wireshark/epan/dissectors/packet-flexray.c

469 lines
12 KiB
C

/* packet-flexray.c
* Routines for FlexRay dissection
* Copyright 2016, Roman Leonhartsberger <ro.leonhartsberger@gmail.com>
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <config.h>
#include <epan/packet.h>
#include <epan/decode_as.h>
#include <epan/prefs.h>
#include <wiretap/wtap.h>
#include <epan/expert.h>
void proto_reg_handoff_flexray(void);
void proto_register_flexray(void);
static int proto_flexray = -1;
static int hf_flexray_measurement_header_field = -1;
static int hf_flexray_error_flags_field = -1;
static int hf_flexray_frame_field = -1;
static int hf_flexray_ti = -1;
static int hf_flexray_ch = -1;
static int hf_flexray_fcrc_err = -1;
static int hf_flexray_hcrc_err = -1;
static int hf_flexray_fes_err = -1;
static int hf_flexray_cod_err = -1;
static int hf_flexray_tss_viol = -1;
static int hf_flexray_ppi = -1;
static int hf_flexray_nfi = -1;
static int hf_flexray_sfi = -1;
static int hf_flexray_stfi = -1;
static int hf_flexray_fid = -1;
static int hf_flexray_pl = -1;
static int hf_flexray_hcrc = -1;
static int hf_flexray_cc = -1;
static int hf_flexray_sl = -1;
static gint ett_flexray = -1;
static gint ett_flexray_measurement_header = -1;
static gint ett_flexray_error_flags = -1;
static gint ett_flexray_frame = -1;
static const int *error_fields[] = {
&hf_flexray_fcrc_err,
&hf_flexray_hcrc_err,
&hf_flexray_fes_err,
&hf_flexray_cod_err,
&hf_flexray_tss_viol,
NULL
};
static const int *frame_fields[] = {
&hf_flexray_ppi,
&hf_flexray_sfi,
&hf_flexray_stfi,
NULL
};
static expert_field ei_flexray_frame_header = EI_INIT;
static expert_field ei_flexray_frame_payload = EI_INIT;
static expert_field ei_flexray_symbol_header = EI_INIT;
static expert_field ei_flexray_symbol_frame = EI_INIT;
static expert_field ei_flexray_error_flag = EI_INIT;
static expert_field ei_flexray_stfi_flag = EI_INIT;
static dissector_table_t subdissector_table;
#define FLEXRAY_FRAME 0x01
#define FLEXRAY_SYMBOL 0x02
#define FLEXRAY_HEADER_LENGTH 5
/* Structure that gets passed between dissectors (containing of
frame id, counter cycle and channel).
*/
typedef struct flexray_identifier
{
guint16 id;
guint8 cc;
guint8 ch;
} flexray_identifier;
static const value_string flexray_type_names[] = {
{ FLEXRAY_FRAME, "FRAME" },
{ FLEXRAY_SYMBOL, "SYMB" },
{0, NULL}
};
static const true_false_string flexray_channel = {
"CHB",
"CHA"
};
static const true_false_string flexray_nfi = {
"False",
"True"
};
static int
dissect_flexray(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* data _U_)
{
proto_item *ti;
proto_tree *flexray_tree, *type_info_tree, *error_flags_tree;
proto_tree *flexray_frame_tree = NULL;
tvbuff_t* next_tvb;
gint frame_length;
gint flexray_frame_length;
gint flexray_current_payload_length;
gint flexray_reported_payload_length;
