wireshark/epan/dissectors/asn1/snmp/packet-snmp-template.c

2689 lines
87 KiB
C

/* packet-snmp.c
* Routines for SNMP (simple network management protocol)
* Copyright (C) 1998 Didier Jorand
*
* See RFC 1157 for SNMPv1.
*
* See RFCs 1901, 1905, and 1906 for SNMPv2c.
*
* See RFCs 1905, 1906, 1909, and 1910 for SNMPv2u [historic].
*
* See RFCs 2570-2576 for SNMPv3
* Updated to use the asn2wrs compiler made by Tomas Kukosa
* Copyright (C) 2005 - 2006 Anders Broman [AT] ericsson.com
*
* See RFC 3414 for User-based Security Model for SNMPv3
* See RFC 3826 for (AES) Cipher Algorithm in the SNMP USM
* See RFC 2578 for Structure of Management Information Version 2 (SMIv2)
* Copyright (C) 2007 Luis E. Garcia Ontanon <luis@ontanon.org>
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* Some stuff from:
*
* GXSNMP -- An snmp mangament application
* Copyright (C) 1998 Gregory McLean & Jochen Friedrich
* Beholder RMON ethernet network monitor,Copyright (C) 1993 DNPAP group
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#if 0
#include <stdio.h>
#define D(args) do {printf args; fflush(stdout); } while(0)
#endif
#include "config.h"
#include <epan/packet.h>
#include <epan/strutil.h>
#include <epan/conversation.h>
#include <epan/etypes.h>
#include <epan/prefs.h>
#include <epan/addr_resolv.h>
#include <epan/next_tvb.h>
#include <epan/uat.h>
#include <epan/asn1.h>
#include <epan/expert.h>
#include <epan/oids.h>
#include <epan/srt_table.h>
#include <epan/tap.h>
#include "packet-ipx.h"
#include "packet-hpext.h"
#include "packet-ber.h"
#include "packet-snmp.h"
#include <wsutil/wsgcrypt.h>
#define PNAME "Simple Network Management Protocol"
#define PSNAME "SNMP"
#define PFNAME "snmp"
#define UDP_PORT_SNMP 161
#define UDP_PORT_SNMP_TRAP 162
#define TCP_PORT_SNMP 161
#define TCP_PORT_SNMP_TRAP 162
#define TCP_PORT_SMUX 199
#define UDP_PORT_SNMP_PATROL 8161
#define SNMP_NUM_PROCEDURES 8
/* Initialize the protocol and registered fields */
static int snmp_tap = -1;
static int proto_snmp = -1;
static int proto_smux = -1;
static gboolean display_oid = TRUE;
static gboolean snmp_var_in_tree = TRUE;
void proto_register_snmp(void);
void proto_reg_handoff_snmp(void);
void proto_register_smux(void);
void proto_reg_handoff_smux(void);
static void snmp_usm_password_to_key(const snmp_usm_auth_model_t model, const guint8 *password, guint passwordlen,
const guint8 *engineID, guint engineLength, guint8 *key);
static tvbuff_t* snmp_usm_priv_des(snmp_usm_params_t*, tvbuff_t*, packet_info *pinfo, gchar const**);
static tvbuff_t* snmp_usm_priv_aes128(snmp_usm_params_t*, tvbuff_t*, packet_info *pinfo, gchar const**);
static tvbuff_t* snmp_usm_priv_aes192(snmp_usm_params_t*, tvbuff_t*, packet_info *pinfo, gchar const**);
static tvbuff_t* snmp_usm_priv_aes256(snmp_usm_params_t*, tvbuff_t*, packet_info *pinfo, gchar const**);
static gboolean snmp_usm_auth(const packet_info *pinfo, const snmp_usm_auth_model_t model, snmp_usm_params_t* p, guint8**, guint*, gchar const**);
static const value_string auth_types[] = {
{SNMP_USM_AUTH_MD5,"MD5"},
{SNMP_USM_AUTH_SHA1,"SHA1"},
{SNMP_USM_AUTH_SHA2_224,"SHA2-224"},
{SNMP_USM_AUTH_SHA2_256,"SHA2-256"},
{SNMP_USM_AUTH_SHA2_384,"SHA2-384"},
{SNMP_USM_AUTH_SHA2_512,"SHA2-512"},
{0,NULL}
};
static const guint auth_hash_len[] = {
HASH_MD5_LENGTH,
HASH_SHA1_LENGTH,
HASH_SHA2_224_LENGTH,
HASH_SHA2_256_LENGTH,
HASH_SHA2_384_LENGTH,
HASH_SHA2_512_LENGTH
};
static const guint auth_tag_len[] = {
12,
12,
16,
24,
32,
48
};
static const enum gcry_md_algos auth_hash_algo[] = {
GCRY_MD_MD5,
GCRY_MD_SHA1,
GCRY_MD_SHA224,
GCRY_MD_SHA256,
GCRY_MD_SHA384,
GCRY_MD_SHA512
};
#define PRIV_DES 0
#define PRIV_AES128 1
#define PRIV_AES192 2
#define PRIV_AES256 3
static const value_string priv_types[] = {
{ PRIV_DES, "DES" },
{ PRIV_AES128, "AES" },
{ PRIV_AES192, "AES192" },
{ PRIV_AES256, "AES256" },
{ 0, NULL}
};
static snmp_usm_decoder_t priv_protos[] = {
snmp_usm_priv_des,
snmp_usm_priv_aes128,
snmp_usm_priv_aes192,
snmp_usm_priv_aes256
};
static snmp_ue_assoc_t* ueas = NULL;
static guint num_ueas = 0;
static snmp_ue_assoc_t* localized_ues = NULL;
static snmp_ue_assoc_t* unlocalized_ues = NULL;
/****/
/* Variables used for handling enterprise specific trap types */
typedef struct _snmp_st_assoc_t {
char *enterprise;
guint trap;
char *desc;
} snmp_st_assoc_t;
static guint num_specific_traps = 0;
static snmp_st_assoc_t *specific_traps = NULL;
static const char *enterprise_oid = NULL;
static guint generic_trap = 0;
static guint32 snmp_version = 0;
static guint32 RequestID = -1;
static snmp_usm_params_t usm_p = {FALSE,FALSE,0,0,0,0,NULL,NULL,NULL,NULL,NULL,NULL,NULL,FALSE};
#define TH_AUTH 0x01
#define TH_CRYPT 0x02
#define TH_REPORT 0x04
/* desegmentation of SNMP-over-TCP */
static gboolean snmp_desegment = TRUE;
/* Global variables */
guint32 MsgSecurityModel;
tvbuff_t *oid_tvb=NULL;
tvbuff_t *value_tvb=NULL;
static dissector_handle_t snmp_handle;
static dissector_handle_t data_handle;
static next_tvb_list_t *var_list;
static int hf_snmp_response_in = -1;
static int hf_snmp_response_to = -1;
static int hf_snmp_time = -1;
static int hf_snmp_v3_flags_auth = -1;
static int hf_snmp_v3_flags_crypt = -1;
static int hf_snmp_v3_flags_report = -1;
static int hf_snmp_engineid_conform = -1;
static int hf_snmp_engineid_enterprise = -1;
static int hf_snmp_engineid_format = -1;
static int hf_snmp_engineid_ipv4 = -1;
static int hf_snmp_engineid_ipv6 = -1;
static int hf_snmp_engineid_cisco_type = -1;
static int hf_snmp_engineid_mac = -1;
static int hf_snmp_engineid_text = -1;
static int hf_snmp_engineid_time = -1;
static int hf_snmp_engineid_data = -1;
static int hf_snmp_decryptedPDU = -1;
static int hf_snmp_msgAuthentication = -1;
static int hf_snmp_noSuchObject = -1;
static int hf_snmp_noSuchInstance = -1;
static int hf_snmp_endOfMibView = -1;
static int hf_snmp_unSpecified = -1;
static int hf_snmp_integer32_value = -1;
static int hf_snmp_octetstring_value = -1;
static int hf_snmp_oid_value = -1;
static int hf_snmp_null_value = -1;
static int hf_snmp_ipv4_value = -1;
static int hf_snmp_ipv6_value = -1;
static int hf_snmp_anyaddress_value = -1;
static int hf_snmp_unsigned32_value = -1;
static int hf_snmp_unknown_value = -1;
static int hf_snmp_opaque_value = -1;
static int hf_snmp_nsap_value = -1;
static int hf_snmp_counter_value = -1;
static int hf_snmp_timeticks_value = -1;
static int hf_snmp_big_counter_value = -1;
static int hf_snmp_gauge32_value = -1;
static int hf_snmp_objectname = -1;
static int hf_snmp_scalar_instance_index = -1;
static int hf_snmp_var_bind_str = -1;
static int hf_snmp_agentid_trailer = -1;
#include "packet-snmp-hf.c"
/* Initialize the subtree pointers */
static gint ett_smux = -1;
static gint ett_snmp = -1;
static gint ett_engineid = -1;
static gint ett_msgFlags = -1;
static gint ett_encryptedPDU = -1;
static gint ett_decrypted = -1;
static gint ett_authParameters = -1;
static gint ett_internet = -1;
static gint ett_varbind = -1;
static gint ett_name = -1;
static gint ett_value = -1;
static gint ett_decoding_error = -1;
#include "packet-snmp-ett.c"
static expert_field ei_snmp_failed_decrypted_data_pdu = EI_INIT;
static expert_field ei_snmp_decrypted_data_bad_formatted = EI_INIT;
static expert_field ei_snmp_verify_authentication_error = EI_INIT;
static expert_field ei_snmp_authentication_ok = EI_INIT;
static expert_field ei_snmp_authentication_error = EI_INIT;
static expert_field ei_snmp_varbind_not_uni_class_seq = EI_INIT;
static expert_field ei_snmp_varbind_has_indicator = EI_INIT;
static expert_field ei_snmp_objectname_not_oid = EI_INIT;
static expert_field ei_snmp_objectname_has_indicator = EI_INIT;
static expert_field ei_snmp_value_not_primitive_encoding = EI_INIT;
static expert_field ei_snmp_invalid_oid = EI_INIT;
static expert_field ei_snmp_varbind_wrong_tag = EI_INIT;
static expert_field ei_snmp_varbind_response = EI_INIT;
static expert_field ei_snmp_no_instance_subid = EI_INIT;
static expert_field ei_snmp_wrong_num_of_subids = EI_INIT;
static expert_field ei_snmp_index_suboid_too_short = EI_INIT;
static expert_field ei_snmp_unimplemented_instance_index = EI_INIT;
static expert_field ei_snmp_index_suboid_len0 = EI_INIT;
static expert_field ei_snmp_index_suboid_too_long = EI_INIT;
static expert_field ei_snmp_index_string_too_long = EI_INIT;
static expert_field ei_snmp_column_parent_not_row = EI_INIT;
static expert_field ei_snmp_uint_too_large = EI_INIT;
static expert_field ei_snmp_int_too_large = EI_INIT;
static expert_field ei_snmp_integral_value0 = EI_INIT;
static expert_field ei_snmp_missing_mib = EI_INIT;
static expert_field ei_snmp_varbind_wrong_length_value = EI_INIT;
static expert_field ei_snmp_varbind_wrong_class_tag = EI_INIT;
static expert_field ei_snmp_rfc1910_non_conformant = EI_INIT;
static expert_field ei_snmp_rfc3411_non_conformant = EI_INIT;
static expert_field ei_snmp_version_unknown = EI_INIT;
static expert_field ei_snmp_trap_pdu_obsolete = EI_INIT;
static const true_false_string auth_flags = {
"OK",
"Failed"
};
/* Security Models */
#define SNMP_SEC_ANY 0
#define SNMP_SEC_V1 1
#define SNMP_SEC_V2C 2
#define SNMP_SEC_USM 3
static const value_string sec_models[] = {
{ SNMP_SEC_ANY, "Any" },
{ SNMP_SEC_V1, "V1" },
{ SNMP_SEC_V2C, "V2C" },
{ SNMP_SEC_USM, "USM" },
{ 0, NULL }
};
#if 0
/* SMUX PDU types */
#define SMUX_MSG_OPEN 0
#define SMUX_MSG_CLOSE 1
#define SMUX_MSG_RREQ 2
#define SMUX_MSG_RRSP 3
#define SMUX_MSG_SOUT 4
static const value_string smux_types[] = {
{ SMUX_MSG_OPEN, "Open" },
{ SMUX_MSG_CLOSE, "Close" },
{ SMUX_MSG_RREQ, "Registration Request" },
{ SMUX_MSG_RRSP, "Registration Response" },
{ SMUX_MSG_SOUT, "Commit Or Rollback" },
{ 0, NULL }
};
#endif
/* Procedure names (used in Service Response Time) */
const value_string snmp_procedure_names[] = {
{ 0, "Get" },
{ 1, "GetNext" },
{ 3, "Set" },
{ 4, "Register" },
{ 5, "Bulk" },
{ 6, "Inform" },
{ 0, NULL }
};
#define SNMP_IPA 0 /* IP Address */
#define SNMP_CNT 1 /* Counter (Counter32) */
#define SNMP_GGE 2 /* Gauge (Gauge32) */
#define SNMP_TIT 3 /* TimeTicks */
#define SNMP_OPQ 4 /* Opaque */
#define SNMP_NSP 5 /* NsapAddress */
#define SNMP_C64 6 /* Counter64 */
#define SNMP_U32 7 /* Uinteger32 */
#define SERR_NSO 0
#define SERR_NSI 1
#define SERR_EOM 2
dissector_table_t value_sub_dissectors_table;
/*
* Data structure attached to a conversation, request/response information
