wireshark/epan/dissectors/packet-fr.c

1028 lines
33 KiB
C

/* packet-fr.c
* Routines for Frame Relay dissection
*
* Copyright 2001, Paul Ionescu <paul@acorp.ro>
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* References:
*
* http://www.protocols.com/pbook/frame.htm
* http://www.mplsforum.org/frame/Approved/FRF.3/FRF.3.2.pdf
* ITU Recommendations Q.922 and Q.933
* RFC-1490
* RFC-2427
* Cisco encapsulation
* http://www.trillium.com/assets/legacyframe/white_paper/8771019.pdf
*/
#include "config.h"
#include <epan/packet.h>
#include <epan/capture_dissectors.h>
#include <epan/prefs.h>
#include <epan/expert.h>
#include <wiretap/wtap.h>
#include "packet-llc.h"
#include "packet-chdlc.h"
#include "packet-eth.h"
#include "packet-ip.h"
#include "packet-ipv6.h"
#include "packet-ppp.h"
#include "packet-juniper.h"
#include "packet-sflow.h"
#include "packet-l2tp.h"
#include <epan/xdlc.h>
#include <epan/etypes.h>
#include <epan/oui.h>
#include <epan/nlpid.h>
void proto_register_fr(void);
void proto_reg_handoff_fr(void);
/*
* Bits in the address field.
*/
#define FRELAY_EA 0x01 /* Address field extension bit */
#define FRELAY_UPPER_DLCI 0xFC /* Upper DLCI */
#define FRELAY_CR 0x02 /* Command/response bit in first octet */
#define FRELAY_SECOND_DLCI 0xF0 /* DLCI bits in FECN/BECN/DE octet */
#define FRELAY_FECN 0x08 /* Forward Explicit Congestion Notification */
#define FRELAY_BECN 0x04 /* Backward Explicit Congestion Notification */
#define FRELAY_DE 0x02 /* Discard Eligibility */
#define FRELAY_THIRD_DLCI 0xFE /* DLCI bits in third octet, if any */
#define FRELAY_LOWER_DLCI 0xFC /* Lower DLCI */
#define FRELAY_DC 0x02 /* DLCI or DL-CORE control indicator in last octet */
#define FROM_DCE 0x80 /* for direction setting */
static gint proto_fr = -1;
static gint ett_fr = -1;
static gint ett_fr_address = -1;
static gint ett_fr_control = -1;
static gint hf_fr_ea = -1;
static gint hf_fr_upper_dlci = -1;
static gint hf_fr_cr = -1;
static gint hf_fr_second_dlci = -1;
static gint hf_fr_fecn = -1;
static gint hf_fr_becn = -1;
static gint hf_fr_de = -1;
static gint hf_fr_third_dlci = -1;
static gint hf_fr_dlcore_control = -1;
static gint hf_fr_lower_dlci = -1;
static gint hf_fr_dc = -1;
static gint hf_fr_dlci = -1;
static gint hf_fr_control = -1;
static gint hf_fr_n_r = -1;
static gint hf_fr_n_s = -1;
static gint hf_fr_p = -1;
static gint hf_fr_p_ext = -1;
static gint hf_fr_f = -1;
static gint hf_fr_f_ext = -1;
static gint hf_fr_s_ftype = -1;
static gint hf_fr_u_modifier_cmd = -1;
static gint hf_fr_u_modifier_resp = -1;
static gint hf_fr_ftype_i = -1;
static gint hf_fr_ftype_s_u = -1;
static gint hf_fr_ftype_s_u_ext = -1;
static gint hf_fr_nlpid = -1;
static gint hf_fr_oui = -1;
static gint hf_fr_pid = -1;
static gint hf_fr_snaptype = -1;
static gint hf_fr_chdlctype = -1;
static gint hf_fr_first_addr_octet = -1;
static gint hf_fr_second_addr_octet = -1;
static gint hf_fr_third_addr_octet = -1;
static expert_field ei_fr_bogus_address = EI_INIT;
static expert_field ei_fr_frame_relay_lapf = EI_INIT;
static expert_field ei_fr_frame_relay_xid = EI_INIT;
static dissector_handle_t eth_withfcs_handle;
static dissector_handle_t gprs_ns_handle;
static dissector_handle_t data_handle;
static dissector_table_t osinl_incl_subdissector_table;
/*
* Encapsulation type.
* XXX - this should be per-DLCI as well.
*/
#define FRF_3_2 0 /* FRF 3.2 or Cisco HDLC */
#define GPRS_NS 1 /* GPRS Network Services (3GPP TS 08.16) */
#define RAW_ETHER 2 /* Raw Ethernet */
static gint fr_encap = FRF_3_2;
static const true_false_string ctrl_string = {
"DLCI Address",
"Control"
};
static const true_false_string ea_string = {
"Last Octet",
"More Follows"
};
/*
* This isn't the same as "nlpid_vals[]"; 0x08 is Q.933, not Q.931,
* and 0x09 is LMI, not Q.2931, and we assume that it's an initial
* protocol identifier, so 0x01 is T.70, not X.29.
