wireshark/epan/dissectors/packet-tzsp.c
Michael Mann 1e60d63c8c Create call_data_dissector() to call data dissector.
This saves many dissectors the need to find the data dissector and store a handle to it.

There were also some that were finding it, but not using it.
For others this was the only reason for their handoff function, so it could be eliminated.

Change-Id: I5d3f951ee1daa3d30c060d21bd12bbc881a8027b
Reviewed-on: https://code.wireshark.org/review/14530
Petri-Dish: Michael Mann <mmann78@netscape.net>
Reviewed-by: Michael Mann <mmann78@netscape.net>
2016-03-20 17:38:03 +00:00

581 lines
21 KiB
C

/* packet-tzsp.c
*
* Copyright 2002, Tazmen Technologies Inc
*
* Tazmen Sniffer Protocol for encapsulating the packets across a network
* from a remote packet sniffer. TZSP can encapsulate any other protocol.
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "config.h"
#include <epan/packet.h>
#include <wiretap/wtap.h>
/*
* See
*
* http://web.archive.org/web/20050404125022/http://www.networkchemistry.com/support/appnotes/an001_tzsp.html
*
* for a description of the protocol.
*/
#define UDP_PORT_TZSP 0x9090
void proto_register_tzsp(void);
void proto_reg_handoff_tzsp(void);
static int proto_tzsp = -1;
static int hf_tzsp_version = -1;
static int hf_tzsp_type = -1;
static int hf_tzsp_encap = -1;
static dissector_handle_t tzsp_handle;
/*
* Packet types.
*/
#define TZSP_RX_PACKET 0 /* Packet received from the sensor */
#define TZSP_TX_PACKET 1 /* Packet for the sensor to transmit */
#define TZSP_CONFIG 3 /* Configuration information for the sensor */
#define TZSP_NULL 4 /* Null frame, used as a keepalive */
#define TZSP_PORT 5 /* Port opener - opens a NAT tunnel */
static const value_string tzsp_type[] = {
{TZSP_RX_PACKET, "Received packet"},
{TZSP_TX_PACKET, "Packet for transmit"},
{TZSP_CONFIG, "Configuration"},
{TZSP_NULL, "Keepalive"},
{TZSP_PORT, "Port opener"},
{0, NULL}
};
/* ************************************************************************* */
/* Encapsulation type values */
/* Note that these are not all the same as DLT_ values */
/* ************************************************************************* */
#define TZSP_ENCAP_ETHERNET 1
#define TZSP_ENCAP_TOKEN_RING 2
#define TZSP_ENCAP_SLIP 3
#define TZSP_ENCAP_PPP 4
#define TZSP_ENCAP_FDDI 5
#define TZSP_ENCAP_RAW 7 /* "Raw UO", presumably meaning "Raw IP" */
#define TZSP_ENCAP_IEEE_802_11 18
#define TZSP_ENCAP_IEEE_802_11_PRISM 119
#define TZSP_ENCAP_IEEE_802_11_AVS 127
/*
* Packet encapsulations.