*/
typedef struct snmp_conv_info_t {
wmem_map_t *request_response;
} snmp_conv_info_t;
static snmp_request_response_t *
snmp_get_request_response_pointer(wmem_map_t *map, guint32 requestId)
{
snmp_request_response_t *srrp=(snmp_request_response_t *)wmem_map_lookup(map, &requestId);
if (!srrp) {
srrp=wmem_new0(wmem_file_scope(), snmp_request_response_t);
srrp->requestId=requestId;
wmem_map_insert(map, &(srrp->requestId), (void *)srrp);
}
return srrp;
}
static snmp_request_response_t*
snmp_match_request_response(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, guint requestId, guint procedure_id, snmp_conv_info_t *snmp_info)
{
snmp_request_response_t *srrp=NULL;
DISSECTOR_ASSERT_HINT(snmp_info, "No SNMP info from ASN1 context");
/* get or create request/response pointer based on request id */
srrp=(snmp_request_response_t *)snmp_get_request_response_pointer(snmp_info->request_response, requestId);
// if not visited fill the request/response data
if (!PINFO_FD_VISITED(pinfo)) {
switch(procedure_id)
{
case SNMP_REQ_GET:
case SNMP_REQ_GETNEXT:
case SNMP_REQ_SET:
case SNMP_REQ_GETBULK:
case SNMP_REQ_INFORM:
srrp->request_frame_id=pinfo->fd->num;
srrp->response_frame_id=0;
srrp->request_time=pinfo->abs_ts;
srrp->request_procedure_id=procedure_id;
break;
case SNMP_RES_GET:
srrp->response_frame_id=pinfo->fd->num;
break;
default:
return NULL;
}
}
/* if request and response was matched */
if (srrp->request_frame_id!=0 && srrp->response_frame_id!=0)
{
proto_item *it;
// if it is a request
if (srrp->request_frame_id == pinfo->fd->num)
{
it=proto_tree_add_uint(tree, hf_snmp_response_in, tvb, 0, 0, srrp->response_frame_id);
proto_item_set_generated(it);
} else {
nstime_t ns;
it=proto_tree_add_uint(tree, hf_snmp_response_to, tvb, 0, 0, srrp->request_frame_id);
proto_item_set_generated(it);
nstime_delta(&ns, &pinfo->abs_ts, &srrp->request_time);
it=proto_tree_add_time(tree, hf_snmp_time, tvb, 0, 0, &ns);
proto_item_set_generated(it);
return srrp;
}
}
return NULL;
}
static void
snmpstat_init(struct register_srt* srt _U_, GArray* srt_array)
{
srt_stat_table *snmp_srt_table;
guint32 i;
snmp_srt_table = init_srt_table("SNMP Commands", NULL, srt_array, SNMP_NUM_PROCEDURES, NULL, "snmp.data", NULL);
for (i = 0; i < SNMP_NUM_PROCEDURES; i++)
{
init_srt_table_row(snmp_srt_table, i, val_to_str_const(i, snmp_procedure_names, "<unknown>"));
}
}
/* This is called only if request and response was matched -> no need to return anything than TAP_PACKET_REDRAW */
static tap_packet_status
snmpstat_packet(void *psnmp, packet_info *pinfo, epan_dissect_t *edt _U_, const void *psi, tap_flags_t flags _U_)
{
guint i = 0;
srt_stat_table *snmp_srt_table;
const snmp_request_response_t *snmp=(const snmp_request_response_t *)psi;
srt_data_t *data = (srt_data_t *)psnmp;
snmp_srt_table = g_array_index(data->srt_array, srt_stat_table*, i);
add_srt_table_data(snmp_srt_table, snmp->request_procedure_id, &snmp->request_time, pinfo);
return TAP_PACKET_REDRAW;
}
static const gchar *
snmp_lookup_specific_trap (guint specific_trap)
{
guint i;
for (i = 0; i < num_specific_traps; i++) {
snmp_st_assoc_t *u = &(specific_traps[i]);
if ((u->trap == specific_trap) &&
(strcmp (u->enterprise, enterprise_oid) == 0))
{
return u->desc;
}
}
return NULL;
}
static int
dissect_snmp_variable_string(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree, void *data _U_)
{
proto_tree_add_item(tree, hf_snmp_var_bind_str, tvb, 0, -1, ENC_ASCII);
return tvb_captured_length(tvb);
}
/*
DateAndTime ::= TEXTUAL-CONVENTION
DISPLAY-HINT "2d-1d-1d,1d:1d:1d.1d,1a1d:1d"
STATUS current
DESCRIPTION
"A date-time specification.
field octets contents range
----- ------ -------- -----
1 1-2 year* 0..65536
2 3 month 1..12
3 4 day 1..31
4 5 hour 0..23
5 6 minutes 0..59
6 7 seconds 0..60
(use 60 for leap-second)
7 8 deci-seconds 0..9
8 9 direction from UTC '+' / '-'
9 10 hours from UTC* 0..13
10 11 minutes from UTC 0..59
* Notes:
- the value of year is in network-byte order
- daylight saving time in New Zealand is +13
For example, Tuesday May 26, 1992 at 1:30:15 PM EDT would be
displayed as:
1992-5-26,13:30:15.0,-4:0
Note that if only local time is known, then timezone
information (fields 8-10) is not present."
SYNTAX OCTET STRING (SIZE (8 | 11))
*/
static proto_item *
dissect_snmp_variable_date_and_time(proto_tree *tree, packet_info *pinfo, int hfid, tvbuff_t *tvb, int offset, int length)
{
guint16 year;
guint8 month;
guint8 day;
guint8 hour;
guint8 minutes;
guint8 seconds;
guint8 deci_seconds;
guint8 hour_from_utc;
guint8 min_from_utc;
gchar *str;
year = tvb_get_ntohs(tvb,offset);
month = tvb_get_guint8(tvb,offset+2);
day = tvb_get_guint8(tvb,offset+3);
hour = tvb_get_guint8(tvb,offset+4);
minutes = tvb_get_guint8(tvb,offset+5);
seconds = tvb_get_guint8(tvb,offset+6);
deci_seconds = tvb_get_guint8(tvb,offset+7);
if(length > 8){
hour_from_utc = tvb_get_guint8(tvb,offset+9);
min_from_utc = tvb_get_guint8(tvb,offset+10);
str = wmem_strdup_printf(pinfo->pool,
"%u-%u-%u, %u:%u:%u.%u UTC %s%u:%u",
year,
month,
day,
hour,
minutes,
seconds,
deci_seconds,
tvb_get_string_enc(pinfo->pool,tvb,offset+8,1,ENC_ASCII|ENC_NA),
hour_from_utc,
min_from_utc);
}else{
str = wmem_strdup_printf(pinfo->pool,
"%u-%u-%u, %u:%u:%u.%u",
year,
month,
day,
hour,
minutes,
seconds,
deci_seconds);
}
return proto_tree_add_string(tree, hfid, tvb, offset, length, str);
}
/*
* dissect_snmp_VarBind
* this routine dissects variable bindings, looking for the oid information in our oid reporsitory
* to format and add the value adequatelly.
*
* The choice to handwrite this code instead of using the asn compiler is to avoid having tons
* of uses of global variables distributed in very different parts of the code.
* Other than that there's a cosmetic thing: the tree from ASN generated code would be so
* convoluted due to the nesting of CHOICEs in the definition of VarBind/value.
*
* XXX: the length of this function (~400 lines) is an aberration!
* oid_key_t:key_type could become a series of callbacks instead of an enum
* the (! oid_info_is_ok) switch could be made into an array (would be slower)
*
NetworkAddress ::= CHOICE { internet IpAddress }
IpAddress ::= [APPLICATION 0] IMPLICIT OCTET STRING (SIZE (4))
TimeTicks ::= [APPLICATION 3] IMPLICIT INTEGER (0..4294967295)
Integer32 ::= INTEGER (-2147483648..2147483647)
ObjectName ::= OBJECT IDENTIFIER
Counter32 ::= [APPLICATION 1] IMPLICIT INTEGER (0..4294967295)
Gauge32 ::= [APPLICATION 2] IMPLICIT INTEGER (0..4294967295)
Unsigned32 ::= [APPLICATION 2] IMPLICIT INTEGER (0..4294967295)
Integer-value ::= INTEGER (-2147483648..2147483647)
Integer32 ::= INTEGER (-2147483648..2147483647)
ObjectID-value ::= OBJECT IDENTIFIER
Empty ::= NULL
TimeTicks ::= [APPLICATION 3] IMPLICIT INTEGER (0..4294967295)
Opaque ::= [APPLICATION 4] IMPLICIT OCTET STRING
Counter64 ::= [APPLICATION 6] IMPLICIT INTEGER (0..18446744073709551615)
ObjectSyntax ::= CHOICE {
simple SimpleSyntax,
application-wide ApplicationSyntax
}
SimpleSyntax ::= CHOICE {
integer-value Integer-value,
string-value String-value,
objectID-value ObjectID-value,
empty Empty
}
ApplicationSyntax ::= CHOICE {
ipAddress-value IpAddress,
counter-value Counter32,
timeticks-value TimeTicks,
arbitrary-value Opaque,
big-counter-value Counter64,
unsigned-integer-value Unsigned32
}
ValueType ::= CHOICE {
value ObjectSyntax,
unSpecified NULL,
noSuchObject[0] IMPLICIT NULL,
noSuchInstance[1] IMPLICIT NULL,
endOfMibView[2] IMPLICIT NULL
}
VarBind ::= SEQUENCE {
name ObjectName,
valueType ValueType
}
*/
static int
dissect_snmp_VarBind(gboolean implicit_tag _U_, tvbuff_t *tvb, int offset,
asn1_ctx_t *actx, proto_tree *tree, int hf_index _U_)
{
int seq_offset, name_offset, value_offset, value_start;
guint32 seq_len, name_len, value_len;
gint8 ber_class;
gboolean pc;
gint32 tag;
gboolean ind;
guint32* subids;
guint8* oid_bytes;
oid_info_t* oid_info = NULL;
guint oid_matched, oid_left;
proto_item *pi_name, *pi_varbind, *pi_value = NULL;
proto_tree *pt, *pt_varbind, *pt_name, *pt_value;
char label[ITEM_LABEL_LENGTH];
const char* repr = NULL;
const char* info_oid = NULL;
char* valstr;
int hfid = -1;
int min_len = 0, max_len = 0;
gboolean oid_info_is_ok;
const char* oid_string = NULL;
enum {BER_NO_ERROR, BER_WRONG_LENGTH, BER_WRONG_TAG} format_error = BER_NO_ERROR;
seq_offset = offset;
/* first have the VarBind's sequence header */
offset = dissect_ber_identifier(actx->pinfo, tree, tvb, offset, &ber_class, &pc, &tag);
offset = dissect_ber_length(actx->pinfo, tree, tvb, offset, &seq_len, &ind);
if (!pc && ber_class==BER_CLASS_UNI && tag==BER_UNI_TAG_SEQUENCE) {
proto_item* pi;
pt = proto_tree_add_subtree(tree, tvb, seq_offset, seq_len + (offset - seq_offset),
ett_decoding_error, &pi, "VarBind must be an universal class sequence");
expert_add_info(actx->pinfo, pi, &ei_snmp_varbind_not_uni_class_seq);
return dissect_unknown_ber(actx->pinfo, tvb, seq_offset, pt);
}
if (ind) {
proto_item* pi;
pt = proto_tree_add_subtree(tree, tvb, seq_offset, seq_len + (offset - seq_offset),
ett_decoding_error, &pi, "Indicator must be clear in VarBind");
expert_add_info(actx->pinfo, pi, &ei_snmp_varbind_has_indicator);
return dissect_unknown_ber(actx->pinfo, tvb, seq_offset, pt);
}
/* we add the varbind tree root with a dummy label we'll fill later on */
pt_varbind = proto_tree_add_subtree(tree,tvb,offset,seq_len,ett_varbind,&pi_varbind,"VarBind");
*label = '\0';
seq_len += offset - seq_offset;
/* then we have the ObjectName's header */
offset = dissect_ber_identifier(actx->pinfo, pt_varbind, tvb, offset, &ber_class, &pc, &tag);
name_offset = offset = dissect_ber_length(actx->pinfo, pt_varbind, tvb, offset, &name_len, &ind);
if (! ( !pc && ber_class==BER_CLASS_UNI && tag==BER_UNI_TAG_OID) ) {
proto_item* pi;
pt = proto_tree_add_subtree(tree, tvb, seq_offset, seq_len,
ett_decoding_error, &pi, "ObjectName must be an OID in primitive encoding");
expert_add_info(actx->pinfo, pi, &ei_snmp_objectname_not_oid);
return dissect_unknown_ber(actx->pinfo, tvb, seq_offset, pt);
}
if (ind) {
proto_item* pi;
pt = proto_tree_add_subtree(tree, tvb, seq_offset, seq_len,
ett_decoding_error, &pi, "Indicator must be clear in ObjectName");
expert_add_info(actx->pinfo, pi, &ei_snmp_objectname_has_indicator);
return dissect_unknown_ber(actx->pinfo, tvb, seq_offset, pt);
}
pi_name = proto_tree_add_item(pt_varbind,hf_snmp_objectname,tvb,name_offset,name_len,ENC_NA);