*/
static const value_string fr_nlpid_vals[] = {
{ NLPID_NULL, "NULL" },
{ NLPID_IPI_T_70, "T.70" }, /* XXX - IPI, or SPI? */
{ NLPID_X_633, "X.633" },
{ NLPID_Q_931, "Q.933" },
{ NLPID_LMI, "LMI" },
{ NLPID_Q_2119, "Q.2119" },
{ NLPID_SNAP, "SNAP" },
{ NLPID_ISO8473_CLNP, "CLNP" },
{ NLPID_ISO9542_ESIS, "ESIS" },
{ NLPID_ISO10589_ISIS, "ISIS" },
{ NLPID_ISO10747_IDRP, "IDRP" },
{ NLPID_ISO9542X25_ESIS, "ESIS (X.25)" },
{ NLPID_ISO10030, "ISO 10030" },
{ NLPID_ISO11577, "ISO 11577" },
{ NLPID_COMPRESSED, "Data compression protocol" },
{ NLPID_IP, "IP" },
{ NLPID_IP6, "IPv6" },
{ NLPID_PPP, "PPP" },
{ 0, NULL },
};
static dissector_table_t fr_subdissector_table;
static dissector_table_t fr_osinl_subdissector_table;
static void dissect_fr_nlpid(tvbuff_t *tvb, int offset, packet_info *pinfo,
proto_tree *tree, proto_item *ti,
proto_tree *fr_tree, guint8 fr_ctrl);
static void dissect_lapf(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree);
static void dissect_fr_xid(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree);
/* Used only for U frames */
static const xdlc_cf_items fr_cf_items = {
NULL,
NULL,
&hf_fr_p,
&hf_fr_f,
NULL,
&hf_fr_u_modifier_cmd,
&hf_fr_u_modifier_resp,
NULL,
&hf_fr_ftype_s_u
};
/* Used only for I and S frames */
static const xdlc_cf_items fr_cf_items_ext = {
&hf_fr_n_r,
&hf_fr_n_s,
&hf_fr_p_ext,
&hf_fr_f_ext,
&hf_fr_s_ftype,
NULL,
NULL,
&hf_fr_ftype_i,
&hf_fr_ftype_s_u_ext
};
static gboolean
capture_fr(const guchar *pd, int offset, int len, capture_packet_info_t *cpinfo, const union wtap_pseudo_header *pseudo_header _U_)
{
guint8 fr_octet;
guint32 addr;
guint8 fr_ctrl;
guint8 fr_nlpid;
/*
* OK, fetch the address field - keep going until we get an EA bit.
*/
if (!BYTES_ARE_IN_FRAME(offset, len, 1))
return FALSE;
fr_octet = pd[offset];
if (fr_octet & FRELAY_EA) {
/*
* Bogus! There should be at least 2 octets.
* XXX - is this FRF.12 frame relay fragmentation? If so, can
* we handle that?
*/
return FALSE;
}
/*
* The first octet contains the upper 6 bits of the DLCI, as well
* as the C/R bit.
*/
addr = (fr_octet & FRELAY_UPPER_DLCI) >> 2;
offset++;
/*
* The second octet contains 4 more bits of DLCI, as well as FECN,
* BECN, and DE.
*/
if (!BYTES_ARE_IN_FRAME(offset, len, 1))
return FALSE;
fr_octet = pd[offset];
addr = (addr << 4) | ((fr_octet & FRELAY_SECOND_DLCI) >> 4);
offset++;
if (!(fr_octet & FRELAY_EA)) {
/*
* We have 3 or more address octets.
*
* The third octet contains 7 more bits of DLCI if EA isn't set,
* and lower DLCI or DL-CORE control plus the DLCI or DL-CORE
* control indicator flag if EA is set.
*/
if (!BYTES_ARE_IN_FRAME(offset, len, 1))
return FALSE;
fr_octet = pd[offset];
if (!(fr_octet & FRELAY_EA)) {
/*
* 7 more bits of DLCI.
*/
addr = (addr << 7) | ((fr_octet & FRELAY_THIRD_DLCI) >> 1);
offset++;
if (!BYTES_ARE_IN_FRAME(offset, len, 1))
return FALSE;
fr_octet = pd[offset];
while (!(fr_octet & FRELAY_EA)) {
/*
* Bogus! More than 4 octets of address.