*/
static const value_string tzsp_encapsulation[] = {
{TZSP_ENCAP_ETHERNET, "Ethernet"},
{TZSP_ENCAP_TOKEN_RING, "Token Ring"},
{TZSP_ENCAP_SLIP, "SLIP"},
{TZSP_ENCAP_PPP, "PPP"},
{TZSP_ENCAP_FDDI, "FDDI"},
{TZSP_ENCAP_RAW, "Raw IP"},
{TZSP_ENCAP_IEEE_802_11, "IEEE 802.11"},
{TZSP_ENCAP_IEEE_802_11_PRISM, "IEEE 802.11 with Prism headers"},
{TZSP_ENCAP_IEEE_802_11_AVS, "IEEE 802.11 with AVS headers"},
{0, NULL}
};
static gint ett_tzsp = -1;
static gint ett_tag = -1;
static dissector_handle_t eth_maybefcs_handle;
static dissector_handle_t tr_handle;
static dissector_handle_t ppp_handle;
static dissector_handle_t fddi_handle;
static dissector_handle_t raw_ip_handle;
static dissector_handle_t ieee_802_11_handle;
static dissector_handle_t ieee_802_11_prism_handle;
static dissector_handle_t ieee_802_11_avs_handle;
/* ************************************************************************* */
/* WLAN radio header fields */
/* ************************************************************************* */
static int hf_option_tag = -1;
static int hf_option_length = -1;
/* static int hf_status_field = -1; */
static int hf_status_msg_type = -1;
static int hf_status_pcf = -1;
/* static int hf_status_mac_port = -1; */
static int hf_status_undecrypted = -1;
static int hf_status_fcs_error = -1;
static int hf_time = -1;
static int hf_silence = -1;
static int hf_signal = -1;
static int hf_rate = -1;
static int hf_channel = -1;
static int hf_unknown = -1;
static int hf_original_length = -1;
static int hf_sensormac = -1;
/* ************************************************************************* */
/* Generic header options */
/* ************************************************************************* */
#define TZSP_HDR_PAD 0 /* Pad. */
#define TZSP_HDR_END 1 /* End of the list. */
#define TZSP_WLAN_STA 30 /* Station statistics */
#define TZSP_WLAN_PKT 31 /* Packet statistics */
#define TZSP_PACKET_ID 40 /* Unique ID of the packet */
#define TZSP_HDR_ORIGINAL_LENGTH 41 /* Length of the packet before slicing. 2 bytes. */
#define TZSP_HDR_SENSOR 60 /* Sensor MAC address packet was received on, 6 byte ethernet address.*/
/* ************************************************************************* */
/* Options for 802.11 radios */
/* ************************************************************************* */
#define WLAN_RADIO_HDR_SIGNAL 10 /* Signal strength in dBm, signed byte. */
#define WLAN_RADIO_HDR_NOISE 11 /* Noise level in dBm, signed byte. */
#define WLAN_RADIO_HDR_RATE 12 /* Data rate, unsigned byte. */
#define WLAN_RADIO_HDR_TIMESTAMP 13 /* Timestamp in us, unsigned 32-bits network byte order. */
#define WLAN_RADIO_HDR_MSG_TYPE 14 /* Packet type, unsigned byte. */
#define WLAN_RADIO_HDR_CF 15 /* Whether packet arrived during CF period, unsigned byte. */
#define WLAN_RADIO_HDR_UN_DECR 16 /* Whether packet could not be decrypted by MAC, unsigned byte. */
#define WLAN_RADIO_HDR_FCS_ERR 17 /* Whether packet contains an FCS error, unsigned byte. */
#define WLAN_RADIO_HDR_CHANNEL 18 /* Channel number packet was received on, unsigned byte.*/
static const value_string option_tag_vals[] = {
{TZSP_HDR_PAD, "Pad"},
{TZSP_HDR_END, "End"},
{TZSP_HDR_ORIGINAL_LENGTH, "Original Length"},
{WLAN_RADIO_HDR_SIGNAL, "Signal"},
{WLAN_RADIO_HDR_NOISE, "Silence"},
{WLAN_RADIO_HDR_RATE, "Rate"},
{WLAN_RADIO_HDR_TIMESTAMP, "Time"},
{WLAN_RADIO_HDR_MSG_TYPE, "Message Type"},
{WLAN_RADIO_HDR_CF, "Point Coordination Function"},
{WLAN_RADIO_HDR_UN_DECR, "Undecrypted"},
{WLAN_RADIO_HDR_FCS_ERR, "Frame check sequence"},
{WLAN_RADIO_HDR_CHANNEL, "Channel"},
{TZSP_HDR_SENSOR, "Sensor MAC"},
{0, NULL}
};
/* ************************************************************************* */
/* Add option information to the display */
/* ************************************************************************* */
static int
add_option_info(tvbuff_t *tvb, int pos, proto_tree *tree, proto_item *ti)
{
guint8 tag, length, fcs_err = 0, encr = 0, seen_fcs_err = 0;
proto_tree *tag_tree;
/*
* Read all option tags in an endless loop. If the packet is malformed this
* loop might be a problem.
