdr.signature.flowhash",
FT_UINT24, BASE_HEX, NULL, 0, NULL, HFILL } },
/* Flow ID Extension Header */
{ &hf_erf_ehdr_flow_id_source_id,
{ "Source ID", "erf.ehdr.flowid.sourceid",
FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL } },
{ &hf_erf_ehdr_flow_id_hash_type,
{ "Hash Type", "erf.ehdr.flowid.hashtype",
FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL } },
{ &hf_erf_ehdr_flow_id_hash_type_type,
{ "Type", "erf.ehdr.flowid.hashtype.type",
FT_UINT8, BASE_DEC, VALS(erf_hash_type), ERF_EHDR_FLOW_ID_HASH_TYPE_TYPE_MASK, NULL, HFILL } },
{ &hf_erf_ehdr_flow_id_hash_type_inner,
{ "Hash is for Tunnel Inner", "erf.ehdr.flowid.hashtype.inner",
FT_UINT8, BASE_DEC, NULL, ERF_EHDR_FLOW_ID_HASH_TYPE_INNER_MASK, NULL, HFILL } },
{ &hf_erf_ehdr_flow_id_stack_type,
{ "Stack Type", "erf.ehdr.flowid.stacktype",
FT_UINT8, BASE_HEX, VALS(erf_stack_type), 0, NULL, HFILL } },
{ &hf_erf_ehdr_flow_id_flow_hash,
{ "Flow Hash", "erf.ehdr.flowid.flowhash",
FT_UINT32, BASE_HEX, NULL, 0, NULL, HFILL } },
/* Host ID Extension Header */
{ &hf_erf_ehdr_host_id_sourceid,
{ "Source ID", "erf.ehdr.hostid.sourceid",
FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL } },
{ &hf_erf_ehdr_host_id_hostid,
{ "Host ID", "erf.ehdr.hostid.hostid",
FT_UINT48, BASE_HEX, NULL, 0, NULL, HFILL } },
/* Anchor ID Extension Header */
{ &hf_erf_ehdr_anchor_id_flags,
{ "Flags", "erf.ehdr.anchorid.flags",
FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL} },
{ &hf_erf_ehdr_anchor_id_definition,
{ "Anchor Definition", "erf.ehdr.anchorid.flags.definition",
FT_BOOLEAN, 8 /*bits in bitfield*/, NULL, 0x80, NULL, HFILL} },
{ &hf_erf_ehdr_anchor_id_reserved,
{ "Reserved", "erf.ehdr.anchorid.flags.rsvd",
FT_UINT8, BASE_HEX, NULL, 0x7f, NULL, HFILL} },
{ &hf_erf_ehdr_anchor_id_anchorid,
{ "Anchor ID", "erf.ehdr.anchorid.anchorid",
FT_UINT48, BASE_HEX, NULL, 0, NULL, HFILL} },
/* Generated fields for navigating Host ID/Anchor ID */
{ &hf_erf_anchor_linked,
{"Linked Frame", "erf.anchor.frame",
FT_FRAMENUM, BASE_NONE, NULL, 0, NULL, HFILL} },
{ &hf_erf_anchor_anchorid,
{ "Anchor ID", "erf.anchor.anchorid",
FT_UINT48, BASE_HEX, NULL, 0, NULL, HFILL } },
{ &hf_erf_anchor_hostid,
{ "Host ID", "erf.anchor.hostid",
FT_UINT48, BASE_HEX, NULL, 0, NULL, HFILL } },
/* Generated fields for navigating Host ID/Source ID */
{ &hf_erf_sourceid,
{ "Source ID", "erf.sourceid",
FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL } },
{ &hf_erf_hostid,
{ "Host ID", "erf.hostid",
FT_UINT48, BASE_HEX, NULL, 0, NULL, HFILL } },
{ &hf_erf_source_current,
{ "Next Metadata in Source", "erf.source_meta_frame_current",
