wireshark/wiretap/vwr.c
Guy Harris 88e9d1c1e5 Do not call wtap_file_read_unknown_bytes() or
wtap_file_read_expected_bytes() from an open routine - open routines are
supposed to return -1 on error, 0 if the file doesn't appear to be a
file of the specified type, or 1 if the file does appear to be a file of
the specified type, but those macros will cause the caller to return
FALSE on errors (so that, even if there's an I/O error, it reports "the
file isn't a file of the specified type" rather than "we got an error
trying to read the file").

When doing reads in an open routine before we've concluded that the file
is probably of the right type, return 0, rather than -1, if we get
WTAP_ERR_SHORT_READ - if we don't have enough data to check whether a
file is of a given type, we should keep trying other types, not give up.
For reads done *after* we've concluded the file is probably of the right
type, if a read doesn't return the number of bytes we asked for, but
returns an error of 0, return WTAP_ERR_SHORT_READ - the file is
apparently cut short.

For NetMon and NetXRay/Windows Sniffer files, use a #define for the
magic number size, and use that for both magic numbers.

svn path=/trunk/; revision=46803
2012-12-27 12:19:25 +00:00

2206 lines
100 KiB
C

/* vwr.c
* Copyright (c) 2011 by Tom Alexander <talexander@ixiacom.com>
*
* $Id$
*
* Wiretap Library
* Copyright (c) 1998 by Gilbert Ramirez <gram@alumni.rice.edu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
*/
#include "config.h"
#include <errno.h>
#include <string.h>
#include "wtap-int.h"
#include "file_wrappers.h"
#include "buffer.h"
#include "vwr.h"
/* platform-specific definitions for portability */
/* unsigned long long constants */
# define NS_IN_US G_GINT64_CONSTANT(1000U) /* nanoseconds-to-microseconds */
# define NS_IN_SEC G_GINT64_CONSTANT(1000000000U) /* nanoseconds-to-seconds */
# define US_IN_SEC G_GINT64_CONSTANT(1000000U) /* microseconds-to-seconds */
# define LL_ZERO G_GINT64_CONSTANT(0U) /* zero in unsigned long long */
/*
* Fetch a 64-bit value in "Corey-endian" form.
*/
#define pcoreytohll(p) ((guint64)*((const guint8 *)(p)+4)<<56| \
(guint64)*((const guint8 *)(p)+5)<<48| \
(guint64)*((const guint8 *)(p)+6)<<40| \
(guint64)*((const guint8 *)(p)+7)<<32| \
(guint64)*((const guint8 *)(p)+0)<<24| \
(guint64)*((const guint8 *)(p)+1)<<16| \
(guint64)*((const guint8 *)(p)+2)<<8| \
(guint64)*((const guint8 *)(p)+3)<<0)
/* .vwr log file defines */
#define B_SIZE 32768 /* max var len message = 32 kB */
#define VT_FRAME 0 /* varlen msg is a frame */
#define VT_CPMSG 1 /* varlen msg is a CP<->PP msg */
#define MAX_TRACKED_CLIENTS 1024 /* track 1024 clients */
#define MAX_TRACKED_FLOWS 65536 /* and 64K flows */
/* the radiotap header */
/* IxVeriwave common header fields */
typedef struct {
guint16 vw_port_type; /* 0 for WLAN, 1 for Ethernet */
guint16 it_len; /* WHOLE radiotap header length (incl. */
guint16 vw_msdu_length; /* length of MAC SDU */
guint32 vw_flowid; /* VeriWave-specific flow ID for packet */
guint16 vw_vcid; /* VeriWave-specific vC ID (client id) */
guint16 vw_seqnum; /* VeriWave-specific signature seqnum */
guint32 vw_latency; /* VeriWave-specific packet latency, ns */
guint32 vw_sig_ts; /* signature timestamp, 32 LSBs, nsec */
guint64 vw_startt; /* frame start time (nsec) */
guint64 vw_endt; /* frame end time (nsec) */
guint32 vw_pktdur; /* VeriWave-specific pkt duration, us */
} stats_common_fields;
/* Size of those fields - regardless of how the compiler packs them */
#define STATS_COMMON_FIELDS_LEN (2+2+2+2+4+2+2+4+4+8+8+4+4)
/* Veriwave-specific extended radiotap header fields (following vwr_rtap_hdr above) */
/* structure elements correspond one-to-one with the RADIOTAP_PRESENT bitmask below */
/* NOTE: must ensure that elements are aligned to their "natural" packing */
/* NOTE: must ensure that "latency" precedes all other packet timing details, because it */
/* is used to start a subtree */
typedef struct {
guint16 it_len; /* WHOLE radiotap header length (incl. */
guint16 flags; /* short preamble, WEP, frag */
guint16 chanflags; /* channel flags bitmap */
guint8 rate; /* PHY bit rate, 500 kb/s units */
gint8 signal; /* RF signal power, +/- dBm */
gint8 tx_power; /* transmit power, +/- dBm */
guint8 pad;
guint16 vw_flags; /* VeriWave-specific packet flags */
guint16 vw_ht_length; /* ht length (in plcp header)*/
guint16 vw_info; /* VeriWave-specific information */
guint32 vw_errors; /* VeriWave-specific errors */
} ext_rtap_fields;
/* Size of those fields - regardless of how the compiler packs them */
#define EXT_RTAP_FIELDS_LEN (2+2+2+1+1+1+1+2+2+2+4)
/* Veriwave-specific Ethernettap header */
typedef struct {
guint16 it_len; /* WHOLE radiotap header length (incl. */
guint16 vw_flags; /* Veriwave-specific flags (see above) */
guint16 vw_info; /* VeriWave-specific information */
guint32 vw_errors; /* VeriWave-specific flags */
guint32 vw_l4id; /* layer four id*/
guint32 it_pad2; /* pad out header to 16-byte boundary */
} stats_ethernettap_fields;
/* Size of those fields - regardless of how the compiler packs them */
#define STATS_ETHERNETTAP_FIELDS_LEN (2+2+2+2+4+4+4)
/* the bitmap offsets of the bits in it_present, above */
/* also lists the expected field sizes in bytes */
/* MUST BE IN SAME ORDER AS THE STRUCTURE ELEMENTS ABOVE */
enum radiotap_type {
VW_RADIOTAP_FLAGS = 0, /* 2 bytes */
VW_RADIOTAP_RATE = 1, /* 1 byte */
VW_RADIOTAP_CHANNEL = 2, /* 4 bytes (mhz + chanflags) */
VW_RADIOTAP_DBM_ANTSIGNAL = 3, /* 1 byte */
VW_RADIOTAP_DBM_TX_POWER = 4, /* 1 byte */
/* start of veriwave addition */
VW_RADIOTAP_FPGA_VERSION = 5, /* 2 bytes */
VW_RADIOTAP_VW_FLAGS = 6, /* 2 bytes */
VW_RADIOTAP_MSDU_LENGTH = 7, /* 2 bytes */
VW_RADIOTAP_HT_LENGTH = 8, /* 2 bytes */
VW_RADIOTAP_INFO = 9, /* 2 bytes */
VW_RADIOTAP_ERRORS = 10, /* 4 bytes */
VW_RADIOTAP_FLOWID = 11, /* 4 bytes */
VW_RADIOTAP_MCID = 12, /* 2 bytes */
VW_RADIOTAP_SEQNUM = 13, /* 2 bytes */
VW_RADIOTAP_LATENCY = 14, /* 4 bytes (MUST COME BEFORE OTHER TIMES)*/
VW_RADIOTAP_SIG_TS = 15, /* 4 bytes */
VW_RADIOTAP_STARTT = 16, /* 8 bytes */
VW_RADIOTAP_ENDT = 17, /* 8 bytes */
VW_RADIOTAP_PKTDUR = 18, /* 4 bytes */
VW_RADIOTAP_IFG = 19, /* 4 bytes */
/* end of Veriwave addition 6-2007 */
VW_RADIOTAP_EXT = 31
};
/* standard field-present bitmap corresponding to above fixed-size set of fields */
/* this produces a 16-byte header */
#define VW_RADIOTAP_PRESENT ((1 << VW_RADIOTAP_FLAGS) | \
(1 << VW_RADIOTAP_RATE) | \
(1 << VW_RADIOTAP_CHANNEL) | \
(1 << VW_RADIOTAP_DBM_ANTSIGNAL) | \
(1 << VW_RADIOTAP_DBM_TX_POWER))
/* extended field-present bitmap corresponding to above fixed-size set of fields */
/* this produces a 32-byte header */
#define VW_EXT_RTAP_PRESENT ((1 << VW_RADIOTAP_FLAGS) | \
(1 << VW_RADIOTAP_RATE) | \
(1 << VW_RADIOTAP_CHANNEL) | \
(1 << VW_RADIOTAP_DBM_ANTSIGNAL) | \
(1 << VW_RADIOTAP_DBM_TX_POWER) | \
(1 << VW_RADIOTAP_FPGA_VERSION) | \
(1 << VW_RADIOTAP_VW_FLAGS) | \
(1 << VW_RADIOTAP_MSDU_LENGTH) | \
(1 << VW_RADIOTAP_HT_LENGTH) | \
(1 << VW_RADIOTAP_ERRORS) | \
(1 << VW_RADIOTAP_INFO) | \
(1 << VW_RADIOTAP_MCID) | \
(1 << VW_RADIOTAP_FLOWID) | \
(1 << VW_RADIOTAP_SEQNUM) | \
(1 << VW_RADIOTAP_LATENCY) | \
(1 << VW_RADIOTAP_SIG_TS) | \
(1 << VW_RADIOTAP_STARTT) | \
(1 << VW_RADIOTAP_ENDT) |\
(1 << VW_RADIOTAP_PKTDUR) |\
(1 << VW_RADIOTAP_IFG))
/*
* RADIOTAP_FLAGS u_int8_t bitmap
* See flags definitions below
*
* RADIOTAP_RATE u_int8_t 500kb/s
* Tx/Rx data rate
*
* RADIOTAP_CHANNEL 2 x u_int16_t MHz+bitmap
* Tx/Rx frequency in MHz, followed by flags (see below).