pt_name = proto_item_add_subtree(pi_name,ett_name);
offset += name_len;
value_start = offset;
/* then we have the value's header */
offset = dissect_ber_identifier(actx->pinfo, pt_varbind, tvb, offset, &ber_class, &pc, &tag);
value_offset = dissect_ber_length(actx->pinfo, pt_varbind, tvb, offset, &value_len, &ind);
if (! (!pc) ) {
proto_item* pi;
pt = proto_tree_add_subtree(pt_varbind, tvb, value_start, value_len,
ett_decoding_error, &pi, "the value must be in primitive encoding");
expert_add_info(actx->pinfo, pi, &ei_snmp_value_not_primitive_encoding);
return dissect_unknown_ber(actx->pinfo, tvb, value_start, pt);
}
/* Now, we know where everithing is */
/* fetch ObjectName and its relative oid_info */
oid_bytes = (guint8*)tvb_memdup(actx->pinfo->pool, tvb, name_offset, name_len);
oid_info = oid_get_from_encoded(actx->pinfo->pool, oid_bytes, name_len, &subids, &oid_matched, &oid_left);
add_oid_debug_subtree(oid_info,pt_name);
if (!subids) {
proto_item* pi;
repr = oid_encoded2string(actx->pinfo->pool, oid_bytes, name_len);
pt = proto_tree_add_subtree_format(pt_name,tvb, 0, 0, ett_decoding_error, &pi, "invalid oid: %s", repr);
expert_add_info_format(actx->pinfo, pi, &ei_snmp_invalid_oid, "invalid oid: %s", repr);
return dissect_unknown_ber(actx->pinfo, tvb, name_offset, pt);
}
if (oid_matched+oid_left) {
oid_string = oid_subid2string(actx->pinfo->pool, subids,oid_matched+oid_left);
}
if (ber_class == BER_CLASS_CON) {
/* if we have an error value just add it and get out the way ASAP */
proto_item* pi;
const char* note;
if (value_len != 0) {
min_len = max_len = 0;
format_error = BER_WRONG_LENGTH;
}
switch (tag) {
case SERR_NSO:
hfid = hf_snmp_noSuchObject;
note = "noSuchObject";
break;
case SERR_NSI:
hfid = hf_snmp_noSuchInstance;
note = "noSuchInstance";
break;
case SERR_EOM:
hfid = hf_snmp_endOfMibView;
note = "endOfMibView";
break;
default: {
pt = proto_tree_add_subtree_format(pt_varbind,tvb,0,0,ett_decoding_error,&pi,
"Wrong tag for Error Value: expected 0, 1, or 2 but got: %d",tag);
expert_add_info(actx->pinfo, pi, &ei_snmp_varbind_wrong_tag);
return dissect_unknown_ber(actx->pinfo, tvb, value_start, pt);
}
}
pi = proto_tree_add_item(pt_varbind,hfid,tvb,value_offset,value_len,ENC_BIG_ENDIAN);
expert_add_info_format(actx->pinfo, pi, &ei_snmp_varbind_response, "%s",note);
(void) g_strlcpy (label, note, ITEM_LABEL_LENGTH);
goto set_label;
}
/* now we'll try to figure out which are the indexing sub-oids and whether the oid we know about is the one oid we have to use */
switch (oid_info->kind) {
case OID_KIND_SCALAR:
if (oid_left == 1) {
/* OK: we got the instance sub-id */
proto_tree_add_uint64(pt_name,hf_snmp_scalar_instance_index,tvb,name_offset,name_len,subids[oid_matched]);
oid_info_is_ok = TRUE;
goto indexing_done;
} else if (oid_left == 0) {
if (ber_class == BER_CLASS_UNI && tag == BER_UNI_TAG_NULL) {
/* unSpecified does not require an instance sub-id add the new value and get off the way! */
pi_value = proto_tree_add_item(pt_varbind,hf_snmp_unSpecified,tvb,value_offset,value_len,ENC_NA);
goto set_label;
} else {
proto_tree_add_expert(pt_name,actx->pinfo,&ei_snmp_no_instance_subid,tvb,0,0);
oid_info_is_ok = FALSE;
goto indexing_done;
}
} else {
proto_tree_add_expert_format(pt_name,actx->pinfo,&ei_snmp_wrong_num_of_subids,tvb,0,0,"A scalar should have only one instance sub-id this has: %d",oid_left);
oid_info_is_ok = FALSE;
goto indexing_done;
}
break;
case OID_KIND_COLUMN:
if ( oid_info->parent->kind == OID_KIND_ROW) {
oid_key_t* k = oid_info->parent->key;
guint key_start = oid_matched;
guint key_len = oid_left;
oid_info_is_ok = TRUE;
if ( key_len == 0 && ber_class == BER_CLASS_UNI && tag == BER_UNI_TAG_NULL) {
/* unSpecified does not require an instance sub-id add the new value and get off the way! */
pi_value = proto_tree_add_item(pt_varbind,hf_snmp_unSpecified,tvb,value_offset,value_len,ENC_NA);
goto set_label;
}
if (k) {
for (;k;k = k->next) {
guint suboid_len;
if (key_start >= oid_matched+oid_left) {
proto_tree_add_expert(pt_name,actx->pinfo,&ei_snmp_index_suboid_too_short,tvb,0,0);
oid_info_is_ok = FALSE;
goto indexing_done;
}
switch(k->key_type) {
case OID_KEY_TYPE_WRONG: {
proto_tree_add_expert(pt_name,actx->pinfo,&ei_snmp_unimplemented_instance_index,tvb,0,0);
oid_info_is_ok = FALSE;
goto indexing_done;
}
case OID_KEY_TYPE_INTEGER: {
if (IS_FT_INT(k->ft_type)) {
proto_tree_add_int(pt_name,k->hfid,tvb,name_offset,name_len,(guint)subids[key_start]);
} else { /* if it's not an unsigned int let proto_tree_add_uint throw a warning */
proto_tree_add_uint64(pt_name,k->hfid,tvb,name_offset,name_len,(guint)subids[key_start]);
}
key_start++;
key_len--;
continue; /* k->next */
}
case OID_KEY_TYPE_IMPLIED_OID:
suboid_len = key_len;
goto show_oid_index;
case OID_KEY_TYPE_OID: {
guint8* suboid_buf;
guint suboid_buf_len;
guint32* suboid;
suboid_len = subids[key_start++];
key_len--;
show_oid_index:
suboid = &(subids[key_start]);
if( suboid_len == 0 ) {
proto_tree_add_expert(pt_name,actx->pinfo,&ei_snmp_index_suboid_len0,tvb,0,0);
oid_info_is_ok = FALSE;
goto indexing_done;
}
if( key_len < suboid_len ) {
proto_tree_add_expert(pt_name,actx->pinfo,&ei_snmp_index_suboid_too_long,tvb,0,0);
oid_info_is_ok = FALSE;
goto indexing_done;
}
suboid_buf_len = oid_subid2encoded(actx->pinfo->pool, suboid_len, suboid, &suboid_buf);
DISSECTOR_ASSERT(suboid_buf_len);
proto_tree_add_oid(pt_name,k->hfid,tvb,name_offset, suboid_buf_len, suboid_buf);
key_start += suboid_len;
key_len -= suboid_len + 1;
continue; /* k->next */
}
default: {
guint8* buf;
guint buf_len;
guint32* suboid;
guint i;
switch (k->key_type) {
case OID_KEY_TYPE_IPADDR:
suboid = &(subids[key_start]);
buf_len = 4;
break;
case OID_KEY_TYPE_IMPLIED_STRING:
case OID_KEY_TYPE_IMPLIED_BYTES:
case OID_KEY_TYPE_ETHER:
suboid = &(subids[key_start]);
buf_len = key_len;
break;
default:
buf_len = k->num_subids;
suboid = &(subids[key_start]);
if(!buf_len) {
buf_len = *suboid++;
key_len--;
key_start++;
}
break;
}
if( key_len < buf_len ) {
proto_tree_add_expert(pt_name,actx->pinfo,&ei_snmp_index_string_too_long,tvb,0,0);
oid_info_is_ok = FALSE;
goto indexing_done;
}
buf = (guint8*)wmem_alloc(actx->pinfo->pool, buf_len+1);
for (i = 0; i < buf_len; i++)
buf[i] = (guint8)suboid[i];
buf[i] = '\0';
switch(k->key_type) {
case OID_KEY_TYPE_STRING:
case OID_KEY_TYPE_IMPLIED_STRING:
proto_tree_add_string(pt_name,k->hfid,tvb,name_offset,buf_len, buf);
break;
case OID_KEY_TYPE_BYTES:
case OID_KEY_TYPE_NSAP:
case OID_KEY_TYPE_IMPLIED_BYTES:
proto_tree_add_bytes(pt_name,k->hfid,tvb,name_offset,buf_len, buf);
break;
case OID_KEY_TYPE_ETHER:
proto_tree_add_ether(pt_name,k->hfid,tvb,name_offset,buf_len, buf);
break;
case OID_KEY_TYPE_IPADDR: {
guint32* ipv4_p = (guint32*)buf;
proto_tree_add_ipv4(pt_name,k->hfid,tvb,name_offset,buf_len, *ipv4_p);
}
break;
default:
DISSECTOR_ASSERT_NOT_REACHED();
break;
}
key_start += buf_len;
key_len -= buf_len;
continue; /* k->next*/
}
}
}
goto indexing_done;
} else {
proto_tree_add_expert(pt_name,actx->pinfo,&ei_snmp_unimplemented_instance_index,tvb,0,0);
oid_info_is_ok = FALSE;
goto indexing_done;
}
} else {
proto_tree_add_expert(pt_name,actx->pinfo,&ei_snmp_column_parent_not_row,tvb,0,0);
oid_info_is_ok = FALSE;
goto indexing_done;
}
default: {
/* proto_tree_add_expert (pt_name,actx->pinfo,PI_MALFORMED, PI_WARN,tvb,0,0,"This kind OID should have no value"); */
oid_info_is_ok = FALSE;
goto indexing_done;
}
}
indexing_done:
if (oid_info_is_ok && oid_info->value_type) {
if (ber_class == BER_CLASS_UNI && tag == BER_UNI_TAG_NULL) {
pi_value = proto_tree_add_item(pt_varbind,hf_snmp_unSpecified,tvb,value_offset,value_len,ENC_NA);
} else {
/* Provide a tree_item to attach errors to, if needed. */
pi_value = pi_name;
if ((oid_info->value_type->ber_class != BER_CLASS_ANY) &&
(ber_class != oid_info->value_type->ber_class))
format_error = BER_WRONG_TAG;
else if ((oid_info->value_type->ber_tag != BER_TAG_ANY) &&
(tag != oid_info->value_type->ber_tag))
format_error = BER_WRONG_TAG;
else {
max_len = oid_info->value_type->max_len == -1 ? 0xffffff : oid_info->value_type->max_len;
min_len = oid_info->value_type->min_len;
if ((int)value_len < min_len || (int)value_len > max_len)
format_error = BER_WRONG_LENGTH;
}
if (format_error == BER_NO_ERROR)
pi_value = proto_tree_add_item(pt_varbind,oid_info->value_hfid,tvb,value_offset,value_len,ENC_BIG_ENDIAN);
}
} else {
switch(ber_class|(tag<<4)) {
case BER_CLASS_UNI|(BER_UNI_TAG_INTEGER<<4):
{
gint64 val=0;
unsigned int int_val_offset = value_offset;
unsigned int i;
max_len = 4; min_len = 1;
if (value_len > (guint)max_len || value_len < (guint)min_len) {
hfid = hf_snmp_integer32_value;
format_error = BER_WRONG_LENGTH;
break;
}
if(value_len > 0) {
/* extend sign bit */
if(tvb_get_guint8(tvb, int_val_offset)&0x80) {
val=-1;
}
for(i=0;i<value_len;i++) {
val=(val<<8)|tvb_get_guint8(tvb, int_val_offset);
int_val_offset++;
}
}
pi_value = proto_tree_add_int64(pt_varbind, hf_snmp_integer32_value, tvb,value_offset,value_len, val);
goto already_added;
}
case BER_CLASS_UNI|(BER_UNI_TAG_OCTETSTRING<<4):
if(oid_info->value_hfid> -1){
hfid = oid_info->value_hfid;
}else{
hfid = hf_snmp_octetstring_value;
}
break;
case BER_CLASS_UNI|(BER_UNI_TAG_OID<<4):
max_len = -1; min_len = 1;
if (value_len < (guint)min_len) format_error = BER_WRONG_LENGTH;
hfid = hf_snmp_oid_value;
break;
case BER_CLASS_UNI|(BER_UNI_TAG_NULL<<4):
max_len = 0; min_len = 0;
if (value_len != 0) format_error = BER_WRONG_LENGTH;
hfid = hf_snmp_null_value;
break;
case BER_CLASS_APP: /* | (SNMP_IPA<<4)*/
switch(value_len) {
case 4: hfid = hf_snmp_ipv4_value; break;
case 16: hfid = hf_snmp_ipv6_value; break;
default: hfid = hf_snmp_anyaddress_value; break;
}
break;
case BER_CLASS_APP|(SNMP_U32<<4):
hfid = hf_snmp_unsigned32_value;
break;
case BER_CLASS_APP|(SNMP_GGE<<4):
hfid = hf_snmp_gauge32_value;
break;
case BER_CLASS_APP|(SNMP_CNT<<4):
hfid = hf_snmp_counter_value;
break;
case BER_CLASS_APP|(SNMP_TIT<<4):
hfid = hf_snmp_timeticks_value;
break;
case BER_CLASS_APP|(SNMP_OPQ<<4):
hfid = hf_snmp_opaque_value;
break;
case BER_CLASS_APP|(SNMP_NSP<<4):
hfid = hf_snmp_nsap_value;
break;
case BER_CLASS_APP|(SNMP_C64<<4):
hfid = hf_snmp_big_counter_value;
break;
default:
hfid = hf_snmp_unknown_value;
break;
}
if (value_len > 8) {
/*
* Too long for an FT_UINT64 or an FT_INT64.