FT_FRAMENUM, BASE_NONE, NULL, 0, NULL, HFILL } },
{ &hf_erf_source_next,
{ "Next Metadata in Source", "erf.source_meta_frame_next",
FT_FRAMENUM, BASE_NONE, NULL, 0, NULL, HFILL } },
{ &hf_erf_source_prev,
{ "Previous Metadata in Source", "erf.source_meta_frame_prev",
FT_FRAMENUM, BASE_NONE, NULL, 0, NULL, HFILL } },
/* Entropy Extension Header */
{ &hf_erf_ehdr_entropy_entropy,
{ "Entropy", "erf.ehdr.entropy.entropy",
FT_FLOAT, BASE_NONE, NULL, 0, NULL, HFILL} },
{ &hf_erf_ehdr_entropy_entropy_raw,
{ "Raw Entropy", "erf.ehdr.entropy.entropy.raw",
FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL} },
{ &hf_erf_ehdr_entropy_reserved,
{ "Reserved", "erf.ehdr.entropy.rsvd",
FT_UINT48, BASE_HEX, NULL, 0, NULL, HFILL} },
/* Unknown Extension Header */
{ &hf_erf_ehdr_unk,
{ "Data", "erf.ehdr.unknown.data",
FT_UINT64, BASE_HEX, NULL, 0x0, NULL, HFILL } },
/* MC HDLC Header */
{ &hf_erf_mc_hdlc,
{ "Multi Channel HDLC Header", "erf.mchdlc",
FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL } },
{ &hf_erf_mc_hdlc_cn,
{ "Connection number", "erf.mchdlc.cn",
FT_UINT32, BASE_DEC, NULL, MC_HDLC_CN_MASK, NULL, HFILL } },
{ &hf_erf_mc_hdlc_res1,
{ "Reserved", "erf.mchdlc.res1",
FT_UINT32, BASE_HEX, NULL, MC_HDLC_RES1_MASK, NULL, HFILL } },
{ &hf_erf_mc_hdlc_res2,
{ "Reserved", "erf.mchdlc.res2",
FT_UINT32, BASE_HEX, NULL, MC_HDLC_RES2_MASK, NULL, HFILL } },
{ &hf_erf_mc_hdlc_fcse,
{ "FCS error", "erf.mchdlc.fcse",
FT_UINT32, BASE_DEC, NULL, MC_HDLC_FCSE_MASK, NULL, HFILL } },
{ &hf_erf_mc_hdlc_sre,
{ "Short record error", "erf.mchdlc.sre",
FT_UINT32, BASE_DEC, NULL, MC_HDLC_SRE_MASK, NULL, HFILL } },
{ &hf_erf_mc_hdlc_lre,
{ "Long record error", "erf.mchdlc.lre",
FT_UINT32, BASE_DEC, NULL, MC_HDLC_LRE_MASK, NULL, HFILL } },
{ &hf_erf_mc_hdlc_afe,
{ "Aborted frame error", "erf.mchdlc.afe",
FT_UINT32, BASE_DEC, NULL, MC_HDLC_AFE_MASK, NULL, HFILL } },
{ &hf_erf_mc_hdlc_oe,
{ "Octet error", "erf.mchdlc.oe",
FT_UINT32, BASE_DEC, NULL, MC_HDLC_OE_MASK, NULL, HFILL } },
{ &hf_erf_mc_hdlc_lbe,
{ "Lost byte error", "erf.mchdlc.lbe",
FT_UINT32, BASE_DEC, NULL, MC_HDLC_LBE_MASK, NULL, HFILL } },
{ &hf_erf_mc_hdlc_first,
{ "First record", "erf.mchdlc.first",
FT_UINT32, BASE_DEC, NULL, MC_HDLC_FIRST_MASK, NULL, HFILL } },
{ &hf_erf_mc_hdlc_res3,
{ "Reserved", "erf.mchdlc.res3",
FT_UINT32, BASE_HEX, NULL, MC_HDLC_RES3_MASK, NULL, HFILL } },
/* MC RAW Header */
{ &hf_erf_mc_raw,
{ "Multi Channel RAW Header", "erf.mcraw",
FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL } },
{ &hf_erf_mc_raw_int,
{ "Physical interface", "erf.mcraw.int",