*/
offset++;
if (!BYTES_ARE_IN_FRAME(offset, len, 1))
return FALSE;
fr_octet = pd[offset];
}
}
/*
* Last octet - contains lower DLCI or DL-CORE control, DLCI or
* DL-CORE control indicator flag.
*/
if (fr_octet & FRELAY_DC) {
/*
* DL-CORE.
*/
} else {
/*
* Last 6 bits of DLCI.
*/
addr = (addr << 6) | ((fr_octet & FRELAY_LOWER_DLCI) >> 2);
}
}
switch (fr_encap) {
case FRF_3_2:
if (!BYTES_ARE_IN_FRAME(offset, len, 1))
return FALSE;
fr_ctrl = pd[offset];
if (fr_ctrl == XDLC_U) {
offset++;
/*
* XXX - treat DLCI 0 specially? On DLCI 0, an NLPID of 0x08
* means Q.933, but on other circuits it could be the "for
* protocols which do not have an NLPID assigned or do not
* have a SNAP encapsulation" stuff from RFC 2427.
*/
if (!BYTES_ARE_IN_FRAME(offset, len, 1))
return FALSE;
fr_nlpid = pd[offset];
if (fr_nlpid == 0) {
offset++;
if (!BYTES_ARE_IN_FRAME(offset, len, 1))
return FALSE;
fr_nlpid = pd[offset];
}
offset++;
switch (fr_nlpid) {
case NLPID_IP:
return capture_ip(pd, offset, len, cpinfo, pseudo_header);
case NLPID_IP6:
return capture_ipv6(pd, offset, len, cpinfo, pseudo_header);
case NLPID_PPP:
return capture_ppp_hdlc(pd, offset, len, cpinfo, pseudo_header);
case NLPID_SNAP:
return capture_snap(pd, offset, len, cpinfo, pseudo_header);
default:
return FALSE;
}
} else {
if (addr == 0) {
/*
* This must be some sort of LAPF on DLCI 0 for SVC
* because DLCI 0 is reserved for LMI and SVC signaling
* encapsulated in LAPF, and LMI is transmitted in
* unnumbered information (03), so this must be LAPF
* (guessing).
*
* XXX - but what is it? Is Q.933 carried inside UI
* frames or other types of frames or both?
*/
return FALSE;
}
if (fr_ctrl == (XDLC_U|XDLC_XID)) {
/*
* XID.
*/
return FALSE;
}
/*
* If the data does not start with unnumbered information (03) and
* the DLCI# is not 0, then there may be Cisco Frame Relay encapsulation.
*/
return capture_chdlc(pd, offset, len, cpinfo, pseudo_header);
}
break;
case GPRS_NS:
return FALSE;
case RAW_ETHER:
if (addr != 0)
return capture_eth(pd, offset, len, cpinfo, pseudo_header);
return FALSE;
}
return FALSE;
}
static void
dissect_fr_common(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree,
gboolean has_direction, gboolean decode_address )
{
int offset = 0;
proto_item *ti = NULL;
proto_tree *fr_tree = NULL;
proto_tree *octet_tree = NULL;
guint8 fr_octet;
int is_response = FALSE;
guint32 addr = 0;
guint8 fr_ctrl;
guint16 fr_type;
tvbuff_t *next_tvb;
col_set_str(pinfo->cinfo, COL_PROTOCOL, "FR");
col_clear(pinfo->cinfo, COL_INFO);
if (has_direction) {
if (pinfo->pseudo_header->x25.flags & FROM_DCE) {
col_set_str(pinfo->cinfo, COL_RES_DL_DST, "DTE");
col_set_str(pinfo->cinfo, COL_RES_DL_SRC, "DCE");
} else {
col_set_str(pinfo->cinfo, COL_RES_DL_DST, "DCE");
col_set_str(pinfo->cinfo, COL_RES_DL_SRC, "DTE");
}
}
if (tree) {
ti = proto_tree_add_protocol_format(tree, proto_fr, tvb, 0, -1, "Frame Relay");
fr_tree = proto_item_add_subtree(ti, ett_fr);
}
if (decode_address)
{
/*
* OK, fetch the address field - keep going until we get an EA bit.
*/
fr_octet = tvb_get_guint8(tvb, offset);
if (fr_octet & FRELAY_EA) {
/*
* Bogus! There should be at least 2 octets.
* XXX - is this FRF.12 frame relay fragmentation? If so, we
* should dissect it as such, if possible.
*/
addr = 0;
proto_tree_add_expert_format(fr_tree, pinfo, &ei_fr_bogus_address, tvb, offset, 1,
"Bogus 1-octet address field");
offset++;
} else {
static const int *first_address_bits[] = {&hf_fr_upper_dlci, &hf_fr_cr, &hf_fr_ea, NULL};
static const int *second_address_bits[] = {&hf_fr_second_dlci, &hf_fr_fecn,
&hf_fr_becn, &hf_fr_de, &hf_fr_ea, NULL};
static const int *third_address_bits[] = {&hf_fr_third_dlci, &hf_fr_ea, NULL};
/*
* The first octet contains the upper 6 bits of the DLCI, as well
* as the C/R bit.