*/
header_field_info *hfinfo = proto_registrar_get_nth(hfid);
if (hfinfo->type == FT_UINT64) {
/*
* Check if this is an unsigned int64 with
* a big value.
*/
if (value_len > 9 || tvb_get_guint8(tvb, value_offset) != 0) {
/* It is. Fail. */
proto_tree_add_expert_format(pt_varbind,actx->pinfo,&ei_snmp_uint_too_large,tvb,value_offset,value_len,"Integral value too large");
goto already_added;
}
/* Cheat and skip the leading 0 byte */
value_len--;
value_offset++;
} else if (hfinfo->type == FT_INT64) {
/*
* For now, just reject these.
*/
proto_tree_add_expert_format(pt_varbind,actx->pinfo,&ei_snmp_int_too_large,tvb,value_offset,value_len,"Integral value too large or too small");
goto already_added;
}
} else if (value_len == 0) {
/*
* X.690 section 8.3.1 "Encoding of an integer value":
* "The encoding of an integer value shall be
* primitive. The contents octets shall consist of
* one or more octets."
*
* Zero is not "one or more".
*/
header_field_info *hfinfo = proto_registrar_get_nth(hfid);
if (hfinfo->type == FT_UINT64 || hfinfo->type == FT_INT64) {
proto_tree_add_expert_format(pt_varbind,actx->pinfo,&ei_snmp_integral_value0,tvb,value_offset,value_len,"Integral value is zero-length");
goto already_added;
}
}
/* Special case DATE AND TIME */
if((oid_info->value_type)&&(oid_info->value_type->keytype == OID_KEY_TYPE_DATE_AND_TIME)&&(value_len > 7)){
pi_value = dissect_snmp_variable_date_and_time(pt_varbind, actx->pinfo, hfid, tvb, value_offset, value_len);
}else{
pi_value = proto_tree_add_item(pt_varbind,hfid,tvb,value_offset,value_len,ENC_BIG_ENDIAN);
}
if (format_error != BER_NO_ERROR) {
expert_add_info(actx->pinfo, pi_value, &ei_snmp_missing_mib);
}
}
already_added:
pt_value = proto_item_add_subtree(pi_value,ett_value);
if (value_len > 0 && oid_string) {
tvbuff_t* sub_tvb = tvb_new_subset_length(tvb, value_offset, value_len);
next_tvb_add_string(var_list, sub_tvb, (snmp_var_in_tree) ? pt_value : NULL, value_sub_dissectors_table, oid_string);
}
set_label:
if (pi_value) proto_item_fill_label(PITEM_FINFO(pi_value), label);
if (oid_info && oid_info->name) {
if (oid_left >= 1) {
repr = wmem_strdup_printf(actx->pinfo->pool, "%s.%s (%s)", oid_info->name,
oid_subid2string(actx->pinfo->pool, &(subids[oid_matched]),oid_left),
oid_subid2string(actx->pinfo->pool, subids,oid_matched+oid_left));
info_oid = wmem_strdup_printf(actx->pinfo->pool, "%s.%s", oid_info->name,
oid_subid2string(actx->pinfo->pool, &(subids[oid_matched]),oid_left));
} else {
repr = wmem_strdup_printf(actx->pinfo->pool, "%s (%s)", oid_info->name,
oid_subid2string(actx->pinfo->pool, subids,oid_matched));
info_oid = oid_info->name;
}
} else if (oid_string) {
repr = wmem_strdup(actx->pinfo->pool, oid_string);
info_oid = oid_string;
} else {
repr = wmem_strdup(actx->pinfo->pool, "[Bad OID]");
}
valstr = strstr(label,": ");
valstr = valstr ? valstr+2 : label;
proto_item_set_text(pi_varbind,"%s: %s",repr,valstr);
if (display_oid && info_oid) {
col_append_fstr (actx->pinfo->cinfo, COL_INFO, " %s", info_oid);
}
switch (format_error) {
case BER_WRONG_LENGTH: {
proto_item* pi;
proto_tree* p_tree = proto_item_add_subtree(pi_value,ett_decoding_error);
pt = proto_tree_add_subtree_format(p_tree,tvb,0,0,ett_decoding_error,&pi,
"Wrong value length: %u expecting: %u <= len <= %u",
value_len, min_len, max_len == -1 ? 0xFFFFFF : max_len);
expert_add_info(actx->pinfo, pi, &ei_snmp_varbind_wrong_length_value);
return dissect_unknown_ber(actx->pinfo, tvb, value_start, pt);
}
case BER_WRONG_TAG: {
proto_item* pi;
proto_tree* p_tree = proto_item_add_subtree(pi_value,ett_decoding_error);
pt = proto_tree_add_subtree_format(p_tree,tvb,0,0,ett_decoding_error,&pi,
"Wrong class/tag for Value expected: %d,%d got: %d,%d",
oid_info->value_type->ber_class, oid_info->value_type->ber_tag,
ber_class, tag);
expert_add_info(actx->pinfo, pi, &ei_snmp_varbind_wrong_class_tag);
return dissect_unknown_ber(actx->pinfo, tvb, value_start, pt);
}
default:
break;
}
return seq_offset + seq_len;
}
#define F_SNMP_ENGINEID_CONFORM 0x80
#define SNMP_ENGINEID_RFC1910 0x00
#define SNMP_ENGINEID_RFC3411 0x01
static const true_false_string tfs_snmp_engineid_conform = {
"RFC3411 (SNMPv3)",
"RFC1910 (Non-SNMPv3)"
};
#define SNMP_ENGINEID_FORMAT_IPV4 0x01
#define SNMP_ENGINEID_FORMAT_IPV6 0x02
#define SNMP_ENGINEID_FORMAT_MACADDRESS 0x03
#define SNMP_ENGINEID_FORMAT_TEXT 0x04
#define SNMP_ENGINEID_FORMAT_OCTETS 0x05
static const value_string snmp_engineid_format_vals[] = {
{ SNMP_ENGINEID_FORMAT_IPV4, "IPv4 address" },
{ SNMP_ENGINEID_FORMAT_IPV6, "IPv6 address" },
{ SNMP_ENGINEID_FORMAT_MACADDRESS, "MAC address" },
{ SNMP_ENGINEID_FORMAT_TEXT, "Text, administratively assigned" },
{ SNMP_ENGINEID_FORMAT_OCTETS, "Octets, administratively assigned" },
{ 0, NULL }
};
#define SNMP_ENGINEID_CISCO_AGENT 0x00
#define SNMP_ENGINEID_CISCO_MANAGER 0x01
static const value_string snmp_engineid_cisco_type_vals[] = {
{ SNMP_ENGINEID_CISCO_AGENT, "Agent" },
{ SNMP_ENGINEID_CISCO_MANAGER, "Manager" },
{ 0, NULL }
};
/*
* SNMP Engine ID dissection according to RFC 3411 (SnmpEngineID TC)
* or historic RFC 1910 (AgentID)
*/
int
dissect_snmp_engineid(proto_tree *tree, packet_info *pinfo, tvbuff_t *tvb, int offset, int len)
{
proto_item *item = NULL;
guint8 conformance, format;
guint32 enterpriseid;
time_t seconds;
nstime_t ts;
int len_remain = len;
/* first bit: engine id conformance */
if (len_remain<1) return offset;
conformance = ((tvb_get_guint8(tvb, offset)>>7) & 0x01);
proto_tree_add_item(tree, hf_snmp_engineid_conform, tvb, offset, 1, ENC_BIG_ENDIAN);
/* 4-byte enterprise number/name */
if (len_remain<4) return offset;
enterpriseid = tvb_get_ntohl(tvb, offset);
if (conformance)
enterpriseid -= 0x80000000; /* ignore first bit */
proto_tree_add_uint(tree, hf_snmp_engineid_enterprise, tvb, offset, 4, enterpriseid);
offset+=4;
len_remain-=4;
switch(conformance) {
case SNMP_ENGINEID_RFC1910:
/* 12-byte AgentID w/ 8-byte trailer */
if (len_remain==8) {
proto_tree_add_item(tree, hf_snmp_agentid_trailer, tvb, offset, 8, ENC_NA);
offset+=8;
len_remain-=8;
} else {
proto_tree_add_expert(tree, pinfo, &ei_snmp_rfc1910_non_conformant, tvb, offset, len_remain);
return offset;
}
break;
case SNMP_ENGINEID_RFC3411: /* variable length: 5..32 */
/* 1-byte format specifier */
if (len_remain<1) return offset;
format = tvb_get_guint8(tvb, offset);
item = proto_tree_add_uint_format(tree, hf_snmp_engineid_format, tvb, offset, 1, format, "Engine ID Format: %s (%d)",
val_to_str(format, snmp_engineid_format_vals, "Reserved/Enterprise-specific"), format);
offset+=1;
len_remain-=1;
switch(format) {
case SNMP_ENGINEID_FORMAT_IPV4:
/* 4-byte IPv4 address */
if (len_remain==4) {
proto_tree_add_item(tree, hf_snmp_engineid_ipv4, tvb, offset, 4, ENC_BIG_ENDIAN);
offset+=4;
len_remain=0;
}
break;
case SNMP_ENGINEID_FORMAT_IPV6:
/* 16-byte IPv6 address */
if (len_remain==16) {
proto_tree_add_item(tree, hf_snmp_engineid_ipv6, tvb, offset, 16, ENC_NA);
offset+=16;
len_remain=0;
}
break;
case SNMP_ENGINEID_FORMAT_MACADDRESS:
/* See: https://supportforums.cisco.com/message/3010617#3010617 for details. */
if ((enterpriseid==9)&&(len_remain==7)) {
proto_tree_add_item(tree, hf_snmp_engineid_cisco_type, tvb, offset, 1, ENC_BIG_ENDIAN);
offset++;
len_remain--;
}
/* 6-byte MAC address */
if (len_remain==6) {
proto_tree_add_item(tree, hf_snmp_engineid_mac, tvb, offset, 6, ENC_NA);
offset+=6;
len_remain=0;
}
break;
case SNMP_ENGINEID_FORMAT_TEXT:
/* max. 27-byte string, administratively assigned */
if (len_remain<=27) {
proto_tree_add_item(tree, hf_snmp_engineid_text, tvb, offset, len_remain, ENC_ASCII);
offset+=len_remain;
len_remain=0;
}
break;
case 128:
/* most common enterprise-specific format: (ucd|net)-snmp random */
if ((enterpriseid==2021)||(enterpriseid==8072)) {
proto_item_append_text(item, (enterpriseid==2021) ? ": UCD-SNMP Random" : ": Net-SNMP Random");
/* demystify: 4B random, 4B/8B epoch seconds */
if ((len_remain==8) || (len_remain==12)) {
proto_tree_add_item(tree, hf_snmp_engineid_data, tvb, offset, 4, ENC_NA);
if (len_remain==8) {
seconds = (time_t)tvb_get_letohl(tvb, offset + 4);
} else {
seconds = (time_t)tvb_get_letohi64(tvb, offset + 4);
}
ts.secs = seconds;
ts.nsecs = 0;
proto_tree_add_time_format_value(tree, hf_snmp_engineid_time, tvb, offset + 4, len_remain - 4,
&ts, "%s",
abs_time_secs_to_str(pinfo->pool, seconds, ABSOLUTE_TIME_LOCAL, TRUE));
offset+=len_remain;
len_remain=0;
}
break;
}
/* fall through */
case SNMP_ENGINEID_FORMAT_OCTETS:
default:
/* max. 27 bytes, administratively assigned or unknown format */
if (len_remain<=27) {
proto_tree_add_item(tree, hf_snmp_engineid_data, tvb, offset, len_remain, ENC_NA);
offset+=len_remain;
len_remain=0;
}
break;
}
}
if (len_remain>0) {
proto_tree_add_expert(tree, pinfo, &ei_snmp_rfc3411_non_conformant, tvb, offset, len_remain);
offset+=len_remain;
}
return offset;
}
static void set_ue_keys(snmp_ue_assoc_t* n ) {
guint key_size = auth_hash_len[n->user.authModel];
n->user.authKey.data = (guint8 *)g_malloc(key_size);
n->user.authKey.len = key_size;
snmp_usm_password_to_key(n->user.authModel,
n->user.authPassword.data,
n->user.authPassword.len,
n->engine.data,
n->engine.len,
n->user.authKey.data);
if (n->priv_proto == PRIV_AES128 || n->priv_proto == PRIV_AES192 || n->priv_proto == PRIV_AES256) {
guint need_key_len =
(n->priv_proto == PRIV_AES128) ? 16 :
(n->priv_proto == PRIV_AES192) ? 24 :
(n->priv_proto == PRIV_AES256) ? 32 :
0;
guint key_len = key_size;
while (key_len < need_key_len)
key_len += key_size;
n->user.privKey.data = (guint8 *)g_malloc(key_len);
n->user.privKey.len = need_key_len;