*/
while (TRUE) {
tag = tvb_get_guint8(tvb, pos);
if ((tag != TZSP_HDR_PAD) && (tag != TZSP_HDR_END)) {
length = tvb_get_guint8(tvb, pos+1);
tag_tree = proto_tree_add_subtree(tree, tvb, pos, 2+length, ett_tag, NULL, val_to_str_const(tag, option_tag_vals, "Unknown"));
} else {
tag_tree = proto_tree_add_subtree(tree, tvb, pos, 1, ett_tag, NULL, val_to_str_const(tag, option_tag_vals, "Unknown"));
length = 0;
}
proto_tree_add_item(tag_tree, hf_option_tag, tvb, pos, 1, ENC_BIG_ENDIAN);
pos++;
if ((tag != TZSP_HDR_PAD) && (tag != TZSP_HDR_END)) {
proto_tree_add_item(tag_tree, hf_option_length, tvb, pos, 1, ENC_BIG_ENDIAN);
pos++;
}
switch (tag) {
case TZSP_HDR_PAD:
break;
case TZSP_HDR_END:
/* Fill in header with information from other tags. */
if (seen_fcs_err) {
proto_item_append_text(ti,"%s", fcs_err?"FCS Error":(encr?"Encrypted":"Good"));
}
return pos;
case TZSP_HDR_ORIGINAL_LENGTH:
proto_tree_add_item(tag_tree, hf_original_length, tvb, pos, 2, ENC_BIG_ENDIAN);
break;
case WLAN_RADIO_HDR_SIGNAL:
proto_tree_add_item(tag_tree, hf_signal, tvb, pos, 1, ENC_BIG_ENDIAN);
break;
case WLAN_RADIO_HDR_NOISE:
proto_tree_add_item(tag_tree, hf_silence, tvb, pos, 1, ENC_BIG_ENDIAN);
break;
case WLAN_RADIO_HDR_RATE:
proto_tree_add_item(tag_tree, hf_rate, tvb, pos, 1, ENC_BIG_ENDIAN);
break;
case WLAN_RADIO_HDR_TIMESTAMP:
proto_tree_add_item(tag_tree, hf_time, tvb, pos, 4, ENC_BIG_ENDIAN);
break;
case WLAN_RADIO_HDR_MSG_TYPE:
proto_tree_add_item(tag_tree, hf_status_msg_type, tvb, pos, 1, ENC_BIG_ENDIAN);
break;
case WLAN_RADIO_HDR_CF:
proto_tree_add_item(tag_tree, hf_status_pcf, tvb, pos, 1, ENC_NA);
break;
case WLAN_RADIO_HDR_UN_DECR:
proto_tree_add_item(tag_tree, hf_status_undecrypted, tvb, pos, 1, ENC_NA);
encr = tvb_get_guint8(tvb, pos);
break;
case WLAN_RADIO_HDR_FCS_ERR:
seen_fcs_err = 1;
proto_tree_add_item(tag_tree, hf_status_fcs_error, tvb, pos, 1, ENC_NA);
fcs_err = tvb_get_guint8(tvb, pos);
break;
case WLAN_RADIO_HDR_CHANNEL:
proto_tree_add_item(tag_tree, hf_channel, tvb, pos, 1, ENC_BIG_ENDIAN);
break;
case TZSP_HDR_SENSOR:
proto_tree_add_item(tag_tree, hf_sensormac, tvb, pos, 6, ENC_NA);
break;
default:
proto_tree_add_item(tag_tree, hf_unknown, tvb, pos, length, ENC_NA);
break;
}
pos += length;
}
}
/* ************************************************************************* */