*/
addr = (fr_octet & FRELAY_UPPER_DLCI) >> 2;
is_response = (fr_octet & FRELAY_CR);
proto_tree_add_bitmask(fr_tree, tvb, offset, hf_fr_first_addr_octet,
ett_fr_address, first_address_bits, ENC_NA);
offset++;
/*
* The second octet contains 4 more bits of DLCI, as well as FECN,
* BECN, and DE.
*/
fr_octet = tvb_get_guint8(tvb, offset);
addr = (addr << 4) | ((fr_octet & FRELAY_SECOND_DLCI) >> 4);
proto_tree_add_bitmask(fr_tree, tvb, offset, hf_fr_second_addr_octet,
ett_fr_address, second_address_bits, ENC_NA);
offset++;
if (!(fr_octet & FRELAY_EA)) {
/*
* We have 3 or more address octets.
*
* The third octet contains 7 more bits of DLCI if EA isn't set,
* and lower DLCI or DL-CORE control plus the DLCI or DL-CORE
* control indicator flag if EA is set.
*/
fr_octet = tvb_get_guint8(tvb, offset);
if (!(fr_octet & FRELAY_EA)) {
/*
* 7 more bits of DLCI.
*/
addr = (addr << 7) | ((fr_octet & FRELAY_THIRD_DLCI) >> 1);
proto_tree_add_bitmask(fr_tree, tvb, offset, hf_fr_third_addr_octet,
ett_fr_address, third_address_bits, ENC_NA);
offset++;
fr_octet = tvb_get_guint8(tvb, offset);
while (!(fr_octet & FRELAY_EA)) {
/*
* Bogus! More than 4 octets of address.
*/
proto_tree_add_expert_format(fr_tree, pinfo, &ei_fr_bogus_address, tvb, offset, 1,
"Bogus extra address octet");
offset++;
fr_octet = tvb_get_guint8(tvb, offset);
}
}
octet_tree = proto_tree_add_subtree_format(fr_tree, tvb, offset, 1,
ett_fr_address, NULL, "Final address octet: 0x%02x",
fr_octet);
/*
* Last octet - contains lower DLCI or DL-CORE control, DLCI or
* DL-CORE control indicator flag.
*/
if (fr_octet & FRELAY_DC) {
/*
* DL-CORE.
*/
proto_tree_add_uint(octet_tree, hf_fr_dlcore_control, tvb, offset, 1, fr_octet);
} else {
/*
* Last 6 bits of DLCI.
*/
addr = (addr << 6) | ((fr_octet & FRELAY_LOWER_DLCI) >> 2);
proto_tree_add_uint(octet_tree, hf_fr_lower_dlci, tvb, offset, 1, fr_octet);
}
proto_tree_add_boolean(octet_tree, hf_fr_dc, tvb, offset, 1, fr_octet);
proto_tree_add_boolean(octet_tree, hf_fr_ea, tvb, offset, 1, fr_octet);
offset++;
}
}
if (tree) {
/* Put the full DLCI into the protocol tree. */
proto_tree_add_uint(fr_tree, hf_fr_dlci, tvb, 0, offset, addr);
}
pinfo->ctype = CT_DLCI;
pinfo->circuit_id = addr;
col_add_fstr(pinfo->cinfo, COL_INFO, "DLCI %u", addr);
}
switch (fr_encap) {
case FRF_3_2:
fr_ctrl = tvb_get_guint8(tvb, offset);
if (fr_ctrl == XDLC_U) {
dissect_xdlc_control(tvb, offset, pinfo, fr_tree, hf_fr_control,
ett_fr_control, &fr_cf_items, &fr_cf_items_ext,
NULL, NULL, is_response, TRUE, TRUE);
offset++;
/*
* XXX - treat DLCI 0 specially? On DLCI 0, an NLPID of 0x08
* means Q.933, but on other circuits it could be the "for
* protocols which do not have an NLPID assigned or do not
* have a SNAP encapsulation" stuff from RFC 2427.
*/
dissect_fr_nlpid(tvb, offset, pinfo, tree, ti, fr_tree, fr_ctrl);
} else {
if (addr == 0) {
/*
* This must be some sort of LAPF on DLCI 0 for SVC
* because DLCI 0 is reserved for LMI and SVC signaling
* encapsulated in LAPF, and LMI is transmitted in
* unnumbered information (03), so this must be LAPF
* (guessing).
*
* XXX - but what is it? Is Q.933 carried inside UI
* frames or other types of frames or both?