*
* RADIOTAP_DBM_ANTSIGNAL int8_t dBm
* RF signal power at the antenna, dBm
*
* RADIOTAP_DBM_ANTNOISE int8_t dBm
* RF noise power at the antenna, dBm
*
* RADIOTAP_BARKER_CODE_LOCK u_int16_t unitless
* Quality of Barker code lock. Monotonically nondecreasing with "better" lock strength.
* Called "Signal Quality" in datasheets.
*
* RADIOTAP_DBM_TX_POWER int8_t dBm
* Transmit power expressed as dBm.
*/
/* Channel flags for IEEE80211_RADIOTAP_CHANNEL */
#define CHAN_TURBO 0x0010 /* Turbo channel */
#define CHAN_CCK 0x0020 /* CCK channel */
#define CHAN_OFDM 0x0040 /* OFDM channel */
#define CHAN_2GHZ 0x0080 /* 2 GHz spectrum channel. */
#define CHAN_5GHZ 0x0100 /* 5 GHz spectrum channel */
#define CHAN_PASSIVE 0x0200 /* Only passive scan allowed */
/* For RADIOTAP_FLAGS */
#define RADIOTAP_F_CFP 0x001 /* sent/received during CFP */
#define RADIOTAP_F_SHORTPRE 0x002 /* sent/received with short preamble */
#define RADIOTAP_F_WEP 0x004 /* sent/received with WEP encryption */
#define RADIOTAP_F_FRAG 0x008 /* sent/received with fragmentation */
#define RADIOTAP_F_FCS 0x010 /* frame includes FCS */
#define RADIOTAP_F_DATAPAD 0x020 /* padding between 802.11 hdr & payload */
#define RADIOTAP_F_CHAN_HT 0x040 /* In HT mode */
#define RADIOTAP_F_CHAN_40MHZ 0x080 /* 40 Mhz CBW */
#define RADIOTAP_F_CHAN_SHORTGI 0x100 /* Short guard interval */
/* For VeriWave-specific RADIOTAP_FLAGS and ETHERNETTAP_FLAGS */
#define RADIOTAP_VWF_TXF 0x01 /* frame was transmitted */
#define RADIOTAP_VWF_FCSERR 0x02 /* FCS error detected */
#define RADIOTAP_VWF_RETRERR 0x04 /* excess retry error detected */
#define RADIOTAP_VWF_DCRERR 0x10 /* decrypt error detected (WLAN) */
#define RADIOTAP_VWF_ENCMSK 0x60 /* encryption type mask */
/* 0 = none, 1 = WEP, 2 = TKIP, 3 = CCKM */
#define RADIOTAP_VWF_IS_WEP 0x20 /* WEP */
#define RADIOTAP_VWF_IS_TKIP 0x40 /* TKIP */
#define RADIOTAP_VWF_IS_CCMP 0x60 /* CCMP */
#define RADIOTAP_VWF_SEQ_ERR 0x80 /* flow sequence error detected */
/* FPGA-generated frame buffer STATS block offsets and definitions */
/* definitions for v2.2 frames, Ethernet format */
#define v22_E_STATS_LEN 44 /* length of stats block trailer */
#define v22_E_VALID_OFF 0 /* bit 6 (0x40) is flow-is-valid flag */
#define v22_E_MTYPE_OFF 1 /* offset of modulation type */
#define v22_E_VCID_OFF 2 /* offset of VC ID */
#define v22_E_FLOWSEQ_OFF 4 /* offset of signature sequence number */
#define v22_E_FLOWID_OFF 5 /* offset of flow ID */
#define v22_E_OCTET_OFF 8 /* offset of octets */
#define v22_E_ERRORS_OFF 10 /* offset of error vector */
#define v22_E_PATN_OFF 12 /* offset of pattern match vector */
#define v22_E_L4ID_OFF 12
#define v22_E_IPLEN_OFF 14
#define v22_E_FRAME_TYPE_OFF 16 /* offset of frame type, 32 bits */
#define v22_E_RSSI_OFF 21 /* RSSI (NOTE: invalid for Ethernet) */
#define v22_E_STARTT_OFF 20 /* offset of start time, 64 bits */
#define v22_E_ENDT_OFF 28 /* offset of end time, 64 bits */
#define v22_E_LATVAL_OFF 36 /* offset of latency, 32 bits */
#define v22_E_INFO_OFF 40 /* NO INFO FIELD IN ETHERNET STATS! */
#define v22_E_DIFFERENTIATOR_OFF 0 /* offset to determine whether */
/* eth/802.11, 8 bits */
#define v22_E_MT_10_HALF 0 /* 10 Mb/s half-duplex */
#define v22_E_MT_10_FULL 1 /* 10 Mb/s full-duplex */
#define v22_E_MT_100_HALF 2 /* 100 Mb/s half-duplex */
#define v22_E_MT_100_FULL 3 /* 100 Mb/s full-duplex */
#define v22_E_MT_1G_HALF 4 /* 1 Gb/s half-duplex */
#define v22_E_MT_1G_FULL 5 /* 1 Gb/s full-duplex */
#define v22_E_FCS_ERROR 0x0002 /* FCS error flag in error vector */
#define v22_E_CRYPTO_ERR 0x1f00 /* RX decrypt error flags (UNUSED) */
#define v22_E_SIG_ERR 0x0004 /* signature magic byte mismatch */
#define v22_E_PAYCHK_ERR 0x0008 /* payload checksum failure */
#define v22_E_RETRY_ERR 0x0400 /* excessive retries on TX fail (UNUSED)*/
#define v22_E_IS_RX 0x08 /* TX/RX bit in STATS block */
#define v22_E_MT_MASK 0x07 /* modulation type mask (UNUSED) */
#define v22_E_VCID_MASK 0x03ff /* VC ID is only 9 bits */
#define v22_E_FLOW_VALID 0x40 /* flow-is-valid flag (else force to 0) */
#define v22_E_DIFFERENTIATOR_MASK 0X3F /* mask to differentiate ethernet from */
#define v22_E_IS_TCP 0x00000040 /* TCP bit in FRAME_TYPE field */
#define v22_E_IS_UDP 0x00000010 /* UDP bit in FRAME_TYPE field */
#define v22_E_IS_ICMP 0x00000020 /* ICMP bit in FRAME_TYPE field */
#define v22_E_IS_IGMP 0x00000080 /* IGMP bit in FRAME_TYPE field */
#define v22_E_IS_QOS 0x80 /* QoS bit in MTYPE field (WLAN only) */
#define v22_E_IS_VLAN 0x00200000
#define v22_E_RX_DECRYPTS 0x0007 /* RX-frame-was-decrypted (UNUSED) */
#define v22_E_TX_DECRYPTS 0x0007 /* TX-frame-was-decrypted (UNUSED) */
#define v22_E_FC_PROT_BIT 0x40 /* Protected Frame bit in FC1 of frame */
#define v22_E_HEADER_IS_RX 0x21
#define v22_E_HEADER_IS_TX 0x31
#define v22_E_IS_ETHERNET 0x00700000 /* bits set in frame type if ethernet */
#define v22_E_IS_80211 0x7F000000 /* bits set in frame type if 802.11 */
/* definitions for v2.2 frames, WLAN format for VW510006 FPGA*/
#define v22_W_STATS_LEN 64 /* length of stats block trailer */
#define v22_W_VALID_OFF 0 /* bit 6 (0x40) is flow-is-valid flag */
#define v22_W_MTYPE_OFF 1 /* offset of modulation type */
#define v22_W_VCID_OFF 2 /* offset of VC ID */
#define v22_W_FLOWSEQ_OFF 4 /* offset of signature sequence number */
#define v22_W_FLOWID_OFF 5 /* offset of flow ID */
#define v22_W_OCTET_OFF 8 /* offset of octets */
#define v22_W_ERRORS_OFF 10 /* offset of error vector */
#define v22_W_PATN_OFF 12
#define v22_W_L4ID_OFF 12
#define v22_W_IPLEN_OFF 14
#define v22_W_FRAME_TYPE_OFF 16 /* offset of frame type, 32 bits */
#define v22_W_RSSI_OFF 21 /* RSSI (NOTE: RSSI must be negated!) */
#define v22_W_STARTT_OFF 24 /* offset of start time, 64 bits */
#define v22_W_ENDT_OFF 32 /* offset of end time, 64 bits */
#define v22_W_LATVAL_OFF 40 /* offset of latency, 32 bits */
#define v22_W_INFO_OFF 54 /* offset of INFO field, 16 LSBs */
#define v22_W_DIFFERENTIATOR_OFF 20 /* offset to determine whether */
/* eth/802.11, 32 bits */
#define v22_W_PLCP_LENGTH_OFF 4 /* LENGTH field in the plcp header */
#define v22_W_MT_CCKL 0 /* CCK modulation, long preamble */
#define v22_W_MT_CCKS 1 /* CCK modulation, short preamble */
#define v22_W_MT_OFDM 2 /* OFDM modulation */
#define v22_W_IS_TCP 0x00000040 /* TCP bit in FRAME_TYPE field */
#define v22_W_IS_UDP 0x00000010 /* UDP bit in FRAME_TYPE field */
#define v22_W_IS_ICMP 0x00000020 /* ICMP bit in FRAME_TYPE field */
#define v22_W_IS_IGMP 0x00000080 /* IGMP bit in FRAME_TYPE field */
#define v22_W_IS_QOS 0x80 /* QoS bit in MTYPE field (WLAN only) */
#define v22_W_FCS_ERROR 0x0002 /* FCS error flag in error vector */