snmp_usm_password_to_key(n->user.authModel,
n->user.privPassword.data,
n->user.privPassword.len,
n->engine.data,
n->engine.len,
n->user.privKey.data);
key_len = key_size;
/* extend key if needed */
while (key_len < need_key_len) {
snmp_usm_password_to_key(n->user.authModel,
n->user.privKey.data,
key_len,
n->engine.data,
n->engine.len,
n->user.privKey.data + key_len);
key_len += key_size;
}
} else {
n->user.privKey.data = (guint8 *)g_malloc(key_size);
n->user.privKey.len = key_size;
snmp_usm_password_to_key(n->user.authModel,
n->user.privPassword.data,
n->user.privPassword.len,
n->engine.data,
n->engine.len,
n->user.privKey.data);
}
}
static snmp_ue_assoc_t*
ue_dup(snmp_ue_assoc_t* o)
{
snmp_ue_assoc_t* d = (snmp_ue_assoc_t*)g_memdup2(o,sizeof(snmp_ue_assoc_t));
d->user.authModel = o->user.authModel;
d->user.privProtocol = o->user.privProtocol;
d->user.userName.data = (guint8 *)g_memdup2(o->user.userName.data,o->user.userName.len);
d->user.userName.len = o->user.userName.len;
d->user.authPassword.data = o->user.authPassword.data ? (guint8 *)g_memdup2(o->user.authPassword.data,o->user.authPassword.len) : NULL;
d->user.authPassword.len = o->user.authPassword.len;
d->user.privPassword.data = o->user.privPassword.data ? (guint8 *)g_memdup2(o->user.privPassword.data,o->user.privPassword.len) : NULL;
d->user.privPassword.len = o->user.privPassword.len;
d->engine.len = o->engine.len;
if (d->engine.len) {
d->engine.data = (guint8 *)g_memdup2(o->engine.data,o->engine.len);
set_ue_keys(d);
}
return d;
}
static void*
snmp_users_copy_cb(void* dest, const void* orig, size_t len _U_)
{
const snmp_ue_assoc_t* o = (const snmp_ue_assoc_t*)orig;
snmp_ue_assoc_t* d = (snmp_ue_assoc_t*)dest;
d->auth_model = o->auth_model;
d->user.authModel = (snmp_usm_auth_model_t) o->auth_model;
d->priv_proto = o->priv_proto;
d->user.privProtocol = priv_protos[o->priv_proto];
d->user.userName.data = (guint8*)g_memdup2(o->user.userName.data,o->user.userName.len);
d->user.userName.len = o->user.userName.len;
d->user.authPassword.data = o->user.authPassword.data ? (guint8*)g_memdup2(o->user.authPassword.data,o->user.authPassword.len) : NULL;
d->user.authPassword.len = o->user.authPassword.len;
d->user.privPassword.data = o->user.privPassword.data ? (guint8*)g_memdup2(o->user.privPassword.data,o->user.privPassword.len) : NULL;
d->user.privPassword.len = o->user.privPassword.len;
d->engine.len = o->engine.len;
if (o->engine.data) {
d->engine.data = (guint8*)g_memdup2(o->engine.data,o->engine.len);
}
d->user.authKey.data = o->user.authKey.data ? (guint8*)g_memdup2(o->user.authKey.data,o->user.authKey.len) : NULL;
d->user.authKey.len = o->user.authKey.len;
d->user.privKey.data = o->user.privKey.data ? (guint8*)g_memdup2(o->user.privKey.data,o->user.privKey.len) : NULL;
d->user.privKey.len = o->user.privKey.len;
return d;
}
static void
snmp_users_free_cb(void* p)
{
snmp_ue_assoc_t* ue = (snmp_ue_assoc_t*)p;
g_free(ue->user.userName.data);
g_free(ue->user.authPassword.data);
g_free(ue->user.privPassword.data);
g_free(ue->user.authKey.data);
g_free(ue->user.privKey.data);
g_free(ue->engine.data);
}
static gboolean
snmp_users_update_cb(void* p _U_, char** err)
{
snmp_ue_assoc_t* ue = (snmp_ue_assoc_t*)p;
GString* es = g_string_new("");
unsigned int i;
*err = NULL;
if (! ue->user.userName.len) {
g_string_append_printf(es,"no userName\n");
} else if ((ue->engine.len > 0) && (ue->engine.len < 5 || ue->engine.len > 32)) {
/* RFC 3411 section 5 */
g_string_append_printf(es, "Invalid engineId length (%u). Must be between 5 and 32 (10 and 64 hex digits)\n", ue->engine.len);
} else if (num_ueas) {
for (i=0; i<num_ueas-1; i++) {
snmp_ue_assoc_t* u = &(ueas[i]);
if ( u->user.userName.len == ue->user.userName.len
&& u->engine.len == ue->engine.len && (u != ue)) {
if (u->engine.len > 0 && memcmp( u->engine.data, ue->engine.data, u->engine.len ) == 0) {
if ( memcmp( u->user.userName.data, ue->user.userName.data, ue->user.userName.len ) == 0 ) {
/* XXX: make a string for the engineId */
g_string_append_printf(es,"Duplicate key (userName='%s')\n",ue->user.userName.data);
break;
}
}
if (u->engine.len == 0) {
if ( memcmp( u->user.userName.data, ue->user.userName.data, ue->user.userName.len ) == 0 ) {
g_string_append_printf(es,"Duplicate key (userName='%s' engineId=NONE)\n",ue->user.userName.data);
break;
}
}
}
}
}
if (es->len) {
es = g_string_truncate(es,es->len-1);
*err = g_string_free(es, FALSE);
return FALSE;
}
return TRUE;
}
static void
free_ue_cache(snmp_ue_assoc_t **cache)
{
static snmp_ue_assoc_t *a, *nxt;
for (a = *cache; a; a = nxt) {
nxt = a->next;
snmp_users_free_cb(a);
g_free(a);
}
*cache = NULL;
}
#define CACHE_INSERT(c,a) if (c) { snmp_ue_assoc_t* t = c; c = a; c->next = t; } else { c = a; a->next = NULL; }
static void
init_ue_cache(void)
{
guint i;
for (i = 0; i < num_ueas; i++) {
snmp_ue_assoc_t* a = ue_dup(&(ueas[i]));
if (a->engine.len) {
CACHE_INSERT(localized_ues,a);
} else {
CACHE_INSERT(unlocalized_ues,a);
}
}
}
static void
cleanup_ue_cache(void)
{
free_ue_cache(&localized_ues);
free_ue_cache(&unlocalized_ues);
}
/* Called when the user applies changes to UAT preferences. */
static void
renew_ue_cache(void)
{
cleanup_ue_cache();
init_ue_cache();
}
static snmp_ue_assoc_t*
localize_ue( snmp_ue_assoc_t* o, const guint8* engine, guint engine_len )
{
snmp_ue_assoc_t* n = (snmp_ue_assoc_t*)g_memdup2(o,sizeof(snmp_ue_assoc_t));
n->user.userName.data = (guint8*)g_memdup2(o->user.userName.data,o->user.userName.len);
n->user.authModel = o->user.authModel;
n->user.authPassword.data = (guint8*)g_memdup2(o->user.authPassword.data,o->user.authPassword.len);
n->user.authPassword.len = o->user.authPassword.len;
n->user.privPassword.data = (guint8*)g_memdup2(o->user.privPassword.data,o->user.privPassword.len);
n->user.privPassword.len = o->user.privPassword.len;
n->user.authKey.data = (guint8*)g_memdup2(o->user.authKey.data,o->user.authKey.len);
n->user.privKey.data = (guint8*)g_memdup2(o->user.privKey.data,o->user.privKey.len);
n->engine.data = (guint8*)g_memdup2(engine,engine_len);
n->engine.len = engine_len;
n->priv_proto = o->priv_proto;
set_ue_keys(n);
return n;
}
#define localized_match(a,u,ul,e,el) \
( a->user.userName.len == ul \
&& a->engine.len == el \
&& memcmp( a->user.userName.data, u, ul ) == 0 \
&& memcmp( a->engine.data, e, el ) == 0 )
#define unlocalized_match(a,u,l) \
( a->user.userName.len == l && memcmp( a->user.userName.data, u, l) == 0 )
static snmp_ue_assoc_t*
get_user_assoc(tvbuff_t* engine_tvb, tvbuff_t* user_tvb, packet_info *pinfo)
{
static snmp_ue_assoc_t* a;
guint given_username_len;
guint8* given_username;
guint given_engine_len = 0;
guint8* given_engine = NULL;
if ( ! (localized_ues || unlocalized_ues ) ) return NULL;
if (! ( user_tvb && engine_tvb ) ) return NULL;
given_username_len = tvb_captured_length(user_tvb);
given_engine_len = tvb_captured_length(engine_tvb);
if (! ( given_engine_len && given_username_len ) ) return NULL;
given_username = (guint8*)tvb_memdup(pinfo->pool,user_tvb,0,-1);
given_engine = (guint8*)tvb_memdup(pinfo->pool,engine_tvb,0,-1);
for (a = localized_ues; a; a = a->next) {
if ( localized_match(a, given_username, given_username_len, given_engine, given_engine_len) ) {
return a;
}
}
for (a = unlocalized_ues; a; a = a->next) {
if ( unlocalized_match(a, given_username, given_username_len) ) {
snmp_ue_assoc_t* n = localize_ue( a, given_engine, given_engine_len );
CACHE_INSERT(localized_ues,n);
return n;
}
}
return NULL;
}
static gboolean
snmp_usm_auth(const packet_info *pinfo, const snmp_usm_auth_model_t model, snmp_usm_params_t* p, guint8** calc_auth_p,
guint* calc_auth_len_p, gchar const** error)
{
gint msg_len;
guint8* msg;
guint auth_len;
guint8* auth;
guint8* key;
guint key_len;
guint8 *calc_auth;
guint start;
guint end;
guint i;
if (!p->auth_tvb) {
*error = "No Authenticator";
return FALSE;
}
key = p->user_assoc->user.authKey.data;
key_len = p->user_assoc->user.authKey.len;
if (! key ) {
*error = "User has no authKey";
return FALSE;
}
auth_len = tvb_captured_length(p->auth_tvb);
if (auth_len != auth_tag_len[model]) {
*error = "Authenticator length wrong";
return FALSE;
}
msg_len = tvb_captured_length(p->msg_tvb);
if (msg_len <= 0) {
*error = "Not enough data remaining";
return FALSE;
}
msg = (guint8*)tvb_memdup(pinfo->pool,p->msg_tvb,0,msg_len);
auth = (guint8*)tvb_memdup(pinfo->pool,p->auth_tvb,0,auth_len);
start = p->auth_offset - p->start_offset;
end = start + auth_len;
/* fill the authenticator with zeros */
for ( i = start ; i < end ; i++ ) {
msg[i] = '\0';
}
calc_auth = (guint8*)wmem_alloc(pinfo->pool, auth_hash_len[model]);
if (ws_hmac_buffer(auth_hash_algo[model], calc_auth, msg, msg_len, key, key_len)) {
return FALSE;
}
if (calc_auth_p) *calc_auth_p = calc_auth;
if (calc_auth_len_p) *calc_auth_len_p = auth_len;
return ( memcmp(auth,calc_auth,auth_len) != 0 ) ? FALSE : TRUE;
}
static tvbuff_t*
snmp_usm_priv_des(snmp_usm_params_t* p, tvbuff_t* encryptedData, packet_info *pinfo, gchar const** error)
{
gcry_error_t err;
gcry_cipher_hd_t hd = NULL;
guint8* cleartext;
guint8* des_key = p->user_assoc->user.privKey.data; /* first 8 bytes */
guint8* pre_iv = &(p->user_assoc->user.privKey.data[8]); /* last 8 bytes */
guint8* salt;
gint salt_len;
gint cryptgrm_len;
guint8* cryptgrm;
tvbuff_t* clear_tvb;
guint8 iv[8];
guint i;
salt_len = tvb_captured_length(p->priv_tvb);
if (salt_len != 8) {
*error = "decryptionError: msgPrivacyParameters length != 8";
return NULL;
}
salt = (guint8*)tvb_memdup(pinfo->pool,p->priv_tvb,0,salt_len);
/*
The resulting "salt" is XOR-ed with the pre-IV to obtain the IV.