FT_UINT32, BASE_DEC, NULL, MC_RAW_INT_MASK, NULL, HFILL } },
{ &hf_erf_mc_raw_res1,
{ "Reserved", "erf.mcraw.res1",
FT_UINT32, BASE_HEX, NULL, MC_RAW_RES1_MASK, NULL, HFILL } },
{ &hf_erf_mc_raw_sre,
{ "Short record error", "erf.mcraw.sre",
FT_UINT32, BASE_DEC, NULL, MC_RAW_SRE_MASK, NULL, HFILL } },
{ &hf_erf_mc_raw_lre,
{ "Long record error", "erf.mcraw.lre",
FT_UINT32, BASE_DEC, NULL, MC_RAW_LRE_MASK, NULL, HFILL } },
{ &hf_erf_mc_raw_res2,
{ "Reserved", "erf.mcraw.res2",
FT_UINT32, BASE_HEX, NULL, MC_RAW_RES2_MASK, NULL, HFILL } },
{ &hf_erf_mc_raw_lbe,
{ "Lost byte error", "erf.mcraw.lbe",
FT_UINT32, BASE_DEC, NULL, MC_RAW_LBE_MASK, NULL, HFILL } },
{ &hf_erf_mc_raw_first,
{ "First record", "erf.mcraw.first",
FT_UINT32, BASE_DEC, NULL, MC_RAW_FIRST_MASK, NULL, HFILL } },
{ &hf_erf_mc_raw_res3,
{ "Reserved", "erf.mcraw.res3",
FT_UINT32, BASE_HEX, NULL, MC_RAW_RES3_MASK, NULL, HFILL } },
/* MC ATM Header */
{ &hf_erf_mc_atm,
{ "Multi Channel ATM Header", "erf.mcatm",
FT_UINT32, BASE_HEX, NULL, 0x00, NULL, HFILL } },
{ &hf_erf_mc_atm_cn,
{ "Connection number", "erf.mcatm.cn",
FT_UINT32, BASE_DEC, NULL, MC_ATM_CN_MASK, NULL, HFILL } },
{ &hf_erf_mc_atm_res1,
{ "Reserved", "erf.mcatm.res1",
FT_UINT32, BASE_HEX, NULL, MC_ATM_RES1_MASK, NULL, HFILL } },
{ &hf_erf_mc_atm_mul,
{ "Multiplexed", "erf.mcatm.mul",
FT_UINT32, BASE_DEC, NULL, MC_ATM_MUL_MASK, NULL, HFILL } },
{ &hf_erf_mc_atm_port,
{ "Physical port", "erf.mcatm.port",
FT_UINT32, BASE_DEC, NULL, MC_ATM_PORT_MASK, NULL, HFILL } },
{ &hf_erf_mc_atm_res2,
{ "Reserved", "erf.mcatm.res2",
FT_UINT32, BASE_HEX, NULL, MC_ATM_RES2_MASK, NULL, HFILL } },
{ &hf_erf_mc_atm_lbe,
{ "Lost Byte Error", "erf.mcatm.lbe",
FT_UINT32, BASE_DEC, NULL, MC_ATM_LBE_MASK, NULL, HFILL } },
{ &hf_erf_mc_atm_hec,
{ "HEC corrected", "erf.mcatm.hec",
FT_UINT32, BASE_DEC, NULL, MC_ATM_HEC_MASK, NULL, HFILL } },
{ &hf_erf_mc_atm_crc10,
{ "OAM Cell CRC10 Error (not implemented)", "erf.mcatm.crc10",
FT_UINT32, BASE_DEC, NULL, MC_ATM_CRC10_MASK, NULL, HFILL } },
{ &hf_erf_mc_atm_oamcell,
{ "OAM Cell", "erf.mcatm.oamcell",
FT_UINT32, BASE_DEC, NULL, MC_ATM_OAMCELL_MASK, NULL, HFILL } },
{ &hf_erf_mc_atm_first,
{ "First record", "erf.mcatm.first",
FT_UINT32, BASE_DEC, NULL, MC_ATM_FIRST_MASK, NULL, HFILL } },
{ &hf_erf_mc_atm_res3,
{ "Reserved", "erf.mcatm.res3",
FT_UINT32, BASE_HEX, NULL, MC_ATM_RES3_MASK, NULL, HFILL } },
/* MC RAW Link Header */
{ &hf_erf_mc_rawl,
{ "Multi Channel RAW Link Header", "erf.mcrawl",
FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL } },
{ &hf_erf_mc_rawl_cn,
{ "Connection number", "erf.mcrawl.cn",