/* Dissect a TZSP packet */
/* ************************************************************************* */
static int
dissect_tzsp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* data _U_)
{
proto_tree *tzsp_tree = NULL;
proto_item *ti = NULL;
int pos = 0;
tvbuff_t *next_tvb;
guint16 encapsulation = 0;
const char *info;
guint8 type;
col_set_str(pinfo->cinfo, COL_PROTOCOL, "TZSP");
col_clear(pinfo->cinfo, COL_INFO);
type = tvb_get_guint8(tvb, 1);
/* Find the encapsulation. */
encapsulation = tvb_get_ntohs(tvb, 2);
info = val_to_str(encapsulation, tzsp_encapsulation, "Unknown (%u)");
col_add_str(pinfo->cinfo, COL_INFO, info);
if (tree) {
/* Adding TZSP item and subtree */
ti = proto_tree_add_protocol_format(tree, proto_tzsp, tvb, 0,
-1, "TZSP: %s ", info);
tzsp_tree = proto_item_add_subtree(ti, ett_tzsp);
proto_tree_add_item (tzsp_tree, hf_tzsp_version, tvb, 0, 1,
ENC_BIG_ENDIAN);
proto_tree_add_uint (tzsp_tree, hf_tzsp_type, tvb, 1, 1,
type);
proto_tree_add_uint (tzsp_tree, hf_tzsp_encap, tvb, 2, 2,
encapsulation);
}
/*
* XXX - what about TZSP_CONFIG frames?
*
* The MIB at
*
* http://web.archive.org/web/20021221195733/http://www.networkchemistry.com/support/appnotes/SENSOR-MIB
*
* seems to indicate that you can configure the probe using SNMP;
* does TZSP_CONFIG also support that? An old version of Kismet
* included code to control a Network Chemistry WSP100 sensor:
*
* https://www.kismetwireless.net/code-old/svn/tags/kismet-2004-02-R1/wsp100source.cc
*
* and it used SNMP to configure the probe.
*/
if ((type != TZSP_NULL) && (type != TZSP_PORT)) {
pos = add_option_info(tvb, 4, tzsp_tree, ti);
if (tree)
proto_item_set_end(ti, tvb, pos);
next_tvb = tvb_new_subset_remaining(tvb, pos);
switch (encapsulation) {
case TZSP_ENCAP_ETHERNET:
call_dissector(eth_maybefcs_handle, next_tvb, pinfo, tree);
break;
case TZSP_ENCAP_TOKEN_RING:
call_dissector(tr_handle, next_tvb, pinfo, tree);
break;
case TZSP_ENCAP_PPP:
call_dissector(ppp_handle, next_tvb, pinfo, tree);
break;
case TZSP_ENCAP_FDDI:
call_dissector(fddi_handle, next_tvb, pinfo, tree);
break;
case TZSP_ENCAP_RAW:
call_dissector(raw_ip_handle, next_tvb, pinfo, tree);
break;
case TZSP_ENCAP_IEEE_802_11:
/*
* XXX - get some of the information from the TLVs
* and turn it into a radio metadata header to
* hand to the radio dissector, and call it?