*/
for (i=0; i<8; i++) {
iv[i] = pre_iv[i] ^ salt[i];
}
cryptgrm_len = tvb_captured_length(encryptedData);
if ((cryptgrm_len <= 0) || (cryptgrm_len % 8)) {
*error = "decryptionError: the length of the encrypted data is not a multiple of 8 octets";
return NULL;
}
cryptgrm = (guint8*)tvb_memdup(pinfo->pool,encryptedData,0,-1);
cleartext = (guint8*)wmem_alloc(pinfo->pool, cryptgrm_len);
err = gcry_cipher_open(&hd, GCRY_CIPHER_DES, GCRY_CIPHER_MODE_CBC, 0);
if (err != GPG_ERR_NO_ERROR) goto on_gcry_error;
err = gcry_cipher_setiv(hd, iv, 8);
if (err != GPG_ERR_NO_ERROR) goto on_gcry_error;
err = gcry_cipher_setkey(hd,des_key,8);
if (err != GPG_ERR_NO_ERROR) goto on_gcry_error;
err = gcry_cipher_decrypt(hd, cleartext, cryptgrm_len, cryptgrm, cryptgrm_len);
if (err != GPG_ERR_NO_ERROR) goto on_gcry_error;
gcry_cipher_close(hd);
clear_tvb = tvb_new_child_real_data(encryptedData, cleartext, cryptgrm_len, cryptgrm_len);
return clear_tvb;
on_gcry_error:
*error = (const gchar *)gcry_strerror(err);
if (hd) gcry_cipher_close(hd);
return NULL;
}
static tvbuff_t*
snmp_usm_priv_aes_common(snmp_usm_params_t* p, tvbuff_t* encryptedData, packet_info *pinfo, gchar const** error, int algo)
{
gcry_error_t err;
gcry_cipher_hd_t hd = NULL;
guint8* cleartext;
guint8* aes_key = p->user_assoc->user.privKey.data;
int aes_key_len = p->user_assoc->user.privKey.len;
guint8 iv[16];
gint priv_len;
gint cryptgrm_len;
guint8* cryptgrm;
tvbuff_t* clear_tvb;
priv_len = tvb_captured_length(p->priv_tvb);
if (priv_len != 8) {
*error = "decryptionError: msgPrivacyParameters length != 8";
return NULL;
}
iv[0] = (p->boots & 0xff000000) >> 24;
iv[1] = (p->boots & 0x00ff0000) >> 16;
iv[2] = (p->boots & 0x0000ff00) >> 8;
iv[3] = (p->boots & 0x000000ff);
iv[4] = (p->snmp_time & 0xff000000) >> 24;
iv[5] = (p->snmp_time & 0x00ff0000) >> 16;
iv[6] = (p->snmp_time & 0x0000ff00) >> 8;
iv[7] = (p->snmp_time & 0x000000ff);
tvb_memcpy(p->priv_tvb,&(iv[8]),0,8);
cryptgrm_len = tvb_captured_length(encryptedData);
if (cryptgrm_len <= 0) {
*error = "Not enough data remaining";
return NULL;
}
cryptgrm = (guint8*)tvb_memdup(pinfo->pool,encryptedData,0,-1);
cleartext = (guint8*)wmem_alloc(pinfo->pool, cryptgrm_len);
err = gcry_cipher_open(&hd, algo, GCRY_CIPHER_MODE_CFB, 0);
if (err != GPG_ERR_NO_ERROR) goto on_gcry_error;
err = gcry_cipher_setiv(hd, iv, 16);
if (err != GPG_ERR_NO_ERROR) goto on_gcry_error;
err = gcry_cipher_setkey(hd,aes_key,aes_key_len);
if (err != GPG_ERR_NO_ERROR) goto on_gcry_error;
err = gcry_cipher_decrypt(hd, cleartext, cryptgrm_len, cryptgrm, cryptgrm_len);
if (err != GPG_ERR_NO_ERROR) goto on_gcry_error;
gcry_cipher_close(hd);
clear_tvb = tvb_new_child_real_data(encryptedData, cleartext, cryptgrm_len, cryptgrm_len);
return clear_tvb;
on_gcry_error:
*error = (const gchar *)gcry_strerror(err);
if (hd) gcry_cipher_close(hd);
return NULL;
}
static tvbuff_t*
snmp_usm_priv_aes128(snmp_usm_params_t* p, tvbuff_t* encryptedData, packet_info *pinfo, gchar const** error)
{
return snmp_usm_priv_aes_common(p, encryptedData, pinfo, error, GCRY_CIPHER_AES);
}
static tvbuff_t*
snmp_usm_priv_aes192(snmp_usm_params_t* p, tvbuff_t* encryptedData, packet_info *pinfo, gchar const** error)
{
return snmp_usm_priv_aes_common(p, encryptedData, pinfo, error, GCRY_CIPHER_AES192);
}
static tvbuff_t*
snmp_usm_priv_aes256(snmp_usm_params_t* p, tvbuff_t* encryptedData, packet_info *pinfo, gchar const** error)
{
return snmp_usm_priv_aes_common(p, encryptedData, pinfo, error, GCRY_CIPHER_AES256);
}
static gboolean
check_ScopedPdu(tvbuff_t* tvb)
{
int offset;
gint8 ber_class;
gboolean pc;
gint32 tag;
int hoffset, eoffset;
guint32 len;
offset = get_ber_identifier(tvb, 0, &ber_class, &pc, &tag);
offset = get_ber_length(tvb, offset, NULL, NULL);
if ( ! (((ber_class!=BER_CLASS_APP) && (ber_class!=BER_CLASS_PRI) )
&& ( (!pc) || (ber_class!=BER_CLASS_UNI) || (tag!=BER_UNI_TAG_ENUMERATED) )
)) return FALSE;
if((tvb_get_guint8(tvb, offset)==0)&&(tvb_get_guint8(tvb, offset+1)==0))
return TRUE;
hoffset = offset;
offset = get_ber_identifier(tvb, offset, &ber_class, &pc, &tag);
offset = get_ber_length(tvb, offset, &len, NULL);
eoffset = offset + len;
if (eoffset <= hoffset) return FALSE;
if ((ber_class!=BER_CLASS_APP)&&(ber_class!=BER_CLASS_PRI))
if( (ber_class!=BER_CLASS_UNI)
||((tag<BER_UNI_TAG_NumericString)&&(tag!=BER_UNI_TAG_OCTETSTRING)&&(tag!=BER_UNI_TAG_UTF8String)) )
return FALSE;
return TRUE;
}
#include "packet-snmp-fn.c"
static snmp_conv_info_t*
snmp_find_conversation_and_get_conv_data(packet_info *pinfo) {
conversation_t *conversation;
snmp_conv_info_t *snmp_info = NULL;
conversation = find_conversation(pinfo->fd->num, &pinfo->src, &pinfo->dst, conversation_pt_to_conversation_type(pinfo->ptype),
pinfo->srcport, pinfo->destport, 0);
if( (conversation == NULL) || (conversation_get_dissector(conversation, pinfo->num)!=snmp_handle) ) {
conversation = conversation_new(pinfo->num, &pinfo->src, &pinfo->dst, conversation_pt_to_conversation_type(pinfo->ptype),
pinfo->srcport, pinfo->destport, 0);
conversation_set_dissector(conversation, snmp_handle);
}
snmp_info = (snmp_conv_info_t *)conversation_get_proto_data(conversation, proto_snmp);
if (snmp_info == NULL) {
snmp_info = wmem_new0(wmem_file_scope(), snmp_conv_info_t);
snmp_info->request_response=wmem_map_new(wmem_file_scope(), g_int_hash, g_int_equal);
conversation_add_proto_data(conversation, proto_snmp, snmp_info);
}
return snmp_info;
}
guint
dissect_snmp_pdu(tvbuff_t *tvb, int offset, packet_info *pinfo,
proto_tree *tree, int proto, gint ett, gboolean is_tcp)
{
guint length_remaining;
gint8 ber_class;
gboolean pc, ind = 0;
gint32 tag;
guint32 len;
guint message_length;
int start_offset = offset;
guint32 version = 0;
tvbuff_t *next_tvb;
proto_tree *snmp_tree = NULL;
proto_item *item = NULL;
snmp_conv_info_t *snmp_info = snmp_find_conversation_and_get_conv_data(pinfo);
asn1_ctx_t asn1_ctx;
asn1_ctx_init(&asn1_ctx, ASN1_ENC_BER, TRUE, pinfo);
asn1_ctx.private_data = snmp_info;
usm_p.msg_tvb = tvb;
usm_p.start_offset = tvb_offset_from_real_beginning(tvb);
usm_p.engine_tvb = NULL;
usm_p.user_tvb = NULL;
usm_p.auth_item = NULL;
usm_p.auth_tvb = NULL;
usm_p.auth_offset = 0;
usm_p.priv_tvb = NULL;
usm_p.user_assoc = NULL;
usm_p.authenticated = FALSE;
usm_p.encrypted = FALSE;
usm_p.boots = 0;
usm_p.snmp_time = 0;
usm_p.authOK = FALSE;
/*
* This will throw an exception if we don't have any data left.
* That's what we want. (See "tcp_dissect_pdus()", which is
* similar, but doesn't have to deal with ASN.1.
* XXX - can we make "tcp_dissect_pdus()" provide enough
* information to the "get_pdu_len" routine so that we could
* have that routine deal with ASN.1, and just use
* "tcp_dissect_pdus()"?)
*/
length_remaining = tvb_ensure_captured_length_remaining(tvb, offset);
/* NOTE: we have to parse the message piece by piece, since the
* capture length may be less than the message length: a 'global'
* parsing is likely to fail.
*/
/*
* If this is SNMP-over-TCP, we might have to do reassembly
* in order to read the "Sequence Of" header.
*/
if (is_tcp && snmp_desegment && pinfo->can_desegment) {
/*
* This is TCP, and we should, and can, do reassembly.
*
* Is the "Sequence Of" header split across segment
* boundaries? We require at least 6 bytes for the
* header, which allows for a 4-byte length (ASN.1
* BER).
*/
if (length_remaining < 6) {
/*
* Yes. Tell the TCP dissector where the data
* for this message starts in the data it handed
* us and that we need "some more data." Don't tell
* it exactly how many bytes we need because if/when
* we ask for even more (after the header) that will
* break reassembly.
*/
pinfo->desegment_offset = offset;
pinfo->desegment_len = DESEGMENT_ONE_MORE_SEGMENT;
return -1;
}
}
/*
* OK, try to read the "Sequence Of" header; this gets the total
* length of the SNMP message.
*/
offset = get_ber_identifier(tvb, offset, &ber_class, &pc, &tag);
/*Get the total octet length of the SNMP data*/
offset = get_ber_length(tvb, offset, &len, &ind);
message_length = len + offset;
/*Get the SNMP version data*/
/*offset =*/ dissect_ber_integer(FALSE, &asn1_ctx, 0, tvb, offset, -1, &version);
/*
* If this is SNMP-over-TCP, we might have to do reassembly
* to get all of this message.
*/
if (is_tcp && snmp_desegment && pinfo->can_desegment) {
/*
* Yes - is the message split across segment boundaries?
*/
if (length_remaining < message_length) {
/*
* Yes. Tell the TCP dissector where the data
* for this message starts in the data it handed
* us, and how many more bytes we need, and
* return.
*/
pinfo->desegment_offset = start_offset;
pinfo->desegment_len =
message_length - length_remaining;
/*
* Return 0, which means "I didn't dissect anything
* because I don't have enough data - we need
* to desegment".
*/
return 0;
}
}
var_list = next_tvb_list_new(pinfo->pool);
col_set_str(pinfo->cinfo, COL_PROTOCOL, proto_get_protocol_short_name(find_protocol_by_id(proto)));
item = proto_tree_add_item(tree, proto, tvb, start_offset, message_length, ENC_BIG_ENDIAN);
snmp_tree = proto_item_add_subtree(item, ett);
switch (version) {
case 0: /* v1 */
case 1: /* v2c */
offset = dissect_snmp_Message(FALSE , tvb, start_offset, &asn1_ctx, snmp_tree, -1);
break;
case 2: /* v2u */
offset = dissect_snmp_Messagev2u(FALSE , tvb, start_offset, &asn1_ctx, snmp_tree, -1);
break;
/* v3 */
case 3:
offset = dissect_snmp_SNMPv3Message(FALSE , tvb, start_offset, &asn1_ctx, snmp_tree, -1);
break;
default:
/*
* Return the length remaining in the tvbuff, so
* if this is SNMP-over-TCP, our caller thinks there's
* nothing left to dissect.
*/
expert_add_info(pinfo, item, &ei_snmp_version_unknown);
return length_remaining;
break;
}
/* There may be appended data after the SNMP data, so treat as raw
* data which needs to be dissected in case of UDP as UDP is PDU oriented.
*/
if((!is_tcp) && (length_remaining > (guint)offset)) {
next_tvb = tvb_new_subset_remaining(tvb, offset);
call_dissector(data_handle, next_tvb, pinfo, tree);
} else {
next_tvb_call(var_list, pinfo, tree, NULL, data_handle);
}
return offset;
}
static gint
dissect_snmp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_)
{
int offset;
gint8 tmp_class;
gboolean tmp_pc;
gint32 tmp_tag;
guint32 tmp_length;
gboolean tmp_ind;
/*
* See if this looks like SNMP or not. if not, return 0 so
* wireshark can try some other dissector instead.
*/
/* All SNMP packets are BER encoded and consist of a SEQUENCE
* that spans the entire PDU. The first item is an INTEGER that
* has the values 0-2 (version 1-3).
* if not it is not snmp.
*/
/* SNMP starts with a SEQUENCE */
offset = get_ber_identifier(tvb, 0, &tmp_class, &tmp_pc, &tmp_tag);
if((tmp_class!=BER_CLASS_UNI)||(tmp_tag!=BER_UNI_TAG_SEQUENCE)) {
return 0;
}
/* then comes a length which spans the rest of the tvb */
offset = get_ber_length(tvb, offset, &tmp_length, &tmp_ind);
/* if(tmp_length!=(guint32)tvb_reported_length_remaining(tvb, offset)) {
* Loosen the heuristic a bit to handle the case where data has intentionally
* been added after the snmp PDU ( UDP case)
*/
if ( pinfo->ptype == PT_UDP ) {
if(tmp_length>(guint32)tvb_reported_length_remaining(tvb, offset)) {
return 0;
}
}else{
if(tmp_length!=(guint32)tvb_reported_length_remaining(tvb, offset)) {
return 0;
}
}
/* then comes an INTEGER (version)*/
get_ber_identifier(tvb, offset, &tmp_class, &tmp_pc, &tmp_tag);
if((tmp_class!=BER_CLASS_UNI)||(tmp_tag!=BER_UNI_TAG_INTEGER)) {
return 0;
}
/* do we need to test that version is 0 - 2 (version1-3) ? */
/*
* The first SNMP packet goes to the SNMP port; the second one
* may come from some *other* port, but goes back to the same
* IP address and port as the ones from which the first packet
* came; all subsequent packets presumably go between those two
* IP addresses and ports.
*
* If this packet went to the SNMP port, we check to see if
* there's already a conversation with one address/port pair
* matching the source IP address and port of this packet,
* the other address matching the destination IP address of this
* packet, and any destination port.