*/
dissect_xdlc_control(tvb, offset, pinfo, fr_tree,
hf_fr_control, ett_fr_control,
&fr_cf_items, &fr_cf_items_ext,
NULL, NULL, is_response, TRUE, TRUE);
dissect_lapf(tvb_new_subset_remaining(tvb,offset),pinfo,tree);
return;
}
if (fr_ctrl == (XDLC_U|XDLC_XID)) {
dissect_xdlc_control(tvb, offset, pinfo, fr_tree,
hf_fr_control, ett_fr_control,
&fr_cf_items, &fr_cf_items_ext,
NULL, NULL, is_response, TRUE, TRUE);
dissect_fr_xid(tvb_new_subset_remaining(tvb,offset),pinfo,tree);
return;
}
/*
* If the data does not start with unnumbered information (03) and
* the DLCI# is not 0, then there may be Cisco Frame Relay encapsulation.
*/
fr_type = tvb_get_ntohs(tvb, offset);
if (ti != NULL) {
/* Include the Cisco HDLC type in the top-level protocol
tree item. */
proto_item_set_end(ti, tvb, offset+2);
}
chdlctype(fr_type, tvb, offset+2, pinfo, tree, fr_tree, hf_fr_chdlctype);
}
break;
case GPRS_NS:
next_tvb = tvb_new_subset_remaining(tvb, offset);
call_dissector(gprs_ns_handle, next_tvb, pinfo, tree);
break;
case RAW_ETHER:
next_tvb = tvb_new_subset_remaining(tvb, offset);
if (addr != 0)
call_dissector(eth_withfcs_handle, next_tvb, pinfo, tree);
else
dissect_lapf(next_tvb, pinfo, tree);
break;
}
}
static int
dissect_fr(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* data _U_)
{
dissect_fr_common(tvb, pinfo, tree, FALSE, TRUE );
return tvb_captured_length(tvb);
}
static int
dissect_fr_phdr(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* data _U_)
{
dissect_fr_common(tvb, pinfo, tree, TRUE, TRUE );
return tvb_captured_length(tvb);
}
static int
dissect_fr_stripped_address(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* data _U_)
{
dissect_fr_common(tvb, pinfo, tree, TRUE, FALSE );
return tvb_captured_length(tvb);
}
static int
dissect_fr_uncompressed(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* data _U_)
{
proto_item *ti;
proto_tree *fr_tree;
col_set_str(pinfo->cinfo, COL_PROTOCOL, "FR");
col_clear(pinfo->cinfo, COL_INFO);
ti = proto_tree_add_protocol_format(tree, proto_fr, tvb, 0, -1, "Frame Relay");
fr_tree = proto_item_add_subtree(ti, ett_fr);
dissect_fr_nlpid(tvb, 0, pinfo, tree, ti, fr_tree, XDLC_U);
return tvb_captured_length(tvb);
}
static void
dissect_fr_nlpid(tvbuff_t *tvb, int offset, packet_info *pinfo,
proto_tree *tree, proto_item *ti,
proto_tree *fr_tree, guint8 fr_ctrl)
{
guint8 fr_nlpid;
tvbuff_t *next_tvb;
/*
* Tentatively set the Frame Relay item not to include the NLPID,
* as OSI network layer protocols consider it to be part of
* the OSI PDU.
*/
proto_item_set_end(ti, tvb, offset);
fr_nlpid = tvb_get_guint8 (tvb,offset);
if (fr_nlpid == 0) {
proto_tree_add_uint_format(fr_tree, hf_fr_nlpid, tvb, offset, 1, fr_nlpid, "Padding");
offset++;
if (ti != NULL) {
/* Include the padding in the top-level protocol tree item. */
proto_item_set_end(ti, tvb, offset);
}
fr_nlpid=tvb_get_guint8( tvb,offset);
}
/*
* OSI network layer protocols consider the NLPID to be part
* of the frame, so we'll pass it as part of the payload and,
* if the protocol is one of those, add it as a hidden item here.
* We check both the generic OSI NLPID dissector table and
* the Frame Relay OSI NLPID dissector table - the latter is for
* NLPID's such as 0x08, which is Q.933 in Frame Relay but
* other protocols (e.g., Q.931) on other network layers.
*
* "OSI network layer protocols" includes Q.933.
*
* XXX - note that an NLPID of 0x08 for Q.933 could either be a
* Q.933 signaling message or a message for a protocol
* identified by a 2-octet layer 2 protocol type and a
* 2-octet layer 3 protocol type, those protocol type
* octets having the values from octets 6, 6a, 7, and 7a
* of a Q.931 low layer compatibility information element
* (section 4.5.19 of Q.931; Q.933 says they have the values
* from a Q.933 low layer compatibility information element,
* but Q.933 low layer compatibility information elements
* don't have protocol values in them).