#define v22_W_CRYPTO_ERR 0x1f00 /* RX decrypt error flags */
#define v22_W_SIG_ERR 0x0004 /* signature magic byte mismatch */
#define v22_W_PAYCHK_ERR 0x0008 /* payload checksum failure */
#define v22_W_RETRY_ERR 0x0400 /* excessive retries on TX failure */
#define v22_W_IS_RX 0x08 /* TX/RX bit in STATS block */
#define v22_W_MT_MASK 0x07 /* modulation type mask */
#define v22_W_VCID_MASK 0x01ff /* VC ID is only 9 bits */
#define v22_W_FLOW_VALID 0x40 /* flow-is-valid flag (else force to 0) */
#define v22_W_DIFFERENTIATOR_MASK 0Xf0ff /* mask to differentiate ethernet from */
/* 802.11 capture */
#define v22_W_RX_DECRYPTS 0x0007 /* RX-frame-was-decrypted bits */
#define v22_W_TX_DECRYPTS 0x0007 /* TX-frame-was-decrypted bits */
#define v22_W_WEPTYPE 0x0001 /* WEP frame */
#define v22_W_TKIPTYPE 0x0002 /* TKIP frame */
#define v22_W_CCMPTYPE 0x0004 /* CCMP frame */
#define v22_W_HEADER_IS_RX 0x21
#define v22_W_HEADER_IS_TX 0x31
#define v22_W_FC_PROT_BIT 0x40 /* Protected Frame bit in FC1 of frame */
#define v22_W_IS_ETHERNET 0x00100000 /* bits set in frame type if ethernet */
#define v22_W_IS_80211 0x7F000000 /* bits set in frame type if 802.11 */
/* definitions for VW510021 FPGA, WLAN format */
/* FORMAT:
16 BYTE header
8 bytes of stat block
plcp stuff (11 bytes plcp + 1 byte pad)
data
remaining 48 bytes of stat block
*/
/* offsets in the stats block */
#define vVW510021_W_STATS_LEN 48 /* length of stats block trailer after the plcp portion*/
#define vVW510021_W_STARTT_OFF 0 /* offset of start time, 64 bits */
#define vVW510021_W_ENDT_OFF 8 /* offset of end time, 64 bits */
#define vVW510021_W_ERRORS_OFF 16 /* offset of error vector */
#define vVW510021_W_VALID_OFF 20 /* 2 Bytes with different validity bits */
#define vVW510021_W_INFO_OFF 22 /* offset of INFO field, 16 LSBs */
#define vVW510021_W_FRAME_TYPE_OFF 24
#define vVW510021_W_L4ID_OFF 28
#define vVW510021_W_IPLEN_OFF 30 /* offset of IP Total Length field */
#define vVW510021_W_FLOWSEQ_OFF 32 /* offset of signature sequence number */
#define vVW510021_W_FLOWID_OFF 33 /* offset of flow ID */
#define vVW510021_W_LATVAL_OFF 36 /* offset of delay/flowtimestamp, 32b */
#define vVW510021_W_DEBUG_OFF 40 /* offset of debug, 16 bits */
#define vVW510021_W_FPGA_VERSION_OFF 44 /* offset of fpga version, 16 bits */
#define vVW510021_W_MATCH_OFF 47 /* offset of pattern match vector */
/* offsets in the header block */
#define vVW510021_W_HEADER_LEN 16 /* length of FRAME header */
#define vVW510021_W_RXTX_OFF 0 /* rxtx offset, cmd byte of header */
#define vVW510021_W_HEADER_VERSION_OFF 9 /* version, 2bytes */
#define vVW510021_MSG_LENGTH_OFF 10 /* MSG LENGTH, 2bytes */
#define vVW510021_W_DEVICE_TYPE_OFF 8 /* version, 2bytes */
/* offsets that occurs right after the header */
#define vVW510021_W_AFTERHEADER_LEN 8 /* length of STATs info directly after header */
#define vVW510021_W_L1P_1_OFF 0 /* offset of 1st byte of layer one info */
#define vVW510021_W_L1P_2_OFF 1 /* offset of 2nd byte of layer one info */
#define vVW510021_W_MTYPE_OFF vVW510021_W_L1P_2_OFF
#define vVW510021_W_PREAMBLE_OFF vVW510021_W_L1P_1_OFF
#define vVW510021_W_RSSI_TXPOWER_OFF 2 /* RSSI (NOTE: RSSI must be negated!) */
#define vVW510021_W_MSDU_LENGTH_OFF 3 /* 7:0 of length, next byte 11:8 in top 4 bits */
#define vVW510021_W_BVCV_VALID_OFF 4 /* BV,CV Determine validaity of bssid and txpower */
#define vVW510021_W_VCID_OFF 6 /* offset of VC (client) ID */
#define vVW510021_W_PLCP_LENGTH_OFF 12 /* LENGTH field in the plcp header */
/* Masks and defines */
#define vVW510021_W_IS_BV 0x04 /* BV bit in STATS block */
#define vVW510021_W_IS_CV 0x02 /* BV bit in STATS block */
#define vVW510021_W_FLOW_VALID 0x8000 /* valid_off flow-is-valid flag (else 0) */
#define vVW510021_W_QOS_VALID 0x4000
#define vVW510021_W_HT_VALID 0x2000
#define vVW510021_W_L4ID_VALID 0x1000
#define vVW510021_W_PREAMBLE_MASK 0x40 /* short/long preamble/guard(ofdm) mask */
#define vVW510021_W_MCS_MASK 0x3f /* mcs index (a/b) type mask */
#define vVW510021_W_MOD_SCHEME_MASK 0x3f /* modulation type mask */
#define vVW510021_W_PLCPC_MASK 0x03 /* PLPCP type mask */
#define vVW510021_W_SEL_MASK 0x80
#define vVW510021_W_WEP_MASK 0x0001
#define vVW510021_W_CBW_MASK 0xC0
#define vVW510021_W_MT_SEL_LEGACY 0x00
#define vVW510021_W_PLCP_LEGACY 0x00
#define vVW510021_W_PLCP_MIXED 0x01
#define vVW510021_W_PLCP_GREENFIELD 0x02
#define vVW510021_W_HEADER_IS_RX 0x21
#define vVW510021_W_HEADER_IS_TX 0x31
#define vVW510021_W_IS_WEP 0x0001
#define vVW510021_W_IS_LONGPREAMBLE 0x40
#define vVW510021_W_IS_TCP 0x01000000 /* TCP bit in FRAME_TYPE field */
#define vVW510021_W_IS_UDP 0x00100000 /* UDP bit in FRAME_TYPE field */
#define vVW510021_W_IS_ICMP 0x00001000 /* ICMP bit in FRAME_TYPE field */
#define vVW510021_W_IS_IGMP 0x00010000 /* IGMP bit in FRAME_TYPE field */
#define vVW510021_W_HEADER_VERSION 0x00
#define vVW510021_W_DEVICE_TYPE 0x15
#define vVW510021_W_11n_DEVICE_TYPE 0x20
#define vVW510021_W_FPGA_VERSION 0x000C
#define vVW510021_W_11n_FPGA_VERSION 0x000D
/* Error masks */
#define vVW510021_W_FCS_ERROR 0x10
#define vVW510021_W_CRYPTO_ERROR 0x50000
#define vVW510021_W_WEPTYPE 0x0001 /* WEP frame */
#define vVW510021_W_TKIPTYPE 0x0002 /* TKIP frame */
#define vVW510021_W_CCMPTYPE 0x0004 /* CCMP frame */
/* definitions for VW510024 FPGA, wired ethernet format */
/* FORMAT:
16 BYTE header
52 bytes of stats block trailer
*/
/* offsets in the stats block */
#define vVW510024_E_STATS_LEN 48 /* length of stats block trailer */
#define vVW510024_E_MSDU_LENGTH_OFF 0 /* MSDU 16 BITS */
#define vVW510024_E_BMCV_VALID_OFF 2 /* BM,CV Determine validITY */
#define vVW510024_E_VCID_OFF 2 /* offset of VC (client) ID 13:8, */
/* 7:0 IN offset 7*/
#define vVW510024_E_STARTT_OFF 4 /* offset of start time, 64 bits */
#define vVW510024_E_ENDT_OFF 12 /* offset of end time, 64 bits */
#define vVW510024_E_ERRORS_OFF 22 /* offset of error vector */
#define vVW510024_E_VALID_OFF 24 /* 2 Bytes with different validity bits */
#define vVW510024_E_INFO_OFF 26 /* offset of INFO field, 16 LSBs */
#define vVW510024_E_FRAME_TYPE_OFF 28
#define vVW510024_E_L4ID_OFF 32
#define vVW510024_E_IPLEN_OFF 34
#define vVW510024_E_FLOWSEQ_OFF 36 /* offset of signature sequence number */
#define vVW510024_E_FLOWID_OFF 37 /* offset of flow ID */
#define vVW510024_E_LATVAL_OFF 40 /* offset of delay/flowtimestamp, 32 bits */
#define vVW510024_E_FPGA_VERSION_OFF 20 /* offset of fpga version, 16 bits */
#define vVW510024_E_MATCH_OFF 51 /* offset of pattern match vector */
/* offsets in the header block */
#define vVW510024_E_HEADER_LEN vVW510021_W_HEADER_LEN /* length of FRAME header */