*
* If not, we create one, with its address 1/port 1 pair being
* the source address/port of this packet, its address 2 being
* the destination address of this packet, and its port 2 being
* wildcarded, and give it the SNMP dissector as a dissector.
*/
return dissect_snmp_pdu(tvb, 0, pinfo, tree, proto_snmp, ett_snmp, FALSE);
}
static int
dissect_snmp_tcp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* data _U_)
{
int offset = 0;
guint message_len;
while (tvb_reported_length_remaining(tvb, offset) > 0) {
message_len = dissect_snmp_pdu(tvb, 0, pinfo, tree, proto_snmp, ett_snmp, TRUE);
if (message_len == 0) {
/*
* We don't have all the data for that message,
* so we need to do desegmentation;
* "dissect_snmp_pdu()" has set that up.
*/
break;
}
offset += message_len;
}
return tvb_captured_length(tvb);
}
static int
dissect_smux(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data)
{
proto_tree *smux_tree = NULL;
proto_item *item = NULL;
var_list = next_tvb_list_new(pinfo->pool);
col_set_str(pinfo->cinfo, COL_PROTOCOL, "SMUX");
item = proto_tree_add_item(tree, proto_smux, tvb, 0, -1, ENC_NA);
smux_tree = proto_item_add_subtree(item, ett_smux);
return dissect_SMUX_PDUs_PDU(tvb, pinfo, smux_tree, data);
}
/*
MD5 Password to Key Algorithm from RFC 3414 A.2.1
SHA1 Password to Key Algorithm from RFC 3414 A.2.2
SHA2 Password to Key Algorithm from RFC 7860 9.3
*/
static void
snmp_usm_password_to_key(const snmp_usm_auth_model_t model, const guint8 *password,
guint passwordlen, const guint8 *engineID, guint engineLength, guint8 *key)
{
gcry_md_hd_t hash_handle;
guint8 *cp, password_buf[64];
guint32 password_index = 0;
guint32 count = 0, i;
guint hash_len;
if (gcry_md_open(&hash_handle, auth_hash_algo[model], 0)) {
return;
}
hash_len = auth_hash_len[model];
/**********************************************/
/* Use while loop until we've done 1 Megabyte */
/**********************************************/
while (count < 1048576) {
cp = password_buf;
if (passwordlen != 0) {
for (i = 0; i < 64; i++) {
/*************************************************/
/* Take the next octet of the password, wrapping */
/* to the beginning of the password as necessary.*/
/*************************************************/
*cp++ = password[password_index++ % passwordlen];
}
} else {
*cp = 0;
}
gcry_md_write(hash_handle, password_buf, 64);
count += 64;
}
memcpy(key, gcry_md_read(hash_handle, 0), hash_len);
gcry_md_close(hash_handle);
/*****************************************************/
/* Now localise the key with the engineID and pass */
/* through hash function to produce final key */
/* We ignore invalid engineLengths here. More strict */
/* checking is done in snmp_users_update_cb. */
/*****************************************************/
if (gcry_md_open(&hash_handle, auth_hash_algo[model], 0)) {
return;
}
gcry_md_write(hash_handle, key, hash_len);
gcry_md_write(hash_handle, engineID, engineLength);
gcry_md_write(hash_handle, key, hash_len);
memcpy(key, gcry_md_read(hash_handle, 0), hash_len);
gcry_md_close(hash_handle);
return;
}
static void
process_prefs(void)
{
}
UAT_LSTRING_CB_DEF(snmp_users,userName,snmp_ue_assoc_t,user.userName.data,user.userName.len)
UAT_LSTRING_CB_DEF(snmp_users,authPassword,snmp_ue_assoc_t,user.authPassword.data,user.authPassword.len)
UAT_LSTRING_CB_DEF(snmp_users,privPassword,snmp_ue_assoc_t,user.privPassword.data,user.privPassword.len)
UAT_BUFFER_CB_DEF(snmp_users,engine_id,snmp_ue_assoc_t,engine.data,engine.len)
UAT_VS_DEF(snmp_users,auth_model,snmp_ue_assoc_t,guint,0,"MD5")
UAT_VS_DEF(snmp_users,priv_proto,snmp_ue_assoc_t,guint,0,"DES")
static void *
snmp_specific_trap_copy_cb(void *dest, const void *orig, size_t len _U_)
{
snmp_st_assoc_t *u = (snmp_st_assoc_t *)dest;
const snmp_st_assoc_t *o = (const snmp_st_assoc_t *)orig;
u->enterprise = g_strdup(o->enterprise);
u->trap = o->trap;
u->desc = g_strdup(o->desc);
return dest;
}
static void
snmp_specific_trap_free_cb(void *r)
{
snmp_st_assoc_t *u = (snmp_st_assoc_t *)r;
g_free(u->enterprise);
g_free(u->desc);
}
UAT_CSTRING_CB_DEF(specific_traps, enterprise, snmp_st_assoc_t)
UAT_DEC_CB_DEF(specific_traps, trap, snmp_st_assoc_t)
UAT_CSTRING_CB_DEF(specific_traps, desc, snmp_st_assoc_t)
/*--- proto_register_snmp -------------------------------------------*/
void proto_register_snmp(void) {
/* List of fields */
static hf_register_info hf[] = {
{ &hf_snmp_response_in,
{ "Response In", "snmp.response_in", FT_FRAMENUM, BASE_NONE, NULL, 0x0,
"The response to this SNMP request is in this frame", HFILL }},
{ &hf_snmp_response_to,
{ "Response To", "snmp.response_to", FT_FRAMENUM, BASE_NONE, NULL, 0x0,
"This is a response to the SNMP request in this frame", HFILL }},
{ &hf_snmp_time,
{ "Time", "snmp.time", FT_RELATIVE_TIME, BASE_NONE, NULL, 0x0,
"The time between the Request and the Response", HFILL }},
{ &hf_snmp_v3_flags_auth,
{ "Authenticated", "snmp.v3.flags.auth", FT_BOOLEAN, 8,
TFS(&tfs_set_notset), TH_AUTH, NULL, HFILL }},
{ &hf_snmp_v3_flags_crypt,
{ "Encrypted", "snmp.v3.flags.crypt", FT_BOOLEAN, 8,
TFS(&tfs_set_notset), TH_CRYPT, NULL, HFILL }},
{ &hf_snmp_v3_flags_report,
{ "Reportable", "snmp.v3.flags.report", FT_BOOLEAN, 8,
TFS(&tfs_set_notset), TH_REPORT, NULL, HFILL }},
{ &hf_snmp_engineid_conform, {
"Engine ID Conformance", "snmp.engineid.conform", FT_BOOLEAN, 8,
TFS(&tfs_snmp_engineid_conform), F_SNMP_ENGINEID_CONFORM, "Engine ID RFC3411 Conformance", HFILL }},
{ &hf_snmp_engineid_enterprise, {
"Engine Enterprise ID", "snmp.engineid.enterprise", FT_UINT32, BASE_ENTERPRISES,
STRINGS_ENTERPRISES, 0, NULL, HFILL }},
{ &hf_snmp_engineid_format, {
"Engine ID Format", "snmp.engineid.format", FT_UINT8, BASE_DEC,
VALS(snmp_engineid_format_vals), 0, NULL, HFILL }},
{ &hf_snmp_engineid_ipv4, {
"Engine ID Data: IPv4 address", "snmp.engineid.ipv4", FT_IPv4, BASE_NONE,
NULL, 0, NULL, HFILL }},
{ &hf_snmp_engineid_ipv6, {
"Engine ID Data: IPv6 address", "snmp.engineid.ipv6", FT_IPv6, BASE_NONE,
NULL, 0, NULL, HFILL }},
{ &hf_snmp_engineid_cisco_type, {
"Engine ID Data: Cisco type", "snmp.engineid.cisco.type", FT_UINT8, BASE_HEX,
VALS(snmp_engineid_cisco_type_vals), 0, NULL, HFILL }},
{ &hf_snmp_engineid_mac, {
"Engine ID Data: MAC address", "snmp.engineid.mac", FT_ETHER, BASE_NONE,
NULL, 0, NULL, HFILL }},
{ &hf_snmp_engineid_text, {
"Engine ID Data: Text", "snmp.engineid.text", FT_STRING, BASE_NONE,
NULL, 0, NULL, HFILL }},
{ &hf_snmp_engineid_time, {
"Engine ID Data: Creation Time", "snmp.engineid.time", FT_ABSOLUTE_TIME, ABSOLUTE_TIME_LOCAL,
NULL, 0, NULL, HFILL }},
{ &hf_snmp_engineid_data, {
"Engine ID Data", "snmp.engineid.data", FT_BYTES, BASE_NONE,
NULL, 0, NULL, HFILL }},
{ &hf_snmp_msgAuthentication, {
"Authentication", "snmp.v3.auth", FT_BOOLEAN, BASE_NONE,
TFS(&auth_flags), 0, NULL, HFILL }},
{ &hf_snmp_decryptedPDU, {
"Decrypted ScopedPDU", "snmp.decrypted_pdu", FT_BYTES, BASE_NONE,
NULL, 0, "Decrypted PDU", HFILL }},
{ &hf_snmp_noSuchObject, {
"noSuchObject", "snmp.noSuchObject", FT_NONE, BASE_NONE,
NULL, 0, NULL, HFILL }},
{ &hf_snmp_noSuchInstance, {
"noSuchInstance", "snmp.noSuchInstance", FT_NONE, BASE_NONE,
NULL, 0, NULL, HFILL }},
{ &hf_snmp_endOfMibView, {
"endOfMibView", "snmp.endOfMibView", FT_NONE, BASE_NONE,
NULL, 0, NULL, HFILL }},
{ &hf_snmp_unSpecified, {
"unSpecified", "snmp.unSpecified", FT_NONE, BASE_NONE,
NULL, 0, NULL, HFILL }},
{ &hf_snmp_integer32_value, {
"Value (Integer32)", "snmp.value.int", FT_INT64, BASE_DEC,
NULL, 0, NULL, HFILL }},
{ &hf_snmp_octetstring_value, {
"Value (OctetString)", "snmp.value.octets", FT_BYTES, BASE_SHOW_ASCII_PRINTABLE,
NULL, 0, NULL, HFILL }},
{ &hf_snmp_oid_value, {
"Value (OID)", "snmp.value.oid", FT_OID, BASE_NONE,
NULL, 0, NULL, HFILL }},
{ &hf_snmp_null_value, {
"Value (Null)", "snmp.value.null", FT_NONE, BASE_NONE,
NULL, 0, NULL, HFILL }},
{ &hf_snmp_ipv4_value, {
"Value (IpAddress)", "snmp.value.ipv4", FT_IPv4, BASE_NONE,
NULL, 0, NULL, HFILL }},
{ &hf_snmp_ipv6_value, {
"Value (IpAddress)", "snmp.value.ipv6", FT_IPv6, BASE_NONE,
NULL, 0, NULL, HFILL }},
{ &hf_snmp_anyaddress_value, {
"Value (IpAddress)", "snmp.value.addr", FT_BYTES, BASE_NONE,
NULL, 0, NULL, HFILL }},
{ &hf_snmp_unsigned32_value, {
"Value (Unsigned32)", "snmp.value.u32", FT_INT64, BASE_DEC,
NULL, 0, NULL, HFILL }},
{ &hf_snmp_gauge32_value, {
"Value (Gauge32)", "snmp.value.g32", FT_INT64, BASE_DEC,
NULL, 0, NULL, HFILL }},
{ &hf_snmp_unknown_value, {
"Value (Unknown)", "snmp.value.unk", FT_BYTES, BASE_NONE,
NULL, 0, NULL, HFILL }},
{ &hf_snmp_counter_value, {
"Value (Counter32)", "snmp.value.counter", FT_UINT64, BASE_DEC,
NULL, 0, NULL, HFILL }},
{ &hf_snmp_big_counter_value, {
"Value (Counter64)", "snmp.value.counter", FT_UINT64, BASE_DEC,
NULL, 0, NULL, HFILL }},
{ &hf_snmp_nsap_value, {
"Value (NSAP)", "snmp.value.nsap", FT_UINT64, BASE_DEC,
NULL, 0, NULL, HFILL }},
{ &hf_snmp_timeticks_value, {
"Value (Timeticks)", "snmp.value.timeticks", FT_UINT64, BASE_DEC,
NULL, 0, NULL, HFILL }},
{ &hf_snmp_opaque_value, {
"Value (Opaque)", "snmp.value.opaque", FT_BYTES, BASE_NONE,
NULL, 0, NULL, HFILL }},
{ &hf_snmp_objectname, {
"Object Name", "snmp.name", FT_OID, BASE_NONE,
NULL, 0, NULL, HFILL }},
{ &hf_snmp_scalar_instance_index, {
"Scalar Instance Index", "snmp.name.index", FT_UINT64, BASE_DEC,
NULL, 0, NULL, HFILL }},
{ &hf_snmp_var_bind_str, {
"Variable-binding-string", "snmp.var-bind_str", FT_STRING, BASE_NONE,
NULL, 0, NULL, HFILL }},
{ &hf_snmp_agentid_trailer, {
"AgentID Trailer", "snmp.agentid_trailer", FT_BYTES, BASE_NONE,
NULL, 0, NULL, HFILL }},
#include "packet-snmp-hfarr.c"
};
/* List of subtrees */
static gint *ett[] = {
&ett_snmp,
&ett_engineid,
&ett_msgFlags,
&ett_encryptedPDU,
&ett_decrypted,
&ett_authParameters,
&ett_internet,
&ett_varbind,
&ett_name,
&ett_value,
&ett_decoding_error,
#include "packet-snmp-ettarr.c"
};
static ei_register_info ei[] = {
{ &ei_snmp_failed_decrypted_data_pdu, { "snmp.failed_decrypted_data_pdu", PI_MALFORMED, PI_WARN, "Failed to decrypt encryptedPDU", EXPFILL }},
{ &ei_snmp_decrypted_data_bad_formatted, { "snmp.decrypted_data_bad_formatted", PI_MALFORMED, PI_WARN, "Decrypted data not formatted as expected, wrong key?", EXPFILL }},
{ &ei_snmp_verify_authentication_error, { "snmp.verify_authentication_error", PI_MALFORMED, PI_ERROR, "Error while verifying Message authenticity", EXPFILL }},