FT_UINT32, BASE_DEC, NULL, MC_RAWL_CN_MASK, NULL, HFILL } },
{ &hf_erf_mc_rawl_res1,
{ "Reserved", "erf.mcrawl.res1",
FT_UINT32, BASE_HEX, NULL, MC_RAWL_RES2_MASK, NULL, HFILL } },
{ &hf_erf_mc_rawl_lbe,
{ "Lost byte error", "erf.mcrawl.lbe",
FT_UINT32, BASE_DEC, NULL, MC_RAWL_LBE_MASK, NULL, HFILL } },
{ &hf_erf_mc_rawl_first,
{ "First record", "erf.mcrawl.first",
FT_UINT32, BASE_DEC, NULL, MC_RAWL_FIRST_MASK, NULL, HFILL } },
{ &hf_erf_mc_rawl_res2,
{ "Reserved", "erf.mcrawl.res2",
FT_UINT32, BASE_HEX, NULL, MC_RAWL_RES2_MASK, NULL, HFILL } },
/* MC AAL5 Header */
{ &hf_erf_mc_aal5,
{ "Multi Channel AAL5 Header", "erf.mcaal5",
FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL } },
{ &hf_erf_mc_aal5_cn,
{ "Connection number", "erf.mcaal5.cn",
FT_UINT32, BASE_DEC, NULL, MC_AAL5_CN_MASK, NULL, HFILL } },
{ &hf_erf_mc_aal5_res1,
{ "Reserved", "erf.mcaal5.res1",
FT_UINT32, BASE_HEX, NULL, MC_AAL5_RES1_MASK, NULL, HFILL } },
{ &hf_erf_mc_aal5_port,
{ "Physical port", "erf.mcaal5.port",
FT_UINT32, BASE_DEC, NULL, MC_AAL5_PORT_MASK, NULL, HFILL } },
{ &hf_erf_mc_aal5_crcck,
{ "CRC checked", "erf.mcaal5.crcck",
FT_UINT32, BASE_DEC, NULL, MC_AAL5_CRCCK_MASK, NULL, HFILL } },
{ &hf_erf_mc_aal5_crce,
{ "CRC error", "erf.mcaal5.crce",
FT_UINT32, BASE_DEC, NULL, MC_AAL5_CRCE_MASK, NULL, HFILL } },
{ &hf_erf_mc_aal5_lenck,
{ "Length checked", "erf.mcaal5.lenck",
FT_UINT32, BASE_DEC, NULL, MC_AAL5_LENCK_MASK, NULL, HFILL } },
{ &hf_erf_mc_aal5_lene,
{ "Length error", "erf.mcaal5.lene",
FT_UINT32, BASE_DEC, NULL, MC_AAL5_LENE_MASK, NULL, HFILL } },
{ &hf_erf_mc_aal5_res2,
{ "Reserved", "erf.mcaal5.res2",
FT_UINT32, BASE_HEX, NULL, MC_AAL5_RES2_MASK, NULL, HFILL } },
{ &hf_erf_mc_aal5_first,
{ "First record", "erf.mcaal5.first",
FT_UINT32, BASE_DEC, NULL, MC_AAL5_FIRST_MASK, NULL, HFILL } },
{ &hf_erf_mc_aal5_res3,
{ "Reserved", "erf.mcaal5.res3",
FT_UINT32, BASE_HEX, NULL, MC_AAL5_RES3_MASK, NULL, HFILL } },
/* MC AAL2 Header */
{ &hf_erf_mc_aal2,
{ "Multi Channel AAL2 Header", "erf.mcaal2",
FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL } },
{ &hf_erf_mc_aal2_cn,
{ "Connection number", "erf.mcaal2.cn",
FT_UINT32, BASE_DEC, NULL, MC_AAL2_CN_MASK, NULL, HFILL } },
{ &hf_erf_mc_aal2_res1,
{ "Reserved for extra connection", "erf.mcaal2.res1",
FT_UINT32, BASE_HEX, NULL, MC_AAL2_RES1_MASK, NULL, HFILL } },
{ &hf_erf_mc_aal2_res2,
{ "Reserved for type", "erf.mcaal2.mul",
FT_UINT32, BASE_HEX, NULL, MC_AAL2_RES2_MASK, NULL, HFILL } },
{ &hf_erf_mc_aal2_port,
{ "Physical port", "erf.mcaal2.port",
FT_UINT32, BASE_DEC, NULL, MC_AAL2_PORT_MASK, NULL, HFILL } },