#define vVW510024_E_RXTX_OFF vVW510021_W_RXTX_OFF /* rxtx offset, cmd byte */
#define vVW510024_E_HEADER_VERSION_OFF 16 /* version, 2bytes */
#define vVW510024_E_MSG_LENGTH_OFF vVW510021_MSG_LENGTH_OFF /* MSG LENGTH, 2bytes */
#define vVW510024_E_DEVICE_TYPE_OFF vVW510021_W_DEVICE_TYPE_OFF /* Device Type, 2bytes */
/* Masks and defines */
#define vVW510024_E_IS_BV 0x80 /* Bm bit in STATS block */
#define vVW510024_E_IS_CV 0x40 /* cV bit in STATS block */
#define vVW510024_E_FLOW_VALID 0x8000 /* valid_off flow-is-valid flag (else force to 0) */
#define vVW510024_E_QOS_VALID 0x0000 /*not valid for ethernet*/
#define vVW510024_E_L4ID_VALID 0x1000
#define vVW510024_E_CBW_MASK 0xC0
#define vVW510024_E_VCID_MASK 0x3FFF
#define vVW510024_E_HEADER_IS_RX 0x21
#define vVW510024_E_HEADER_IS_TX 0x31
#define vVW510024_E_IS_TCP 0x01000000 /* TCP bit in FRAME_TYPE field */
#define vVW510024_E_IS_UDP 0x00100000 /* UDP bit in FRAME_TYPE field */
#define vVW510024_E_IS_ICMP 0x00001000 /* ICMP bit in FRAME_TYPE field */
#define vVW510024_E_IS_IGMP 0x00010000
#define vVW510024_E_IS_VLAN 0x4000
#define vVW510024_E_HEADER_VERSION 0x00
#define vVW510024_E_DEVICE_TYPE 0x18
#define vVW510024_E_FPGA_VERSION 0x0001
#define FPGA_VER_NOT_APPLICABLE 0
#define UNKNOWN_FPGA 0
#define vVW510021_W_FPGA 1
#define vVW510006_W_FPGA 2
#define vVW510012_E_FPGA 3
#define vVW510024_E_FPGA 4
/*the flow signature is:
Byte Description
0 Magic Number (0xDD)
1 Chassis Number[7:0]
2 Slot Number[7:0]
3 Port Number[7:0]
4 Flow ID[7:0]
5 Flow ID[15:8]
6 Flow ID[23:16]
7 Flow Sequence Number[7:0]
8 Timestamp[7:0]
9 Timestamp[15:8]
10 Timestamp[23:16]
11 Timestamp[31:24]
12 Timestamp[39:32]
13 Timestamp[47:40]
14 CRC16
15 CRC16
*/
#define SIG_SIZE 16 /* size of signature field, bytes */
#define SIG_FID_OFF 4 /* offset of flow ID in signature */
#define SIG_FSQ_OFF 7 /* offset of flow seqnum in signature */
#define SIG_TS_OFF 8 /* offset of flow seqnum in signature */
/*--------------------------------------------------------------------------------------*/
/* Per-capture file private data structure */
typedef struct {
/* offsets in stats block; these are dependent on the frame type (Ethernet/WLAN) and */
/* version number of .vwr file, and are set up by setup_defaults() */
guint32 STATS_LEN; /* length of stats block trailer */
guint32 STATS_START_OFF; /* STATS OFF AFTER HEADER */
guint32 VALID_OFF; /* bit 6 (0x40) is flow-is-valid flag */
guint32 MTYPE_OFF; /* offset of modulation type */
guint32 VCID_OFF; /* offset of VC ID */
guint32 FLOWSEQ_OFF; /* offset of signature sequence number */
guint32 FLOWID_OFF; /* offset of flow ID */
guint32 OCTET_OFF; /* offset of octets */
guint32 ERRORS_OFF; /* offset of error vector */
guint32 PATN_OFF; /* offset of pattern match vector */
guint32 RSSI_OFF; /* RSSI (NOTE: RSSI must be negated!) */
guint32 STARTT_OFF; /* offset of start time, 64 bits */
guint32 ENDT_OFF; /* offset of end time, 64 bits */
guint32 LATVAL_OFF; /* offset of latency, 32 bits */
guint32 INFO_OFF; /* offset of INFO field, 16 bits */
guint32 L1P_1_OFF; /* offset 1ST Byte of l1params */
guint32 L1P_2_OFF; /* offset 2nd Byte of l1params */
guint32 L4ID_OFF; /* LAYER 4 id offset*/
guint32 IPLEN_OFF; /* */
guint32 PLCP_LENGTH_OFF; /* plcp length offset*/
guint32 FPGA_VERSION_OFF; /* offset of fpga version field, 16 bits */
guint32 HEADER_VERSION_OFF; /* offset of header version, 16 bits */
guint32 RXTX_OFF; /* offset of CMD bit, rx or tx */
guint32 FRAME_TYPE_OFF;
/* other information about the file in question */
guint32 MT_10_HALF; /* 10 Mb/s half-duplex */
guint32 MT_10_FULL; /* 10 Mb/s full-duplex */
guint32 MT_100_HALF; /* 100 Mb/s half-duplex */
guint32 MT_100_FULL; /* 100 Mb/s full-duplex */
guint32 MT_1G_HALF; /* 1 Gb/s half-duplex */
guint32 MT_1G_FULL; /* 1 Gb/s full-duplex */
guint32 FCS_ERROR; /* FCS error in frame */
guint32 CRYPTO_ERR; /* RX decrypt error flags */
guint32 PAYCHK_ERR; /* payload checksum failure */
guint32 RETRY_ERR; /* excessive retries on TX failure */
guint8 IS_RX; /* TX/RX bit in STATS block */
guint8 MT_MASK; /* modulation type mask */
guint16 VCID_MASK; /* VC ID is only 9 bits */
guint32 FLOW_VALID; /* flow-is-valid flag (else force to 0) */
guint16 QOS_VALID;
guint32 RX_DECRYPTS; /* RX-frame-was-decrypted bits */
guint32 TX_DECRYPTS; /* TX-frame-was-decrypted bits */
guint32 FC_PROT_BIT; /* Protected Frame bit in FC1 of frame */
guint32 MT_CCKL; /* CCK modulation, long preamble */
guint32 MT_CCKS; /* CCK modulation, short preamble */
guint32 MT_OFDM; /* OFDM modulation */
guint32 MCS_INDEX_MASK; /* mcs index type mask */
guint32 FPGA_VERSION;
guint32 HEADER_IS_RX;
guint32 HEADER_IS_TX;
guint32 WEPTYPE; /* frame is WEP */
guint32 TKIPTYPE; /* frame is TKIP */
guint32 CCMPTYPE; /* frame is CCMP */
guint32 IS_TCP;
guint32 IS_UDP;
guint32 IS_ICMP;
guint32 IS_IGMP;
guint16 IS_QOS;
guint32 IS_VLAN;
} vwr_t;
/* internal utility functions */
static int decode_msg(vwr_t *vwr, register guint8 *, int *, int *);
static guint8 get_ofdm_rate(guint8 *);
static guint8 get_cck_rate(guint8 *plcp);
static void setup_defaults(vwr_t *, guint16);
static gboolean vwr_read(wtap *, int *, gchar **, gint64 *);
static gboolean vwr_seek_read(wtap *, gint64, struct wtap_pkthdr *phdr, guchar *,
int, int *, gchar **);
static gboolean vwr_read_rec_header(vwr_t *, FILE_T, int *, int *, int *, gchar **);
static void vwr_read_rec_data(wtap *, guint8 *, guint8 *, int);
static int vwr_get_fpga_version(wtap *, int *, gchar **);
static void vwr_read_rec_data_vVW510021(wtap *, guint8 *, guint8 *, int, int);
static void vwr_read_rec_data_ethernet(wtap *, guint8 *, guint8 *, int, int);
static int find_signature(register guint8 *, int, register guint32, register guint8);
static guint64 get_signature_ts(register guint8 *, int);
/* open a .vwr file for reading */
/* this does very little, except setting the wiretap header for a VWR file type */
/* and the timestamp precision to microseconds */
int vwr_open(wtap *wth, int *err, gchar **err_info)
{
int fpgaVer;
vwr_t *vwr;
*err = 0;
fpgaVer = vwr_get_fpga_version(wth, err, err_info);
if (fpgaVer == -1) {
return -1; /* I/O error */
}
if (fpgaVer == UNKNOWN_FPGA) {
return 0; /* not a VWR file */
}
/* This is a vwr file */
vwr = (vwr_t *)g_malloc(sizeof(vwr_t));
wth->priv = (void *)vwr;
vwr->FPGA_VERSION = fpgaVer;
/* set the local module options first */
setup_defaults(vwr, fpgaVer);
wth->snapshot_length = 0;
wth->subtype_read = vwr_read;
wth->subtype_seek_read = vwr_seek_read;
wth->tsprecision = WTAP_FILE_TSPREC_USEC;
if (fpgaVer == vVW510021_W_FPGA) {
wth->file_type = WTAP_FILE_VWR_80211;
wth->file_encap = WTAP_ENCAP_IXVERIWAVE;
}
else if (fpgaVer == vVW510006_W_FPGA) {