guint8 frame_type;
guint8 symbol_length;
guint8 error_flag;
guint8 sfi;
guint8 stfi;
guint8 nfi;
gboolean call_subdissector;
flexray_identifier flexray_id;
col_set_str(pinfo->cinfo, COL_PROTOCOL, "FLEXRAY");
col_clear(pinfo->cinfo, COL_INFO);
frame_length = tvb_captured_length(tvb);
frame_type = tvb_get_guint8(tvb, 0) & 0x7f;
flexray_id.ch = tvb_get_guint8(tvb, 0) & 0x80;
call_subdissector = TRUE;
ti = proto_tree_add_item(tree, proto_flexray, tvb, 0, -1, ENC_NA);
flexray_tree = proto_item_add_subtree(ti, ett_flexray);
ti = proto_tree_add_item(flexray_tree, hf_flexray_measurement_header_field, tvb, 0, 1, ENC_BIG_ENDIAN);
type_info_tree = proto_item_add_subtree(ti, ett_flexray_measurement_header);
proto_tree_add_item(type_info_tree, hf_flexray_ch, tvb, 0, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(type_info_tree, hf_flexray_ti, tvb, 0, 1, ENC_BIG_ENDIAN);
col_add_fstr(pinfo->cinfo, COL_INFO, "%s:", val_to_str(frame_type, flexray_type_names, "Unknown (0x%02x)"));
if (frame_type == FLEXRAY_FRAME) {
flexray_frame_length = frame_length - 2;
error_flag = tvb_get_guint8(tvb, 1) & 0x1f;
ti = proto_tree_add_bitmask(flexray_tree, tvb, 1, hf_flexray_error_flags_field, ett_flexray_error_flags, error_fields, ENC_BIG_ENDIAN);
error_flags_tree = proto_item_add_subtree(ti, ett_flexray_error_flags);
if (error_flag) {
expert_add_info(pinfo, error_flags_tree, &ei_flexray_error_flag);
call_subdissector = FALSE;
}
if (flexray_frame_length < FLEXRAY_HEADER_LENGTH) {
expert_add_info(pinfo, flexray_tree, &ei_flexray_frame_header);
call_subdissector = FALSE;
}
if (flexray_frame_length > 0) {
sfi = tvb_get_guint8(tvb, 2) & 0x10;
stfi = tvb_get_guint8(tvb, 2) & 0x08;
ti = proto_tree_add_bitmask(flexray_tree, tvb, 2, hf_flexray_frame_field, ett_flexray_frame, frame_fields, ENC_BIG_ENDIAN);
flexray_frame_tree = proto_item_add_subtree(ti, ett_flexray_frame);
proto_tree_add_item(flexray_frame_tree, hf_flexray_nfi, tvb, 2, 1, ENC_BIG_ENDIAN);
if (stfi) {
if (!sfi) {
expert_add_info(pinfo, flexray_frame_tree, &ei_flexray_stfi_flag);
call_subdissector = FALSE;
}
}
}
if (flexray_frame_length > 1) {
flexray_id.id = tvb_get_ntohs(tvb, 2) & 0x07ff;
col_append_fstr(pinfo->cinfo, COL_INFO, " ID %4d", flexray_id.id);
proto_tree_add_item(flexray_frame_tree, hf_flexray_fid, tvb, 2, 2, ENC_BIG_ENDIAN);
if (flexray_id.id == 0) {
call_subdissector = FALSE;
}
}
if (flexray_frame_length > 2) {
proto_tree_add_item(flexray_frame_tree, hf_flexray_pl, tvb, 4, 1, ENC_BIG_ENDIAN);
}
if (flexray_frame_length > 4) {
flexray_reported_payload_length = tvb_get_guint8(tvb, 4) & 0xfe;
flexray_reported_payload_length = 2 * (flexray_reported_payload_length >> 1);
flexray_current_payload_length = flexray_frame_length - FLEXRAY_HEADER_LENGTH;
flexray_id.cc = tvb_get_guint8(tvb, 6) & 0x3f;
nfi = tvb_get_guint8(tvb, 2) & 0x20;