{ &hf_erf_mc_aal2_res3,
{ "Reserved", "erf.mcaal2.res2",
FT_UINT32, BASE_HEX, NULL, MC_AAL2_RES3_MASK, NULL, HFILL } },
{ &hf_erf_mc_aal2_first,
{ "First cell received", "erf.mcaal2.lbe",
FT_UINT32, BASE_DEC, NULL, MC_AAL2_FIRST_MASK, NULL, HFILL } },
{ &hf_erf_mc_aal2_maale,
{ "MAAL error", "erf.mcaal2.hec",
FT_UINT32, BASE_DEC, NULL, MC_AAL2_MAALE_MASK, NULL, HFILL } },
{ &hf_erf_mc_aal2_lene,
{ "Length error", "erf.mcaal2.crc10",
FT_UINT32, BASE_DEC, NULL, MC_AAL2_LENE_MASK, NULL, HFILL } },
{ &hf_erf_mc_aal2_cid,
{ "Channel Identification Number", "erf.mcaal2.cid",
FT_UINT32, BASE_DEC, NULL, MC_AAL2_CID_MASK, NULL, HFILL } },
/* AAL2 Header */
{ &hf_erf_aal2,
{ "AAL2 Header", "erf.aal2",
FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL } },
{ &hf_erf_aal2_cid,
{ "Channel Identification Number", "erf.aal2.cid",
FT_UINT32, BASE_DEC, NULL, AAL2_CID_MASK, NULL, HFILL } },
{ &hf_erf_aal2_maale,
{ "MAAL error number", "erf.aal2.maale",
FT_UINT32, BASE_DEC, NULL, AAL2_MAALE_MASK, NULL, HFILL } },
{ &hf_erf_aal2_maalei,
{ "MAAL error", "erf.aal2.hec",
FT_UINT32, BASE_DEC, NULL, AAL2_MAALEI_MASK, NULL, HFILL } },
{ &hf_erf_aal2_first,
{ "First cell received", "erf.aal2.lbe",
FT_UINT32, BASE_DEC, NULL, AAL2_FIRST_MASK, NULL, HFILL } },
{ &hf_erf_aal2_res1,
{ "Reserved", "erf.aal2.res1",
FT_UINT32, BASE_HEX, NULL, AAL2_RES1_MASK, NULL, HFILL } },
/* ETH Header */
{ &hf_erf_eth,
{ "Ethernet pad", "erf.eth",
FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ &hf_erf_eth_off,
{ "Offset", "erf.eth.off",
FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ &hf_erf_eth_pad,
{ "Padding", "erf.eth.pad",
FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL } },
/* Provenance record unknown tags */
{ &hf_erf_meta_tag_type,
{ "Tag Type", "erf.meta.tag.type",
FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ &hf_erf_meta_tag_len,
{ "Tag Length", "erf.meta.tag.len",
FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ &hf_erf_meta_tag_unknown,
{ "Unknown Tag", "erf.meta.unknown",
FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }
};
static gint *ett[] = {
&ett_erf,
&ett_erf_pseudo_hdr,
&ett_erf_rectype,
&ett_erf_hash_type,
&ett_erf_flags,
&ett_erf_mc_hdlc,
&ett_erf_mc_raw,
&ett_erf_mc_atm,
&ett_erf_mc_rawlink,
&ett_erf_mc_aal5,
&ett_erf_mc_aal2,
&ett_erf_aal2,
&ett_erf_eth,
&ett_erf_meta,
&ett_erf_meta_tag,
&ett_erf_source,
&ett_erf_anchor,
&ett_erf_anchor_flags,
&ett_erf_entropy_value
};
static const enum_val_t erf_hdlc_options[] = {
{ "chdlc", "Cisco HDLC", ERF_HDLC_CHDLC },
{ "ppp", "PPP serial", ERF_HDLC_PPP },
{ "frelay", "Frame Relay", ERF_HDLC_FRELAY },