wth->file_type = WTAP_FILE_VWR_80211;
wth->file_encap = WTAP_ENCAP_IXVERIWAVE;
}
else if (fpgaVer == vVW510012_E_FPGA) {
wth->file_type = WTAP_FILE_VWR_ETH;
wth->file_encap = WTAP_ENCAP_IXVERIWAVE;
}
else if (fpgaVer == vVW510024_E_FPGA) {
wth->file_type = WTAP_FILE_VWR_ETH;
wth->file_encap = WTAP_ENCAP_IXVERIWAVE;
}
return(1);
}
/* Read the next packet */
/* note that the VWR file format consists of a sequence of fixed 16-byte record headers of */
/* different types; some types, including frame record headers, are followed by */
/* variable-length data */
/* a frame record consists of: the above 16-byte record header, a 1-16384 byte raw PLCP */
/* frame, and a 64-byte statistics block trailer */
/* the PLCP frame consists of a 4-byte or 6-byte PLCP header, followed by the MAC frame */
static gboolean vwr_read(wtap *wth, int *err, gchar **err_info, gint64 *data_offset)
{
vwr_t *vwr = (vwr_t *)wth->priv;
guint8 rec[B_SIZE]; /* local buffer (holds input record) */
int rec_size = 0, IS_TX;
guint8 *data_ptr;
guint16 pkt_len; /* length of radiotap headers */
/* read the next frame record header in the capture file; if no more frames, return */
if (!vwr_read_rec_header(vwr, wth->fh, &rec_size, &IS_TX, err, err_info))
return(FALSE); /* Read error or EOF */
*data_offset = (file_tell(wth->fh) - 16); /* set offset for random seek @PLCP */
/* got a frame record; read over entire record (frame + trailer) into a local buffer */
/* if we don't get it all, then declare an error, we can't process the frame */
if (file_read(rec, rec_size, wth->fh) != rec_size) {
*err = file_error(wth->fh, err_info);
if (*err == 0)
*err = WTAP_ERR_SHORT_READ;
return(FALSE);
}
/* before writing anything out, make sure the buffer has enough space for everything */
if ((vwr->FPGA_VERSION == vVW510021_W_FPGA) || (vwr->FPGA_VERSION == vVW510006_W_FPGA) )
/* frames are always 802.11 with an extended radiotap header */
pkt_len = (guint16)(rec_size + STATS_COMMON_FIELDS_LEN + EXT_RTAP_FIELDS_LEN);
else
/* frames are always ethernet with an extended ethernettap header */
pkt_len = (guint16)(rec_size + STATS_COMMON_FIELDS_LEN + STATS_ETHERNETTAP_FIELDS_LEN);
buffer_assure_space(wth->frame_buffer, pkt_len);
data_ptr = buffer_start_ptr(wth->frame_buffer);
/* now format up the frame data */
switch (vwr->FPGA_VERSION)
{
case vVW510006_W_FPGA:
vwr_read_rec_data(wth, data_ptr, rec, rec_size);
break;
case vVW510021_W_FPGA:
vwr_read_rec_data_vVW510021(wth, data_ptr, rec, rec_size, IS_TX);
break;
case vVW510012_E_FPGA:
vwr_read_rec_data_ethernet(wth, data_ptr, rec, rec_size, IS_TX);
break;
case vVW510024_E_FPGA:
vwr_read_rec_data_ethernet(wth, data_ptr, rec, rec_size, IS_TX);
break;
}
/* If the per-file encapsulation isn't known, set it to this packet's encapsulation */
/* If it *is* known, and it isn't this packet's encapsulation, set it to */
/* WTAP_ENCAP_PER_PACKET, as this file doesn't have a single encapsulation for all */
/* packets in the file */
if (wth->file_encap == WTAP_ENCAP_UNKNOWN)
wth->file_encap = wth->phdr.pkt_encap;
else {
if (wth->file_encap != wth->phdr.pkt_encap)
wth->file_encap = WTAP_ENCAP_PER_PACKET;
}
return(TRUE);
}
/* read a random frame in the middle of a file; the start of the PLCP frame is @ seek_off */
static gboolean vwr_seek_read(wtap *wth, gint64 seek_off, struct wtap_pkthdr *phdr _U_, guchar *pd, int pkt_size _U_,
int *err, gchar **err_info)
{
vwr_t *vwr = (vwr_t *)wth->priv;
guint8 rec[B_SIZE]; /* local buffer (holds input record) */
int rec_size, IS_TX;
/* first seek to the indicated record header */
if (file_seek(wth->random_fh, seek_off, SEEK_SET, err) == -1)
return(FALSE);
/* read in the record header */
if (!vwr_read_rec_header(vwr, wth->random_fh, &rec_size, &IS_TX, err, err_info))
return(FALSE); /* Read error or EOF */
/* read over the entire record (frame + trailer) into a local buffer */
/* if we don't get it all, then declare an error, we can't process the frame */
if (file_read(rec, rec_size, wth->random_fh) != rec_size) {
*err = file_error(wth->random_fh, err_info);
if (*err == 0)
*err = WTAP_ERR_SHORT_READ;
return(FALSE);
}
/* now format up the frame data into the passed buffer, according to the FPGA type */
switch (vwr->FPGA_VERSION) {
case vVW510006_W_FPGA:
vwr_read_rec_data(wth, pd, rec, rec_size);
break;
case vVW510021_W_FPGA:
vwr_read_rec_data_vVW510021(wth, pd, rec, rec_size, IS_TX);
break;
case vVW510012_E_FPGA:
vwr_read_rec_data_ethernet(wth, pd, rec, rec_size, IS_TX);
break;
case vVW510024_E_FPGA:
vwr_read_rec_data_ethernet(wth, pd, rec, rec_size, IS_TX);
break;
}
return(TRUE);
}
/* scan down in the input capture file to find the next frame header */
/* decode and skip over all non-frame messages that are in the way */
/* return TRUE on success, FALSE on EOF or error */
/* also return the frame size in bytes and the "is transmitted frame" flag */
static gboolean vwr_read_rec_header(vwr_t *vwr, FILE_T fh, int *rec_size, int *IS_TX, int *err, gchar **err_info)
{
int f_len, v_type;
guint8 header[16];
errno = WTAP_ERR_CANT_READ;
*rec_size = 0;
/* read out the file data in 16-byte messages, stopping either after we find a frame, */
/* or if we run out of data */
/* each 16-byte message is decoded; if we run across a non-frame message followed by a*/
/* variable-length item, we read the variable length item out and discard it */
/* if we find a frame, we return (with the header in the passed buffer) */
while (1) {
if (file_read(header, 16, fh) != 16) {
*err = file_error(fh, err_info);
return(FALSE);
}
/* got a header; invoke decode-message function to parse and process it */
/* if the function returns a length, then a frame or variable-length message */
/* follows the 16-byte message */
/* if the variable length message is not a frame, simply skip over it */
if ((f_len = decode_msg(vwr, header, &v_type, IS_TX)) != 0) {
if (f_len > B_SIZE) {
*err = WTAP_ERR_BAD_FILE;
*err_info = g_strdup_printf("vwr: Invalid message record length %d", f_len);
return(FALSE);
}
else if (v_type != VT_FRAME) {
if (file_seek(fh, f_len, SEEK_CUR, err) < 0)
return(FALSE);
}
else {
*rec_size = f_len;
return(TRUE);
}
}
}
}
/* figure out the FPGA version (and also see whether this is a VWR file type */
/* return FPGA version if it's a known version, UNKNOWN_FPGA if it's not, */
/* and -1 on an I/O error. */
static int vwr_get_fpga_version(wtap *wth, int *err, gchar **err_info)
{
guint8 rec[B_SIZE]; /* local buffer (holds input record) */
guint8 header[16];
int rec_size = 0;
guint8 i;
guint8 *s_510006_ptr = NULL;
guint8 *s_510024_ptr = NULL;
guint8 *s_510012_ptr = NULL; /* stats pointers */
gint64 filePos = -1;
guint32 frame_type = 0;
int f_len, v_type;
guint16 data_length = 0;