col_append_fstr(pinfo->cinfo, COL_INFO, " CC %2d", flexray_id.cc);
proto_tree_add_item(flexray_frame_tree, hf_flexray_hcrc, tvb, 4, 3, ENC_BIG_ENDIAN);
proto_tree_add_item(flexray_frame_tree, hf_flexray_cc, tvb, 6, 1, ENC_BIG_ENDIAN);
if (nfi) {
col_append_fstr(pinfo->cinfo, COL_INFO, " %s", tvb_bytes_to_str_punct(wmem_packet_scope(), tvb, 7, flexray_current_payload_length, ' '));
if (flexray_current_payload_length != flexray_reported_payload_length) {
expert_add_info(pinfo, flexray_frame_tree, &ei_flexray_frame_payload);
call_subdissector = FALSE;
}
}
else {
call_subdissector = FALSE;
col_append_fstr(pinfo->cinfo, COL_INFO, " NF");
if (flexray_current_payload_length != flexray_reported_payload_length && flexray_current_payload_length != 0) {
expert_add_info(pinfo, flexray_frame_tree, &ei_flexray_frame_payload);
}
}
next_tvb = tvb_new_subset_length(tvb, 7, flexray_current_payload_length);
if (call_subdissector) {
if (!dissector_try_payload_new(subdissector_table, next_tvb, pinfo, tree, FALSE, &flexray_id))
{
call_data_dissector(next_tvb, pinfo, tree);
}
}
else {
call_data_dissector(next_tvb, pinfo, tree);
}
}
}
if ((frame_type & 0x07ff) == FLEXRAY_SYMBOL) {
flexray_frame_length = frame_length - 1;
expert_add_info(pinfo, flexray_tree, &ei_flexray_symbol_frame);
if (flexray_frame_length > 0) {
symbol_length = tvb_get_guint8(tvb, 1) & 0x7f;
col_append_fstr(pinfo->cinfo, COL_INFO, " SL %3d", symbol_length);
proto_tree_add_item(flexray_tree, hf_flexray_sl, tvb, 1, 1, ENC_BIG_ENDIAN);
}
else {
expert_add_info(pinfo, flexray_tree, &ei_flexray_symbol_header);
}
}
return tvb_captured_length(tvb);
}
void
proto_register_flexray(void)
{
expert_module_t *expert_flexray;
static hf_register_info hf[] = {
{ &hf_flexray_measurement_header_field,
{ "Measurement Header", "flexray.mhf",
FT_UINT8, BASE_HEX,
NULL, 0x0,
NULL, HFILL }
},
{ &hf_flexray_ti,
{ "Type Index", "flexray.ti",
FT_UINT8, BASE_HEX,
VALS(flexray_type_names), 0x7f,
NULL, HFILL }
},
{ &hf_flexray_ch,
{ "Channel", "flexray.ch",
FT_BOOLEAN, 8,
TFS(&flexray_channel), 0x80,
NULL, HFILL }
},
{ &hf_flexray_error_flags_field,
{ "Error Flags", "flexray.eff",
FT_UINT8, BASE_HEX,
NULL, 0x0,
NULL, HFILL }
},
{ &hf_flexray_fcrc_err,
{ "Frame CRC error", "flexray.fcrc_err",
FT_BOOLEAN, 8,
NULL, 0x10,
NULL, HFILL }
},
{ &hf_flexray_hcrc_err,
{ "Header CRC error", "flexray.hcrc_err",
FT_BOOLEAN, 8,
NULL, 0x08,
NULL, HFILL }
},
{ &hf_flexray_fes_err,
{ "Frame End Sequence error", "flexray.fes_err",
FT_BOOLEAN, 8,
NULL, 0x04,
NULL, HFILL }
},
{ &hf_flexray_cod_err,
{ "Coding error", "flexray.cod_err",
FT_BOOLEAN, 8,
NULL, 0x02,
NULL, HFILL }
},
{ &hf_flexray_tss_viol,
{ "TSS violation", "flexray.tss_viol",
FT_BOOLEAN, 8,
NULL, 0x01,
NULL, HFILL }
},
{ &hf_flexray_frame_field,
{ "FlexRay Frame", "flexray.ff",
FT_UINT8, BASE_HEX,
NULL, 0x0,
NULL, HFILL }