*
* Assuming that, as Q.933 seems to imply, that Q.933 messages
* look just like Q.931 messages except where it explicitly
* says they differ, then the octet after the NLPID would,
* in a Q.933 message, have its upper 4 bits zero (that's
* the length of the call reference value, in Q.931, and
* is limited to 15 or fewer octets). As appears to be the case,
* octet 6 of a Q.931 low layer compatibility element has the
* 0x40 bit set, so you can distinguish between a Q.933
* message and an encapsulated packet by checking whether
* the upper 4 bits of the octet after the NLPID are zero.
*
* Either that, or it's Q.933 iff the DLCI is 0.
*/
next_tvb = tvb_new_subset_remaining(tvb,offset);
if (dissector_try_uint(osinl_incl_subdissector_table, fr_nlpid, next_tvb,
pinfo, tree) ||
dissector_try_uint(fr_osinl_subdissector_table, fr_nlpid, next_tvb,
pinfo, tree)) {
/*
* Yes, we got a match. Add the NLPID as a hidden item,
* so you can, at least, filter on it.
*/
if (tree) {
proto_item *hidden_item;
hidden_item = proto_tree_add_uint(fr_tree, hf_fr_nlpid,
tvb, offset, 1, fr_nlpid );
PROTO_ITEM_SET_HIDDEN(hidden_item);
}
return;
}
/*
* All other protocols don't.
*
* XXX - what about Cisco/Gang-of-Four LMI? Is the 0x09 considered
* to be part of the LMI PDU?
*/
if (tree)
proto_tree_add_uint(fr_tree, hf_fr_nlpid, tvb, offset, 1, fr_nlpid );
offset++;
switch (fr_nlpid) {
case NLPID_SNAP:
if (ti != NULL) {
/* Include the NLPID and SNAP header in the top-level
protocol tree item. */
proto_item_set_end(ti, tvb, offset+5);
}
dissect_snap(tvb, offset, pinfo, tree, fr_tree, fr_ctrl,
hf_fr_oui, hf_fr_snaptype, hf_fr_pid, 0);
return;
default:
if (ti != NULL) {
/* Include the NLPID in the top-level protocol tree item. */
proto_item_set_end(ti, tvb, offset);
}
next_tvb = tvb_new_subset_remaining(tvb,offset);
if (!dissector_try_uint(fr_subdissector_table,fr_nlpid,
next_tvb, pinfo, tree))
call_dissector(data_handle,next_tvb, pinfo, tree);
break;
}
}
static void
dissect_lapf(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
proto_tree_add_expert(tree, pinfo, &ei_fr_frame_relay_lapf, tvb, 0, 0);
call_dissector(data_handle,tvb_new_subset_remaining(tvb,0),pinfo,tree);
}
static void
dissect_fr_xid(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
proto_tree_add_expert(tree, pinfo, &ei_fr_frame_relay_xid, tvb, 0, 0);
call_dissector(data_handle,tvb_new_subset_remaining(tvb,0),pinfo,tree);
}
/* Register the protocol with Wireshark */
void
proto_register_fr(void)
{
static hf_register_info hf[] = {
{ &hf_fr_ea,
{ "EA", "fr.ea",
FT_BOOLEAN, 8, TFS(&ea_string), FRELAY_EA,
"Extended Address", HFILL }},
{ &hf_fr_upper_dlci,
{ "Upper DLCI", "fr.upper_dlci",
FT_UINT8, BASE_HEX, NULL, FRELAY_UPPER_DLCI,
"Upper bits of DLCI", HFILL }},
{ &hf_fr_cr,
{ "CR", "fr.cr",
FT_BOOLEAN, 8, TFS(&tfs_command_response), FRELAY_CR,
"Command/Response", HFILL }},
{ &hf_fr_second_dlci,
{ "Second DLCI", "fr.second_dlci",
FT_UINT8, BASE_HEX, NULL, FRELAY_SECOND_DLCI,
"Bits below upper bits of DLCI", HFILL }},
{ &hf_fr_fecn,
{ "FECN", "fr.fecn",
FT_BOOLEAN, 8, NULL, FRELAY_FECN,
"Forward Explicit Congestion Notification", HFILL }},
{ &hf_fr_becn,
{ "BECN", "fr.becn",
FT_BOOLEAN, 8, NULL, FRELAY_BECN,
"Backward Explicit Congestion Notification", HFILL }},
{ &hf_fr_de,
{ "DE", "fr.de",
FT_BOOLEAN, 8, NULL, FRELAY_DE,