guint16 fpga_version;
filePos = file_tell(wth->fh);
if (filePos == -1) {
*err = file_error(wth->fh, err_info);
return(-1);
}
fpga_version = 1000;
/* got a frame record; see if it is vwr */
/* if we don't get it all, then declare an error, we can't process the frame */
/* read out the file data in 16-byte messages, stopping either after we find a frame, */
/* or if we run out of data */
/* each 16-byte message is decoded; if we run across a non-frame message followed by a*/
/* variable-length item, we read the variable length item out and discard it */
/* if we find a frame, we return (with the header in the passed buffer) */
while ((file_read(header, 16, wth->fh)) == 16) {
/* got a header; invoke decode-message function to parse and process it */
/* if the function returns a length, then a frame or variable-length message */
/* follows the 16-byte message */
/* if the variable length message is not a frame, simply skip over it */
if ((f_len = decode_msg(NULL, header, &v_type, NULL)) != 0) {
if (f_len > B_SIZE) {
/* Treat this here as an indication that the file probably */
/* isn't an vwr file. */
return(UNKNOWN_FPGA);
}
else if (v_type != VT_FRAME) {
if (file_seek(wth->fh, f_len, SEEK_CUR, err) < 0)
return(-1);
}
else {
rec_size = f_len;
/* got a frame record; read over entire record (frame + trailer) into a local buffer */
/* if we don't get it all, assume this isn't a vwr file */
if (file_read(rec, rec_size, wth->fh) != rec_size) {
*err = file_error(wth->fh, err_info);
if (*err != 0 && *err != WTAP_ERR_SHORT_READ)
return(-1);
return(UNKNOWN_FPGA); /* short read - not a vwr file */
}
/* I'll grab the bytes where the Ethernet "octets" field should be and the bytes where */
/* the 802.11 "octets" field should be. Then if I do rec_size - octets - */
/* size_of_stats_block and it's 0, I can select the correct type. */
/* octets + stats_len = rec_size only when octets have been incremented to nearest */
/* number divisible by 4. */
/* First check for series I WLAN since the check is more rigorous. */
if (rec_size > v22_W_STATS_LEN) {
s_510006_ptr = &(rec[rec_size - v22_W_STATS_LEN]); /* point to 510006 WLAN */
/* stats block */
data_length = pntohs(&s_510006_ptr[v22_W_OCTET_OFF]);
i = 0;
while (((data_length + i) % 4) != 0)
i = i + 1;
frame_type = pntohl(&s_510006_ptr[v22_W_FRAME_TYPE_OFF]);
if (rec_size == (data_length + v22_W_STATS_LEN + i) && (frame_type & v22_W_IS_80211) == 0x1000000) {
fpga_version = vVW510006_W_FPGA;
}
}
/* Next for the series I Ethernet */
if ((rec_size > v22_E_STATS_LEN) && (fpga_version == 1000)) {
s_510012_ptr = &(rec[rec_size - v22_E_STATS_LEN]); /* point to 510012 enet */
/* stats block */
data_length = pntohs(&s_510012_ptr[v22_E_OCTET_OFF]);
i = 0;
while (((data_length + i) % 4) != 0)
i = i + 1;
if (rec_size == (data_length + v22_E_STATS_LEN + i))
fpga_version = vVW510012_E_FPGA;
}
/* Next the series II WLAN */
if ((rec_size > vVW510021_W_STATS_LEN) && (fpga_version == 1000)) {
/* stats block */
data_length = (256 * (rec[vVW510021_W_MSDU_LENGTH_OFF + 1] & 0x1f)) + rec[vVW510021_W_MSDU_LENGTH_OFF];
i = 0;
while (((data_length + i) % 4) != 0)
i = i + 1;
/*the 12 is from the 12 bytes of plcp header */
if (rec_size == (data_length + vVW510021_W_STATS_LEN +vVW510021_W_AFTERHEADER_LEN+12+i))
fpga_version = vVW510021_W_FPGA;
}
/* Finally the Series II Ethernet */
if ((rec_size > vVW510024_E_STATS_LEN) && (fpga_version == 1000)) {
s_510024_ptr = &(rec[rec_size - vVW510024_E_STATS_LEN]); /* point to 510024 ENET */
data_length = pntohs(&s_510024_ptr[vVW510024_E_MSDU_LENGTH_OFF]);
i = 0;
while (((data_length + i) % 4) != 0)
i = i + 1;
if (rec_size == (data_length + vVW510024_E_STATS_LEN + i))
fpga_version = vVW510024_E_FPGA;
}
if (fpga_version != 1000)
{
/* reset the file position offset */
if (file_seek (wth->fh, filePos, SEEK_SET, err) == -1) {
return (-1);
}
/* We found an FPGA that works */
return(fpga_version);
}
}
}
}
*err = file_error(wth->fh, err_info);
if (*err != 0 && *err != WTAP_ERR_SHORT_READ)
return(-1);
return(UNKNOWN_FPGA); /* short read - not a vwr file */
}
/* copy the actual packet data from the capture file into the target data block */
/* the packet is constructed as a 38-byte VeriWave-extended Radiotap header plus the raw */
/* MAC octets */
static void vwr_read_rec_data(wtap *wth, guint8 *data_ptr, guint8 *rec, int rec_size)
{
vwr_t *vwr = (vwr_t *)wth->priv;
int bytes_written = 0; /* bytes output to buf so far */
register int i; /* temps */
register guint8 *s_ptr, *m_ptr; /* stats and MPDU pointers */
gint16 octets, msdu_length; /* octets in frame */
guint8 m_type, flow_seq; /* mod type (CCK-L/CCK-S/OFDM), seqnum */
guint64 s_time = LL_ZERO, e_time = LL_ZERO; /* start/end */
/* times, nsec */
guint32 latency;
guint64 start_time, s_sec, s_usec = LL_ZERO; /* start time, sec + usec */
guint64 end_time; /* end time */
guint16 info; /* INFO/ERRORS fields in stats blk */
gint16 rssi; /* RSSI, signed 16-bit number */
int f_tx; /* flag: if set, is a TX frame */
int f_flow, f_qos; /* flags: flow valid, frame is QoS */
guint32 frame_type; /* frame type field */
int rate; /* PHY bit rate in 0.5 Mb/s units */
guint16 vc_id, flow_id, ht_len=0; /* VC ID, flow ID, total ip length */
guint32 d_time, errors; /* packet duration & errors */
guint16 r_hdr_len; /* length of radiotap headers */
ext_rtap_fields er_fields; /* extended radiotap fields */
stats_common_fields common_fields; /* extended radiotap fields */
int mac_snap, sig_off, pay_off; /* MAC+SNAP header len, signature offset */
guint64 sig_ts; /* 32 LSBs of timestamp in signature */
/* calculate the start of the statistics block in the buffer */
/* also get a bunch of fields from the stats block */
s_ptr = &(rec[rec_size - vwr->STATS_LEN]); /* point to it */
m_type = s_ptr[vwr->MTYPE_OFF] & vwr->MT_MASK;
f_tx = !(s_ptr[vwr->MTYPE_OFF] & vwr->IS_RX);
octets = pntohs(&s_ptr[vwr->OCTET_OFF]);
vc_id = pntohs(&s_ptr[vwr->VCID_OFF]) & vwr->VCID_MASK;
flow_seq = s_ptr[vwr->FLOWSEQ_OFF];
f_flow = (s_ptr[vwr->VALID_OFF] & (guint8)vwr->FLOW_VALID) != 0;
f_qos = (s_ptr[vwr->MTYPE_OFF] & vwr->IS_QOS) != 0;
frame_type = pntohl(&s_ptr[vwr->FRAME_TYPE_OFF]);
/* XXX - this is 48 bits, in a weird byte order */
latency = pntohs(&s_ptr[vwr->LATVAL_OFF + 6]); /* latency MSbytes */
for (i = 0; i < 4; i++)
latency = (latency << 8) | s_ptr[vwr->LATVAL_OFF + i];
flow_id = pntohs(&s_ptr[vwr->FLOWID_OFF + 1]); /* only 16 LSBs kept */
errors = pntohs(&s_ptr[vwr->ERRORS_OFF]);
info = pntohs(&s_ptr[vwr->INFO_OFF]);
rssi = (s_ptr[vwr->RSSI_OFF] & 0x80) ? (-1 * (s_ptr[vwr->RSSI_OFF] & 0x7f)) : s_ptr[vwr->RSSI_OFF];
/*if ((info && AGGREGATE_MASK) != 0)*/