*/
call_dissector(ieee_802_11_handle, next_tvb, pinfo, tree);
break;
case TZSP_ENCAP_IEEE_802_11_PRISM:
call_dissector(ieee_802_11_prism_handle, next_tvb, pinfo, tree);
break;
case TZSP_ENCAP_IEEE_802_11_AVS:
call_dissector(ieee_802_11_avs_handle, next_tvb, pinfo, tree);
break;
default:
col_set_str(pinfo->cinfo, COL_PROTOCOL, "UNKNOWN");
col_add_fstr(pinfo->cinfo, COL_INFO, "TZSP_ENCAP = %u",
encapsulation);
call_data_dissector(next_tvb, pinfo, tree);
}
}
return tvb_captured_length(tvb);
}
/* ************************************************************************* */
/* Register the TZSP dissector */
/* ************************************************************************* */
void
proto_register_tzsp(void)
{
static const value_string msg_type[] = {
{0, "Normal"},
{1, "RFC1042 encoded"},
{2, "Bridge-tunnel encoded"},
{4, "802.11 management frame"},
{0, NULL}
};
static const true_false_string pcf_flag = {
"CF: Frame received during CF period",
"Not CF"
};
static const true_false_string undecr_flag = {
"Encrypted frame could not be decrypted",
"Unencrypted"
};
static const true_false_string fcs_err_flag = {
"FCS error, frame is corrupted",
"Frame is valid"
};
static const value_string channels[] = {
/* 802.11b/g */
{ 1, "1 (2.412 GHz)"},
{ 2, "2 (2.417 GHz)"},
{ 3, "3 (2.422 GHz)"},
{ 4, "4 (2.427 GHz)"},
{ 5, "5 (2.432 GHz)"},
{ 6, "6 (2.437 GHz)"},
{ 7, "7 (2.442 GHz)"},
{ 8, "8 (2.447 GHz)"},
{ 9, "9 (2.452 GHz)"},
{ 10, "10 (2.457 GHz)"},
{ 11, "11 (2.462 GHz)"},
{ 12, "12 (2.467 GHz)"},
{ 13, "13 (2.472 GHz)"},
{ 14, "14 (2.484 GHz)"},
/* 802.11a */
{ 36, "36 (5.180 GHz)"},
{ 40, "40 (5.200 GHz)"},
{ 44, "44 (5.220 GHz)"},
{ 48, "48 (5.240 GHz)"},
{ 52, "52 (5.260 GHz)"},
{ 56, "56 (5.280 GHz)"},
{ 60, "60 (5.300 GHz)"},
{ 64, "64 (5.320 GHz)"},
{149, "149 (5.745 GHz)"},
{153, "153 (5.765 GHz)"},
{157, "157 (5.785 GHz)"},
{161, "161 (5.805 GHz)"},
{0, NULL}
};
static const value_string rates[] = {
/* Old PRISM rates */
{0x0A, "1 Mbit/s"},
{0x14, "2 Mbit/s"},
{0x37, "5.5 Mbit/s"},
{0x6E, "11 Mbit/s"},
/* MicroAP rates */
{ 2, "1 Mbit/s"},
{ 4, "2 Mbit/s"},
{ 11, "5.5 Mbit/s"},
{ 12, "6 Mbit/s"},
{ 18, "9 Mbit/s"},
{ 22, "11 Mbit/s"},
{ 24, "12 Mbit/s"},
{ 36, "18 Mbit/s"},
{ 48, "24 Mbit/s"},
{ 72, "36 Mbit/s"},
{ 96, "48 Mbit/s"},
{108, "54 Mbit/s"},
{0, NULL}
};
static hf_register_info hf[] = {
{ &hf_tzsp_version, {
"Version", "tzsp.version", FT_UINT8, BASE_DEC,
NULL, 0, NULL, HFILL }},
{ &hf_tzsp_type, {
"Type", "tzsp.type", FT_UINT8, BASE_DEC,
VALS(tzsp_type), 0, NULL, HFILL }},
{ &hf_tzsp_encap, {
"Encapsulation", "tzsp.encap", FT_UINT16, BASE_DEC,
VALS(tzsp_encapsulation), 0, NULL, HFILL }},
{ &hf_option_tag, {
"Option Tag", "tzsp.option_tag", FT_UINT8, BASE_DEC,
VALS(option_tag_vals), 0, NULL, HFILL }},
{ &hf_option_length, {
"Option Length", "tzsp.option_length", FT_UINT8, BASE_DEC,
NULL, 0, NULL, HFILL }},
#if 0
{ &hf_status_field, {