"Discard Eligibility", HFILL }},
{ &hf_fr_third_dlci,
{ "Third DLCI", "fr.third_dlci",
FT_UINT8, BASE_HEX, NULL, FRELAY_THIRD_DLCI,
"Additional bits of DLCI", HFILL }},
{ &hf_fr_dlcore_control,
{ "DL-CORE Control", "fr.dlcore_control",
FT_UINT8, BASE_HEX, NULL, FRELAY_LOWER_DLCI,
"DL-Core control bits", HFILL }},
{ &hf_fr_lower_dlci,
{ "Lower DLCI", "fr.lower_dlci",
FT_UINT8, BASE_HEX, NULL, FRELAY_LOWER_DLCI,
"Lower bits of DLCI", HFILL }},
{ &hf_fr_dc,
{ "DC", "fr.dc",
FT_BOOLEAN, 16, TFS(&ctrl_string), FRELAY_CR,
"Address/Control", HFILL }},
{ &hf_fr_dlci,
{ "DLCI", "fr.dlci",
FT_UINT32, BASE_DEC, NULL, 0x0,
"Data-Link Connection Identifier", HFILL }},
{ &hf_fr_control,
{ "Control Field", "fr.control",
FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }},
{ &hf_fr_n_r,
{ "N(R)", "fr.control.n_r",
FT_UINT16, BASE_DEC, NULL, XDLC_N_R_EXT_MASK,
NULL, HFILL }},
{ &hf_fr_n_s,
{ "N(S)", "fr.control.n_s",
FT_UINT16, BASE_DEC, NULL, XDLC_N_S_EXT_MASK,
NULL, HFILL }},
{ &hf_fr_p,
{ "Poll", "fr.control.p",
FT_BOOLEAN, 8, TFS(&tfs_set_notset), XDLC_P_F,
NULL, HFILL }},
{ &hf_fr_p_ext,
{ "Poll", "fr.control.p",
FT_BOOLEAN, 16, TFS(&tfs_set_notset), XDLC_P_F_EXT,
NULL, HFILL }},
{ &hf_fr_f,
{ "Final", "fr.control.f",
FT_BOOLEAN, 8, TFS(&tfs_set_notset), XDLC_P_F,
NULL, HFILL }},
{ &hf_fr_f_ext,
{ "Final", "fr.control.f",
FT_BOOLEAN, 16, TFS(&tfs_set_notset), XDLC_P_F_EXT,
NULL, HFILL }},
{ &hf_fr_s_ftype,
{ "Supervisory frame type", "fr.control.s_ftype",
FT_UINT16, BASE_HEX, VALS(stype_vals), XDLC_S_FTYPE_MASK,
NULL, HFILL }},
{ &hf_fr_u_modifier_cmd,
{ "Command", "fr.control.u_modifier_cmd",
FT_UINT8, BASE_HEX, VALS(modifier_vals_cmd), XDLC_U_MODIFIER_MASK,
NULL, HFILL }},
{ &hf_fr_u_modifier_resp,
{ "Response", "fr.control.u_modifier_resp",
FT_UINT8, BASE_HEX, VALS(modifier_vals_resp), XDLC_U_MODIFIER_MASK,
NULL, HFILL }},
{ &hf_fr_ftype_i,
{ "Frame type", "fr.control.ftype",
FT_UINT16, BASE_HEX, VALS(ftype_vals), XDLC_I_MASK,
NULL, HFILL }},
{ &hf_fr_ftype_s_u,
{ "Frame type", "fr.control.ftype",
FT_UINT8, BASE_HEX, VALS(ftype_vals), XDLC_S_U_MASK,
NULL, HFILL }},
{ &hf_fr_ftype_s_u_ext,
{ "Frame type", "fr.control.ftype",
FT_UINT16, BASE_HEX, VALS(ftype_vals), XDLC_S_U_MASK,
NULL, HFILL }},
{ &hf_fr_nlpid,
{ "NLPID", "fr.nlpid",
FT_UINT8, BASE_HEX, VALS(fr_nlpid_vals), 0x0,
"Frame Relay Encapsulated Protocol NLPID", HFILL }},
{ &hf_fr_oui,
{ "Organization Code", "fr.snap.oui",
FT_UINT24, BASE_HEX, VALS(oui_vals), 0x0,
NULL, HFILL }},
{ &hf_fr_pid,
{ "Protocol ID", "fr.snap.pid",
FT_UINT16, BASE_HEX, NULL, 0x0,
NULL, HFILL }},
{ &hf_fr_snaptype,
{ "Type", "fr.snaptype",
FT_UINT16, BASE_HEX, VALS(etype_vals), 0x0,
"Frame Relay SNAP Encapsulated Protocol", HFILL }},
{ &hf_fr_chdlctype,
{ "Type", "fr.chdlctype",
FT_UINT16, BASE_HEX, VALS(chdlc_vals), 0x0,
"Frame Relay Cisco HDLC Encapsulated Protocol", HFILL }},
{ &hf_fr_first_addr_octet,
{ "First address octet", "fr.first_addr_octet",
FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }},
{ &hf_fr_second_addr_octet,
{ "Second address octet", "fr.second_addr_octet",
FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }},
{ &hf_fr_third_addr_octet,
{ "Third address octet", "fr.third_addr_octet",
FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }},
};
/* Setup protocol subtree array */