/* this length includes the Start_Spacing + Delimiter + MPDU + Padding for each piece of the aggregate*/
/*ht_len = (int)pletohs(&rec[PLCP_LENGTH_OFF]);*/
/* decode OFDM or CCK PLCP header and determine rate and short preamble flag */
/* the SIGNAL byte is always the first byte of the PLCP header in the frame */
if (m_type == vwr->MT_OFDM)
rate = get_ofdm_rate(rec);
else if ((m_type == vwr->MT_CCKL) || (m_type == vwr->MT_CCKS))
rate = get_cck_rate(rec);
else
rate = 1;
/* calculate the MPDU size/ptr stuff; MPDU starts at 4 or 6 depending on OFDM/CCK */
/* note that the number of octets in the frame also varies depending on OFDM/CCK, */
/* because the PLCP header is prepended to the actual MPDU */
m_ptr = &(rec[((m_type == vwr->MT_OFDM) ? 4 : 6)]);
octets -= (m_type == vwr->MT_OFDM) ? 4 : 6;
/* sanity check the octets field to determine if it is OK (or segfaults result) */
/* if it's greater, then truncate to actual record size */
if (octets > (rec_size - (int)vwr->STATS_LEN))
octets = (rec_size - (int)vwr->STATS_LEN);
msdu_length = octets;
/* calculate start & end times (in sec/usec), converting 64-bit times to usec */
/* 64-bit times are "Corey-endian" */
s_time = pcoreytohll(&s_ptr[vwr->STARTT_OFF]);
e_time = pcoreytohll(&s_ptr[vwr->ENDT_OFF]);
/* find the packet duration (difference between start and end times) */
d_time = (guint32)((e_time - s_time) / NS_IN_US); /* find diff, converting to usec */
/* also convert the packet start time to seconds and microseconds */
start_time = s_time / NS_IN_US; /* convert to microseconds first */
s_sec = (start_time / US_IN_SEC); /* get the number of seconds */
s_usec = start_time - (s_sec * US_IN_SEC); /* get the number of microseconds */
/* also convert the packet end time to seconds and microseconds */
end_time = e_time / NS_IN_US; /* convert to microseconds first */
/* extract the 32 LSBs of the signature timestamp field from the data block*/
mac_snap = (f_qos ? 34 : 32); /* 24 (MAC) + 2 (QoS) + 8 (SNAP) */
if (frame_type & vwr->IS_TCP) /* signature offset for TCP frame */
{
pay_off = mac_snap + 40;
}
else if (frame_type & vwr->IS_UDP) /* signature offset for UDP frame */
{
pay_off = mac_snap + 28;
}
else if (frame_type & vwr->IS_ICMP) /* signature offset for ICMP frame */
{
pay_off = mac_snap + 24;
}
else if (frame_type & vwr->IS_IGMP) /* signature offset for IGMPv2 frame */
{
pay_off = mac_snap + 28;
}
else /* signature offset for raw IP frame */
{
pay_off = mac_snap + 20;
}
sig_off = find_signature(m_ptr, pay_off, flow_id, flow_seq);
if ((m_ptr[sig_off] == 0xdd) && (sig_off + 15 <= msdu_length) && (f_flow != 0))
sig_ts = get_signature_ts(m_ptr, sig_off);
else
sig_ts = 0;
/* fill up the per-packet header (amazingly like a PCAP packet header! ;-) */
/* frames are always 802.11, with an extended radiotap header */
/* caplen is the length that is captured into the file (i.e., the written-out frame */
/* block), and should always represent the actual number of bytes in the file */
/* len is the length of the original packet before truncation; */
/* the FCS is NOT included */
r_hdr_len = STATS_COMMON_FIELDS_LEN + EXT_RTAP_FIELDS_LEN;
wth->phdr.len = (msdu_length - 4) + r_hdr_len;
wth->phdr.caplen = (octets - 4) + r_hdr_len;
wth->phdr.presence_flags = WTAP_HAS_TS;
wth->phdr.ts.secs = (time_t)s_sec;
wth->phdr.ts.nsecs = (int)(s_usec * 1000);
wth->phdr.pkt_encap = WTAP_ENCAP_IXVERIWAVE;
/* generate and copy out the radiotap header, set the port type to 0 (WLAN) */
common_fields.vw_port_type = 0;
common_fields.it_len = STATS_COMMON_FIELDS_LEN;
er_fields.it_len = EXT_RTAP_FIELDS_LEN;
/* create the extended radiotap header fields */
er_fields.flags = (m_type == vwr->MT_CCKS) ? RADIOTAP_F_SHORTPRE : 0;
er_fields.rate = rate;
er_fields.chanflags = (m_type == vwr->MT_OFDM) ? CHAN_OFDM : CHAN_CCK;
er_fields.signal = f_tx ? 100 : (gint8)rssi;
er_fields.tx_power = f_tx ? ((gint8)rssi) : 100;
/* fill in the VeriWave flags field */
er_fields.vw_flags = 0;
if (f_tx)
er_fields.vw_flags |= RADIOTAP_VWF_TXF;
if (errors & vwr->FCS_ERROR)
er_fields.vw_flags |= RADIOTAP_VWF_FCSERR;
if (!f_tx && (errors & vwr->CRYPTO_ERR))
er_fields.vw_flags |= RADIOTAP_VWF_DCRERR;
if (!f_tx && (errors & vwr->RETRY_ERR))
er_fields.vw_flags |= RADIOTAP_VWF_RETRERR;
if (info & vwr->WEPTYPE)
er_fields.vw_flags |= RADIOTAP_VWF_IS_WEP;
else if (info & vwr->TKIPTYPE)
er_fields.vw_flags |= RADIOTAP_VWF_IS_TKIP;
else if (info & vwr->CCMPTYPE)
er_fields.vw_flags |= RADIOTAP_VWF_IS_CCMP;
er_fields.vw_errors = (guint32)errors;
common_fields.vw_vcid = (guint16)vc_id;
common_fields.vw_flowid = (guint16)flow_id;
common_fields.vw_seqnum = (guint16)flow_seq;
if (!f_tx && sig_ts != 0)
common_fields.vw_latency = (guint32)latency;
else
common_fields.vw_latency = 0;
common_fields.vw_pktdur = (guint32)d_time;
er_fields.vw_info = (guint16)info;
common_fields.vw_msdu_length = (guint16)msdu_length;
er_fields.vw_ht_length = (guint16)ht_len;
common_fields.vw_sig_ts = (guint32)sig_ts; /* 32 LSBs of signature timestamp (nsec) */
common_fields.vw_startt = start_time; /* record start & end times of frame */
common_fields.vw_endt = end_time;
/* put common_fields into the packet buffer in little-endian byte order */
phtoles(&data_ptr[bytes_written], common_fields.vw_port_type);
bytes_written += 2;
phtoles(&data_ptr[bytes_written], common_fields.it_len);
bytes_written += 2;
phtoles(&data_ptr[bytes_written], common_fields.vw_msdu_length);
bytes_written += 2;
/* padding */
memset(&data_ptr[bytes_written], 0, 2);
bytes_written += 2;
phtolel(&data_ptr[bytes_written], common_fields.vw_flowid);
bytes_written += 4;
phtoles(&data_ptr[bytes_written], common_fields.vw_vcid);
bytes_written += 2;
phtoles(&data_ptr[bytes_written], common_fields.vw_seqnum);
bytes_written += 2;
phtolel(&data_ptr[bytes_written], common_fields.vw_latency);
bytes_written += 4;
phtolel(&data_ptr[bytes_written], common_fields.vw_sig_ts);
bytes_written += 4;
phtolell(&data_ptr[bytes_written], common_fields.vw_startt);
bytes_written += 8;
phtolell(&data_ptr[bytes_written], common_fields.vw_endt);
bytes_written += 8;
phtolel(&data_ptr[bytes_written], common_fields.vw_pktdur);
bytes_written += 4;
/* padding */
memset(&data_ptr[bytes_written], 0, 4);
bytes_written += 4;
/* put er_fields into the packet buffer in little-endian byte order */
phtoles(&data_ptr[bytes_written], er_fields.it_len);
bytes_written += 2;
phtoles(&data_ptr[bytes_written], er_fields.flags);
bytes_written += 2;
phtoles(&data_ptr[bytes_written], er_fields.chanflags);
bytes_written += 2;
data_ptr[bytes_written] = er_fields.rate;
bytes_written += 1;
data_ptr[bytes_written] = er_fields.signal;
bytes_written += 1;
data_ptr[bytes_written] = er_fields.tx_power;
bytes_written += 1;