"Status", "tzsp.wlan.status", FT_UINT16, BASE_HEX,
NULL, 0, NULL, HFILL }},
#endif
{ &hf_status_msg_type, {
"Type", "tzsp.wlan.status.msg_type", FT_UINT8, BASE_HEX,
VALS(msg_type), 0, "Message type", HFILL }},
#if 0
{ &hf_status_mac_port, {
"Port", "tzsp.wlan.status.mac_port", FT_UINT8, BASE_DEC,
NULL, 0, "MAC port", HFILL }},
#endif
{ &hf_status_pcf, {
"PCF", "tzsp.wlan.status.pcf", FT_BOOLEAN, BASE_NONE,
TFS (&pcf_flag), 0x0, "Point Coordination Function", HFILL }},
{ &hf_status_undecrypted, {
"Undecrypted", "tzsp.wlan.status.undecrypted", FT_BOOLEAN, BASE_NONE,
TFS (&undecr_flag), 0x0, NULL, HFILL }},
{ &hf_status_fcs_error, {
"FCS", "tzsp.wlan.status.fcs_err", FT_BOOLEAN, BASE_NONE,
TFS (&fcs_err_flag), 0x0, "Frame check sequence", HFILL }},
{ &hf_time, {
"Time", "tzsp.wlan.time", FT_UINT32, BASE_HEX,
NULL, 0, NULL, HFILL }},
{ &hf_silence, {
"Silence", "tzsp.wlan.silence", FT_INT8, BASE_DEC,
NULL, 0, NULL, HFILL }},
{ &hf_original_length, {
"Original Length", "tzsp.original_length", FT_INT16, BASE_DEC,
NULL, 0, "OrigLength", HFILL }},
{ &hf_signal, {
"Signal", "tzsp.wlan.signal", FT_INT8, BASE_DEC,
NULL, 0, NULL, HFILL }},
{ &hf_rate, {
"Rate", "tzsp.wlan.rate", FT_UINT8, BASE_DEC,
VALS(rates), 0, NULL, HFILL }},
{ &hf_channel, {
"Channel", "tzsp.wlan.channel", FT_UINT8, BASE_DEC,
VALS(channels), 0, NULL, HFILL }},
{ &hf_unknown, {
"Unknown tag", "tzsp.unknown", FT_BYTES, BASE_NONE,
NULL, 0, "Unknown", HFILL }},
{ &hf_sensormac, {
"Sensor Address", "tzsp.sensormac", FT_ETHER, BASE_NONE,
NULL, 0, "Sensor MAC", HFILL }}
};
static gint *ett[] = {
&ett_tzsp,
&ett_tag
};
proto_tzsp = proto_register_protocol("Tazmen Sniffer Protocol", "TZSP",
"tzsp");
proto_register_field_array(proto_tzsp, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));
tzsp_handle = register_dissector("tzsp", dissect_tzsp, proto_tzsp);
}
void
proto_reg_handoff_tzsp(void)
{
dissector_add_uint("udp.port", UDP_PORT_TZSP, tzsp_handle);
/* Get the data dissector for handling various encapsulation types. */
eth_maybefcs_handle = find_dissector_add_dependency("eth_maybefcs", proto_tzsp);
tr_handle = find_dissector_add_dependency("tr", proto_tzsp);
ppp_handle = find_dissector_add_dependency("ppp_hdlc", proto_tzsp);
fddi_handle = find_dissector_add_dependency("fddi", proto_tzsp);
raw_ip_handle = find_dissector_add_dependency("raw_ip", proto_tzsp);
ieee_802_11_handle = find_dissector_add_dependency("wlan", proto_tzsp);
ieee_802_11_prism_handle = find_dissector_add_dependency("prism", proto_tzsp);
ieee_802_11_avs_handle = find_dissector_add_dependency("wlancap", proto_tzsp);
/* Register this protocol as an encapsulation type. */
dissector_add_uint("wtap_encap", WTAP_ENCAP_TZSP, tzsp_handle);
}
/*
* Editor modelines - http://www.wireshark.org/tools/modelines.html
*
* Local variables:
* c-basic-offset: 4
* tab-width: 8
* indent-tabs-mode: nil
* End:
*
* vi: set shiftwidth=4 tabstop=8 expandtab:
* :indentSize=4:tabSize=8:noTabs=true:
*/