static gint *ett[] = {
&ett_fr,
&ett_fr_address,
&ett_fr_control,
};
static ei_register_info ei[] = {
{ &ei_fr_bogus_address, { "fr.bogus_address", PI_PROTOCOL, PI_WARN, "Bogus address", EXPFILL }},
{ &ei_fr_frame_relay_lapf, { "fr.frame_relay.lapf", PI_UNDECODED, PI_WARN, "Frame relay lapf not yet implemented", EXPFILL }},
{ &ei_fr_frame_relay_xid, { "fr.frame_relay.xid", PI_UNDECODED, PI_WARN, "Frame relay xid not yet implemented", EXPFILL }},
};
static const enum_val_t fr_encap_options[] = {
{ "frf-3.2", "FRF 3.2/Cisco HDLC", FRF_3_2 },
{ "gprs-ns", "GPRS Network Service", GPRS_NS },
{ "ethernet", "Raw Ethernet", RAW_ETHER },
{ NULL, NULL, 0 },
};
module_t *frencap_module;
expert_module_t* expert_fr;
proto_fr = proto_register_protocol("Frame Relay", "FR", "fr");
proto_register_field_array(proto_fr, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));
expert_fr = expert_register_protocol(proto_fr);
expert_register_field_array(expert_fr, ei, array_length(ei));
fr_subdissector_table = register_dissector_table("fr.nlpid",
"Frame Relay NLPID", FT_UINT8, BASE_HEX, DISSECTOR_TABLE_NOT_ALLOW_DUPLICATE);
fr_osinl_subdissector_table = register_dissector_table("fr.osinl",
"Frame Relay OSI NLPID", FT_UINT8, BASE_HEX, DISSECTOR_TABLE_NOT_ALLOW_DUPLICATE);
register_dissector("fr_uncompressed", dissect_fr_uncompressed, proto_fr);
register_dissector("fr", dissect_fr, proto_fr);
register_dissector("fr_stripped_address", dissect_fr_stripped_address, proto_fr);
frencap_module = prefs_register_protocol(proto_fr, NULL);
/*
* XXX - this should really be per-circuit - I've seen at least one
* capture where different DLCIs have different encapsulations - but
* we don't yet have any support for per-circuit encapsulations.
*
* Even with that, though, we might want a default encapsulation,
* so that people dealing with GPRS can make gprs-ns the default.
*/
prefs_register_enum_preference(frencap_module, "encap", "Encapsulation",
"Encapsulation", &fr_encap,
fr_encap_options, FALSE);
}
void
proto_reg_handoff_fr(void)
{
dissector_handle_t fr_handle, fr_phdr_handle;
fr_handle = find_dissector("fr");
dissector_add_uint("gre.proto", ETHERTYPE_RAW_FR, fr_handle);
dissector_add_uint("wtap_encap", WTAP_ENCAP_FRELAY, fr_handle);
dissector_add_uint("juniper.proto", JUNIPER_PROTO_FRELAY, fr_handle);
dissector_add_uint("sflow_245.header_protocol", SFLOW_245_HEADER_FRAME_RELAY, fr_handle);
dissector_add_uint("atm.aal5.type", TRAF_FR, fr_handle);
dissector_add_uint("l2tp.pw_type", L2TPv3_PROTOCOL_FR, fr_handle);
fr_phdr_handle = create_dissector_handle(dissect_fr_phdr, proto_fr);
dissector_add_uint("wtap_encap", WTAP_ENCAP_FRELAY_WITH_PHDR, fr_phdr_handle);
register_capture_dissector("wtap_encap", WTAP_ENCAP_FRELAY, capture_fr, proto_fr);
register_capture_dissector("wtap_encap", WTAP_ENCAP_FRELAY_WITH_PHDR, capture_fr, proto_fr);
eth_withfcs_handle = find_dissector("eth_withfcs");
gprs_ns_handle = find_dissector("gprs_ns");
data_handle = find_dissector("data");
osinl_incl_subdissector_table = find_dissector_table("osinl.incl");
}
/*
* Editor modelines - http://www.wireshark.org/tools/modelines.html
*
* Local Variables:
* c-basic-offset: 2
* tab-width: 8
* indent-tabs-mode: nil
* End:
*
* ex: set shiftwidth=2 tabstop=8 expandtab:
* :indentSize=2:tabSize=8:noTabs=true:
*/