{ "mtp2", "SS7 MTP2", ERF_HDLC_MTP2 },
{ "guess", "Attempt to guess", ERF_HDLC_GUESS },
{ NULL, NULL, 0 }
};
static const enum_val_t erf_aal5_options[] = {
{ "guess", "Attempt to guess", ERF_AAL5_GUESS },
{ "llc", "LLC multiplexed", ERF_AAL5_LLC },
{ "unspec", "Unspecified", ERF_AAL5_UNSPEC },
{ NULL, NULL, 0 }
};
static ei_register_info ei[] = {
{ &ei_erf_mc_hdlc_checksum_error, { "erf.mchdlc.checksum.error", PI_CHECKSUM, PI_ERROR, "ERF MC HDLC FCS Error", EXPFILL }},
{ &ei_erf_mc_hdlc_short_error, { "erf.mchdlc.short.error", PI_RECEIVE, PI_ERROR, "ERF MC HDLC Short Record Error, <5 bytes", EXPFILL }},
{ &ei_erf_mc_hdlc_long_error, { "erf.mchdlc.long.error", PI_RECEIVE, PI_ERROR, "ERF MC HDLC Long Record Error, >2047 bytes", EXPFILL }},
{ &ei_erf_mc_hdlc_abort_error, { "erf.mchdlc.abort.error", PI_RECEIVE, PI_ERROR, "ERF MC HDLC Aborted Frame Error", EXPFILL }},
{ &ei_erf_mc_hdlc_octet_error, { "erf.mchdlc.octet.error", PI_RECEIVE, PI_ERROR, "ERF MC HDLC Octet Error, the closing flag was not octet aligned after bit unstuffing", EXPFILL }},
{ &ei_erf_mc_hdlc_lost_byte_error, { "erf.mchdlc.lost_byte.error", PI_RECEIVE, PI_ERROR, "ERF MC HDLC Lost Byte Error", EXPFILL }},
{ &ei_erf_rx_error, { "erf.rx.error", PI_INTERFACE, PI_ERROR, "ERF RX Error", EXPFILL }},
{ &ei_erf_ds_error, { "erf.ds.error", PI_INTERFACE, PI_ERROR, "ERF DS Error", EXPFILL }},
{ &ei_erf_truncation_error, { "erf.truncation.error", PI_INTERFACE, PI_ERROR, "ERF Truncation Error", EXPFILL }},
{ &ei_erf_packet_loss, { "erf.packet_loss", PI_INTERFACE, PI_WARN, "Packet loss occurred between previous and current packet", EXPFILL }},
{ &ei_erf_extension_headers_not_shown, { "erf.ehdr.more_not_shown", PI_INTERFACE, PI_WARN, "More extension headers were present, not shown", EXPFILL }},
{ &ei_erf_meta_section_len_error, { "erf.meta.section_len.error", PI_PROTOCOL, PI_ERROR, "Provenance Section Length incorrect", EXPFILL }},
{ &ei_erf_meta_truncated_record, { "erf.meta.truncated_record", PI_MALFORMED, PI_ERROR, "Provenance truncated record", EXPFILL }},
{ &ei_erf_meta_truncated_tag, { "erf.meta.truncated_tag", PI_PROTOCOL, PI_ERROR, "Provenance truncated tag", EXPFILL }},
{ &ei_erf_meta_zero_len_tag, { "erf.meta.zero_len_tag", PI_PROTOCOL, PI_NOTE, "Provenance zero length tag", EXPFILL }},
{ &ei_erf_meta_reset, { "erf.meta.metadata_reset", PI_PROTOCOL, PI_WARN, "Provenance metadata reset", EXPFILL }}
};
module_t *erf_module;
expert_module_t* expert_erf;
proto_erf = proto_register_protocol("Extensible Record Format", "ERF", "erf");
erf_handle = register_dissector("erf", dissect_erf, proto_erf);