{ &ei_snmp_authentication_ok, { "snmp.authentication_ok", PI_CHECKSUM, PI_CHAT, "SNMP Authentication OK", EXPFILL }},
{ &ei_snmp_authentication_error, { "snmp.authentication_error", PI_CHECKSUM, PI_WARN, "SNMP Authentication Error", EXPFILL }},
{ &ei_snmp_varbind_not_uni_class_seq, { "snmp.varbind.not_uni_class_seq", PI_MALFORMED, PI_WARN, "VarBind is not an universal class sequence", EXPFILL }},
{ &ei_snmp_varbind_has_indicator, { "snmp.varbind.has_indicator", PI_MALFORMED, PI_WARN, "VarBind has indicator set", EXPFILL }},
{ &ei_snmp_objectname_not_oid, { "snmp.objectname_not_oid", PI_MALFORMED, PI_WARN, "ObjectName not an OID", EXPFILL }},
{ &ei_snmp_objectname_has_indicator, { "snmp.objectname_has_indicator", PI_MALFORMED, PI_WARN, "ObjectName has indicator set", EXPFILL }},
{ &ei_snmp_value_not_primitive_encoding, { "snmp.value_not_primitive_encoding", PI_MALFORMED, PI_WARN, "value not in primitive encoding", EXPFILL }},
{ &ei_snmp_invalid_oid, { "snmp.invalid_oid", PI_MALFORMED, PI_WARN, "invalid oid", EXPFILL }},
{ &ei_snmp_varbind_wrong_tag, { "snmp.varbind.wrong_tag", PI_MALFORMED, PI_WARN, "Wrong tag for SNMP VarBind error value", EXPFILL }},
{ &ei_snmp_varbind_response, { "snmp.varbind.response", PI_RESPONSE_CODE, PI_NOTE, "Response", EXPFILL }},
{ &ei_snmp_no_instance_subid, { "snmp.no_instance_subid", PI_MALFORMED, PI_WARN, "No instance sub-id in scalar value", EXPFILL }},
{ &ei_snmp_wrong_num_of_subids, { "snmp.wrong_num_of_subids", PI_MALFORMED, PI_WARN, "Wrong number of instance sub-ids in scalar value", EXPFILL }},
{ &ei_snmp_index_suboid_too_short, { "snmp.index_suboid_too_short", PI_MALFORMED, PI_WARN, "index sub-oid shorter than expected", EXPFILL }},
{ &ei_snmp_unimplemented_instance_index, { "snmp.unimplemented_instance_index", PI_UNDECODED, PI_WARN, "OID instaces not handled, if you want this implemented please contact the wireshark developers", EXPFILL }},
{ &ei_snmp_index_suboid_len0, { "snmp.ndex_suboid_len0", PI_MALFORMED, PI_WARN, "an index sub-oid OID cannot be 0 bytes long!", EXPFILL }},
{ &ei_snmp_index_suboid_too_long, { "snmp.index_suboid_too_long", PI_MALFORMED, PI_WARN, "index sub-oid should not be longer than remaining oid size", EXPFILL }},
{ &ei_snmp_index_string_too_long, { "snmp.index_string_too_long", PI_MALFORMED, PI_WARN, "index string should not be longer than remaining oid size", EXPFILL }},
{ &ei_snmp_column_parent_not_row, { "snmp.column_parent_not_row", PI_MALFORMED, PI_ERROR, "COLUMNS's parent is not a ROW", EXPFILL }},
{ &ei_snmp_uint_too_large, { "snmp.uint_too_large", PI_UNDECODED, PI_NOTE, "Unsigned integer value > 2^64 - 1", EXPFILL }},
{ &ei_snmp_int_too_large, { "snmp.int_too_large", PI_UNDECODED, PI_NOTE, "Signed integer value > 2^63 - 1 or <= -2^63", EXPFILL }},
{ &ei_snmp_integral_value0, { "snmp.integral_value0", PI_UNDECODED, PI_NOTE, "Integral value is zero-length", EXPFILL }},
{ &ei_snmp_missing_mib, { "snmp.missing_mib", PI_UNDECODED, PI_NOTE, "Unresolved value, Missing MIB", EXPFILL }},
{ &ei_snmp_varbind_wrong_length_value, { "snmp.varbind.wrong_length_value", PI_MALFORMED, PI_WARN, "Wrong length for SNMP VarBind/value", EXPFILL }},
{ &ei_snmp_varbind_wrong_class_tag, { "snmp.varbind.wrong_class_tag", PI_MALFORMED, PI_WARN, "Wrong class/tag for SNMP VarBind/value", EXPFILL }},
{ &ei_snmp_rfc1910_non_conformant, { "snmp.rfc1910_non_conformant", PI_PROTOCOL, PI_WARN, "Data not conforming to RFC1910", EXPFILL }},
{ &ei_snmp_rfc3411_non_conformant, { "snmp.rfc3411_non_conformant", PI_PROTOCOL, PI_WARN, "Data not conforming to RFC3411", EXPFILL }},
{ &ei_snmp_version_unknown, { "snmp.version.unknown", PI_PROTOCOL, PI_WARN, "Unknown version", EXPFILL }},
{ &ei_snmp_trap_pdu_obsolete, { "snmp.trap_pdu_obsolete", PI_PROTOCOL, PI_WARN, "Trap-PDU is obsolete in this SNMP version", EXPFILL }},
};
expert_module_t* expert_snmp;
module_t *snmp_module;
static uat_field_t users_fields[] = {
UAT_FLD_BUFFER(snmp_users,engine_id,"Engine ID","Engine-id for this entry (empty = any)"),
UAT_FLD_LSTRING(snmp_users,userName,"Username","The username"),
UAT_FLD_VS(snmp_users,auth_model,"Authentication model",auth_types,"Algorithm to be used for authentication."),
UAT_FLD_LSTRING(snmp_users,authPassword,"Password","The password used for authenticating packets for this entry"),
UAT_FLD_VS(snmp_users,priv_proto,"Privacy protocol",priv_types,"Algorithm to be used for privacy."),
UAT_FLD_LSTRING(snmp_users,privPassword,"Privacy password","The password used for encrypting packets for this entry"),
UAT_END_FIELDS
};
uat_t *assocs_uat = uat_new("SNMP Users",
sizeof(snmp_ue_assoc_t),
"snmp_users",
TRUE,
&ueas,
&num_ueas,
UAT_AFFECTS_DISSECTION, /* affects dissection of packets, but not set of named fields */
"ChSNMPUsersSection",
snmp_users_copy_cb,
snmp_users_update_cb,
snmp_users_free_cb,
renew_ue_cache,
NULL,
users_fields);
static uat_field_t specific_traps_flds[] = {
UAT_FLD_CSTRING(specific_traps,enterprise,"Enterprise OID","Enterprise Object Identifier"),
UAT_FLD_DEC(specific_traps,trap,"Trap Id","The specific-trap value"),
UAT_FLD_CSTRING(specific_traps,desc,"Description","Trap type description"),
UAT_END_FIELDS
};
uat_t* specific_traps_uat = uat_new("SNMP Enterprise Specific Trap Types",
sizeof(snmp_st_assoc_t),
"snmp_specific_traps",
TRUE,
&specific_traps,
&num_specific_traps,
UAT_AFFECTS_DISSECTION, /* affects dissection of packets, but not set of named fields */
"ChSNMPEnterpriseSpecificTrapTypes",
snmp_specific_trap_copy_cb,
NULL,
snmp_specific_trap_free_cb,
NULL,
NULL,
specific_traps_flds);
/* Register protocol */
proto_snmp = proto_register_protocol(PNAME, PSNAME, PFNAME);
snmp_handle = register_dissector("snmp", dissect_snmp, proto_snmp);
/* Register fields and subtrees */
proto_register_field_array(proto_snmp, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));
expert_snmp = expert_register_protocol(proto_snmp);
expert_register_field_array(expert_snmp, ei, array_length(ei));
/* Register configuration preferences */
snmp_module = prefs_register_protocol(proto_snmp, process_prefs);
prefs_register_bool_preference(snmp_module, "display_oid",
"Show SNMP OID in info column",
"Whether the SNMP OID should be shown in the info column",
&display_oid);
prefs_register_obsolete_preference(snmp_module, "mib_modules");
prefs_register_obsolete_preference(snmp_module, "users_file");
prefs_register_bool_preference(snmp_module, "desegment",
"Reassemble SNMP-over-TCP messages spanning multiple TCP segments",
"Whether the SNMP dissector should reassemble messages spanning multiple TCP segments."
" To use this option, you must also enable \"Allow subdissectors to reassemble TCP streams\" in the TCP protocol settings.",
&snmp_desegment);
prefs_register_bool_preference(snmp_module, "var_in_tree",
"Display dissected variables inside SNMP tree",
"ON - display dissected variables inside SNMP tree, OFF - display dissected variables in root tree after SNMP",
&snmp_var_in_tree);
prefs_register_uat_preference(snmp_module, "users_table",
"Users Table",
"Table of engine-user associations used for authentication and decryption",
assocs_uat);
prefs_register_uat_preference(snmp_module, "specific_traps_table",
"Enterprise Specific Trap Types",
"Table of enterprise specific-trap type descriptions",
specific_traps_uat);
#ifdef HAVE_LIBSMI
prefs_register_static_text_preference(snmp_module, "info_mibs",
"MIB settings can be changed in the Name Resolution preferences",
"MIB settings can be changed in the Name Resolution preferences");
#endif
value_sub_dissectors_table = register_dissector_table("snmp.variable_oid","SNMP Variable OID", proto_snmp, FT_STRING, BASE_NONE);
register_init_routine(init_ue_cache);
register_cleanup_routine(cleanup_ue_cache);
register_ber_syntax_dissector("SNMP", proto_snmp, dissect_snmp_tcp);
snmp_tap=register_tap("snmp");
register_srt_table(proto_snmp, NULL, 1, snmpstat_packet, snmpstat_init, NULL);
}
/*--- proto_reg_handoff_snmp ---------------------------------------*/
void proto_reg_handoff_snmp(void) {
dissector_handle_t snmp_tcp_handle;
dissector_add_uint_with_preference("udp.port", UDP_PORT_SNMP, snmp_handle);
dissector_add_uint("ethertype", ETHERTYPE_SNMP, snmp_handle);
dissector_add_uint("ipx.socket", IPX_SOCKET_SNMP_AGENT, snmp_handle);
dissector_add_uint("ipx.socket", IPX_SOCKET_SNMP_SINK, snmp_handle);
dissector_add_uint("hpext.dxsap", HPEXT_SNMP, snmp_handle);
snmp_tcp_handle = create_dissector_handle(dissect_snmp_tcp, proto_snmp);
dissector_add_uint_with_preference("tcp.port", TCP_PORT_SNMP, snmp_tcp_handle);
/* Since "regular" SNMP port and "trap" SNMP port use the same handler,
the "trap" port doesn't really need a separate preference. Just register
normally */
dissector_add_uint("tcp.port", TCP_PORT_SNMP_TRAP, snmp_tcp_handle);
dissector_add_uint("udp.port", UDP_PORT_SNMP_TRAP, snmp_handle);
dissector_add_uint("udp.port", UDP_PORT_SNMP_PATROL, snmp_handle);
data_handle = find_dissector("data");
/* SNMPv2-MIB sysDescr "1.3.6.1.2.1.1.1.0" */
dissector_add_string("snmp.variable_oid", "1.3.6.1.2.1.1.1.0",
create_dissector_handle(dissect_snmp_variable_string, proto_snmp));
/* SNMPv2-MIB::sysName.0 (1.3.6.1.2.1.1.5.0) */
dissector_add_string("snmp.variable_oid", "1.3.6.1.2.1.1.5.0",
create_dissector_handle(dissect_snmp_variable_string, proto_snmp));
/*
* Process preference settings.
*
* We can't do this in the register routine, as preferences aren't
* read until all dissector register routines have been called (so
* that all dissector preferences have been registered).
*/
process_prefs();
}
void
proto_register_smux(void)
{
static gint *ett[] = {
&ett_smux,
};
proto_smux = proto_register_protocol("SNMP Multiplex Protocol",
"SMUX", "smux");
proto_register_subtree_array(ett, array_length(ett));
}
void
proto_reg_handoff_smux(void)
{
dissector_handle_t smux_handle;
smux_handle = create_dissector_handle(dissect_smux, proto_smux);
dissector_add_uint_with_preference("tcp.port", TCP_PORT_SMUX, smux_handle);
}
/*
* Editor modelines - https://www.wireshark.org/tools/modelines.html
*
* Local variables:
* c-basic-offset: 8
* tab-width: 8
* indent-tabs-mode: t
* End:
*
* vi: set shiftwidth=8 tabstop=8 noexpandtab:
* :indentSize=8:tabSize=8:noTabs=false:
*/