},
{ &hf_flexray_ppi,
{ "Payload preamble Indicator", "flexray.ppi",
FT_BOOLEAN, 8,
NULL, 0x40,
NULL, HFILL }
},
{ &hf_flexray_nfi,
{ "Null Frame", "flexray.nfi",
FT_BOOLEAN, 8,
TFS(&flexray_nfi), 0x20,
NULL, HFILL }
},
{ &hf_flexray_sfi,
{ "Sync Frame Indicator", "flexray.sfi",
FT_BOOLEAN, 8,
NULL, 0x10,
NULL, HFILL }
},
{ &hf_flexray_stfi,
{ "Startup Frame Indicator", "flexray.stfi",
FT_BOOLEAN, 8,
NULL, 0x08,
NULL, HFILL }
},
{ &hf_flexray_fid,
{ "Frame ID", "flexray.fid",
FT_UINT16, BASE_DEC,
NULL, 0x07ff,
NULL, HFILL }
},
{ &hf_flexray_pl,
{ "Payload length", "flexray.pl",
FT_UINT8, BASE_DEC,
NULL, 0xfe,
NULL, HFILL }
},
{ &hf_flexray_hcrc,
{ "Header CRC", "flexray.hcrc",
FT_UINT24, BASE_DEC,
NULL, 0x01ffc0,
NULL, HFILL }
},
{ &hf_flexray_cc,
{ "Cycle Counter", "flexray.cc",
FT_UINT8, BASE_DEC,
NULL, 0x3f,
NULL, HFILL }
},
{ &hf_flexray_sl,
{ "Symbol length", "flexray.sl",
FT_UINT8, BASE_DEC,
NULL, 0x7f,
NULL, HFILL }
}
};
static gint *ett[] = {
&ett_flexray,
&ett_flexray_measurement_header,
&ett_flexray_error_flags,
&ett_flexray_frame
};
static ei_register_info ei[] = {
{ &ei_flexray_frame_header,
{ "flexray.frame_header", PI_MALFORMED, PI_ERROR,
"Frame Header is malformed", EXPFILL }
},
{ &ei_flexray_frame_payload,
{ "flexray.malformed_frame_payload", PI_MALFORMED, PI_ERROR,
"Frame Payload is malformed", EXPFILL }
},
{ &ei_flexray_symbol_header,
{ "flexray.malformed_symbol_frame", PI_MALFORMED, PI_ERROR,
"Symbol Frame is malformed", EXPFILL }
},
{ &ei_flexray_symbol_frame,
{ "flexray.symbol_frame", PI_SEQUENCE, PI_CHAT,
"Packet is a Symbol Frame", EXPFILL }
},
{ &ei_flexray_error_flag,
{ "flexray.error_flag", PI_PROTOCOL, PI_WARN,
"Error Flag is set", EXPFILL }
},
{ &ei_flexray_stfi_flag,
{ "flexray.stfi_flag", PI_PROTOCOL, PI_WARN,
"A startup frame must always be a sync frame", EXPFILL }
}
};
proto_flexray = proto_register_protocol(
"FlexRay Protocol",
"FLEXRAY",
"flexray"
);
proto_register_field_array(proto_flexray, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));
expert_flexray = expert_register_protocol(proto_flexray);
expert_register_field_array(expert_flexray, ei, array_length(ei));
register_dissector("flexray", dissect_flexray, proto_flexray);
subdissector_table = register_decode_as_next_proto(proto_flexray, "Network", "flexray.subdissector", "FLEXRAY next level dissector", NULL);
}
void
proto_reg_handoff_flexray(void)
{
static dissector_handle_t flexray_handle;
flexray_handle = create_dissector_handle( dissect_flexray, proto_flexray );
dissector_add_uint("wtap_encap", WTAP_ENCAP_FLEXRAY, flexray_handle);
}
/*
* Editor modelines - https://www.wireshark.org/tools/modelines.html
*
* Local variables:
* c-basic-offset: 4
* tab-width: 8
* indent-tabs-mode: nil
* End:
*
* vi: set shiftwidth=4 tabstop=8 expandtab:
* :indentSize=4:tabSize=8:noTabs=true:
*/