init_meta_tags();
proto_register_field_array(proto_erf, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));
expert_erf = expert_register_protocol(proto_erf);
expert_register_field_array(expert_erf, ei, array_length(ei));
/* Register per-section Provenance fields */
proto_register_field_array(proto_erf, (hf_register_info*) wmem_array_get_raw(erf_meta_index.hfri), (int) wmem_array_get_count(erf_meta_index.hfri));
proto_register_subtree_array((gint**) wmem_array_get_raw(erf_meta_index.ett), (int) wmem_array_get_count(erf_meta_index.ett));
erf_module = prefs_register_protocol(proto_erf, NULL);
prefs_register_enum_preference(erf_module, "hdlc_type", "ERF_HDLC Layer 2",
"Protocol encapsulated in HDLC records",
&erf_hdlc_type, erf_hdlc_options, FALSE);
prefs_register_bool_preference(erf_module, "rawcell_first",
"Raw ATM cells are first cell of AAL5 PDU",
"Whether raw ATM cells should be treated as "
"the first cell of an AAL5 PDU",
&erf_rawcell_first);
prefs_register_enum_preference(erf_module, "aal5_type",
"ATM AAL5 packet type",
"Protocol encapsulated in ATM AAL5 packets",
&erf_aal5_type, erf_aal5_options, FALSE);
/*
* We just use eth_maybefcs now and respect the Ethernet preference.
* ERF records usually have FCS.
*/
prefs_register_obsolete_preference(erf_module, "ethfcs");
erf_dissector_table = register_dissector_table("erf.types.type", "ERF Type", proto_erf, FT_UINT8, BASE_DEC);
register_init_routine(erf_init_dissection);
/* No extra cleanup needed */
}
void
proto_reg_handoff_erf(void)
{
int file_type_subtype_erf;
dissector_add_uint("wtap_encap", WTAP_ENCAP_ERF, erf_handle);
/* Also register dissector for Provenance non-packet records */
file_type_subtype_erf = wtap_name_to_file_type_subtype("erf");
if (file_type_subtype_erf != -1)
dissector_add_uint("wtap_fts_rec", file_type_subtype_erf, erf_handle);
/* Get handles for serial line protocols */
chdlc_handle = find_dissector_add_dependency("chdlc", proto_erf);
ppp_handle = find_dissector_add_dependency("ppp_hdlc", proto_erf);
frelay_handle = find_dissector_add_dependency("fr", proto_erf);
mtp2_handle = find_dissector_add_dependency("mtp2_with_crc", proto_erf);
/* Get handle for ATM dissector */
atm_untruncated_handle = find_dissector_add_dependency("atm_untruncated", proto_erf);
sdh_handle = find_dissector_add_dependency("sdh", proto_erf);
}
/*
* Editor modelines - https://www.wireshark.org/tools/modelines.html
*
* Local Variables:
* c-basic-offset: 2
* tab-width: 8
* indent-tabs-mode: nil
* End:
*
* ex: set shiftwidth=2 tabstop=8 expandtab:
* :indentSize=2:tabSize=8:noTabs=true:
*/