/* padding */
data_ptr[bytes_written] = 0;
bytes_written += 1;
phtoles(&data_ptr[bytes_written], er_fields.vw_flags);
bytes_written += 2;
phtoles(&data_ptr[bytes_written], er_fields.vw_ht_length);
bytes_written += 2;
phtoles(&data_ptr[bytes_written], er_fields.vw_info);
bytes_written += 2;
phtolel(&data_ptr[bytes_written], er_fields.vw_errors);
bytes_written += 4;
/* finally, copy the whole MAC frame to the packet buffer as-is; exclude FCS */
if ( rec_size < ((int)msdu_length + (int)vwr->STATS_LEN) )
/*something's been truncated, DUMP AS-IS*/
memcpy(&data_ptr[bytes_written], m_ptr, octets);
else if (octets >= 4)
memcpy(&data_ptr[bytes_written], m_ptr, octets - 4);
else
memcpy(&data_ptr[bytes_written], m_ptr, octets);
}
/* Read the next packet for vVW510021 FPGAs */
/* note that the VWR file format consists of a sequence of fixed 16-byte record headers of */
/* different types; some types, including frame record headers, are followed by */
/* variable-length data */
/* a frame record consists of: the above 16-byte record header, a 1-16384 byte raw PLCP */
/* frame, and a 56-byte statistics block trailer */
/* the PLCP frame consists of a 4-byte or 6-byte PLCP header, followed by the MAC frame */
/* copy the actual packet data from the capture file into the target data block */
/* the packet is constructed as a 38-byte VeriWave-extended Radiotap header plus the raw */
/* MAC octets */
static void vwr_read_rec_data_vVW510021(wtap *wth, guint8 *data_ptr, guint8 *rec, int rec_size, int IS_TX)
{
vwr_t *vwr = (vwr_t *)wth->priv;
int bytes_written = 0; /* bytes output to buf so far */
int PLCP_OFF = 8;
register int i; /* temps */
register guint8 *s_start_ptr,*s_trail_ptr, *m_ptr,*plcp_ptr; /* stats & MPDU ptr */
gint16 msdu_length, actual_octets; /* octets in frame */
guint8 l1p_1,l1p_2, flow_seq, plcp_type, mcs_index; /* mod (CCK-L/CCK-S/OFDM) */
guint64 s_time = LL_ZERO, e_time = LL_ZERO; /* start/end */
/* times, nsec */
guint64 latency = LL_ZERO;
guint64 start_time, s_sec, s_usec = LL_ZERO; /* start time, sec + usec */
guint64 end_time; /* end time */
guint16 info, validityBits; /* INFO/ERRORS fields in stats blk */
guint32 errors;
gint16 rssi; /* RSSI, signed 16-bit number */
int f_tx; /* flag: if set, is a TX frame */
int f_flow, f_qos; /* flags: flow valid, frame is QoS */
guint32 frame_type; /* frame type field */
guint8 rate; /* PHY bit rate in 0.5 Mb/s units */
guint16 vc_id, ht_len=0; /* VC ID , total ip length*/
guint32 flow_id, d_time; /* flow ID, packet duration*/
guint16 r_hdr_len; /* length of radiotap headers */
ext_rtap_fields er_fields; /* extended radiotap fields */
stats_common_fields common_fields; /* extended radiotap fields */
gint8 tx_power = 0; /* transmit power value in dBm */
int mac_snap, sig_off, pay_off; /* MAC+SNAP header len, signature offset */
guint64 sig_ts, tsid; /* 32 LSBs of timestamp in signature */
guint16 chanflags = 0; /* extended radio tap channel flags */
guint16 radioflags = 0; /* extended radio tap flags */
guint64 delta_b; /* Used for calculating latency */
/* calculate the start of the statistics block in the buffer */
/* also get a bunch of fields from the stats block */
s_start_ptr = &(rec[0]);
s_trail_ptr = &(rec[rec_size - vwr->STATS_LEN]); /* point to it */
l1p_1 = s_start_ptr[vwr->L1P_1_OFF];
mcs_index = l1p_1 & (guint8)vVW510021_W_MCS_MASK;
l1p_2 = s_start_ptr[vwr->L1P_2_OFF];
plcp_type = l1p_2 & (guint8)vVW510021_W_PLCPC_MASK;
msdu_length = (256 * (s_start_ptr[vwr->OCTET_OFF + 1] & 0x1f)) + s_start_ptr[vwr->OCTET_OFF];
/* If the packet has an MSDU length of 0, then bail - malformed packet */
/* if (msdu_length < 4) return; */
actual_octets = msdu_length;
f_tx = IS_TX;
vc_id = pntohs(&s_start_ptr[vwr->VCID_OFF]);
flow_seq = s_trail_ptr[vwr->FLOWSEQ_OFF];
validityBits = pntohs(&s_trail_ptr[vwr->VALID_OFF]);
f_flow = (validityBits & vwr->FLOW_VALID) != 0;
f_qos = (validityBits & vwr->IS_QOS) != 0;
frame_type = pntohl(&s_trail_ptr[vwr->FRAME_TYPE_OFF]);
latency = 0x00000000; /* clear latency */
flow_id = pntoh24(&s_trail_ptr[vwr->FLOWID_OFF]); /* all 24 bits valid */
/* for tx latency is duration, for rx latency is timestamp */
/* get 48-bit latency value */
tsid = (s_trail_ptr[vwr->LATVAL_OFF + 6] << 8) | (s_trail_ptr[vwr->LATVAL_OFF + 7]);
for (i = 0; i < 4; i++)
tsid = (tsid << 8) | s_trail_ptr[vwr->LATVAL_OFF + i];
errors = pntohl(&s_trail_ptr[vwr->ERRORS_OFF]);
info = pntohs(&s_trail_ptr[vwr->INFO_OFF]);
if ((info & 0xFC00) != 0)
/* this length includes the Start_Spacing + Delimiter + MPDU + Padding for each piece of the aggregate*/
ht_len = pletohs(&s_start_ptr[vwr->PLCP_LENGTH_OFF]);
rssi = s_start_ptr[vwr->RSSI_OFF];
if (f_tx) {
if (rssi & 0x80)
tx_power = -1 * (rssi & 0x7f);
else
tx_power = rssi & 0x7f;
} else {
if (rssi > 128) rssi = rssi - 256; /* Signed 2's complement */
}
/* decode OFDM or CCK PLCP header and determine rate and short preamble flag */
/* the SIGNAL byte is always the first byte of the PLCP header in the frame */
plcp_ptr = &(rec[PLCP_OFF]);
if (plcp_type == vVW510021_W_PLCP_LEGACY){
if (mcs_index < 4) {
rate = get_cck_rate(plcp_ptr);
chanflags |= CHAN_CCK;
}
else {
rate = get_ofdm_rate(plcp_ptr);
chanflags |= CHAN_OFDM;
}
}
else if (plcp_type == vVW510021_W_PLCP_MIXED) {
/* pack the rate field with mcs index and gi */
rate = (plcp_ptr[3] & 0x7f) + (plcp_ptr[6] & 0x80);
/* set the appropriate flags to indicate HT mode and CB */
radioflags |= RADIOTAP_F_CHAN_HT | ((plcp_ptr[3] & 0x80) ? RADIOTAP_F_CHAN_40MHZ : 0) |
((plcp_ptr[6] & 0x80) ? RADIOTAP_F_CHAN_SHORTGI : 0);
chanflags |= CHAN_OFDM;
}
else if (plcp_type == vVW510021_W_PLCP_GREENFIELD) {
/* pack the rate field with mcs index and gi */
rate = (plcp_ptr[0] & 0x7f) + (plcp_ptr[3] & 0x80);
/* set the appropriate flags to indicate HT mode and CB */
radioflags |= RADIOTAP_F_CHAN_HT | ((plcp_ptr[0] & 0x80) ? RADIOTAP_F_CHAN_40MHZ : 0) |
((plcp_ptr[3] & 0x80) ? RADIOTAP_F_CHAN_SHORTGI : 0);
chanflags |= CHAN_OFDM;
}
else {
rate = 1;
}
/* calculate the MPDU size/ptr stuff; MPDU starts at 4 or 6 depending on OFDM/CCK */
/* note that the number of octets in the frame also varies depending on OFDM/CCK, */
/* because the PLCP header is prepended to the actual MPDU */
/*the 8 is from the 8 bytes of stats block that precede the plcps ,
the 12 is for 11 bytes plcp and 1 byte of pad before the data*/
m_ptr = &(rec[8+12]);
/* sanity check the msdu_length field to determine if it is OK (or segfaults result) */
/* if it's greater, then truncate to the indicated message length */
/*changed the comparison
if (msdu_length > (rec_size )) {
msdu_length = (rec_size );
}
*/
if (msdu_length > (rec_size - (int)vwr->STATS_LEN)) {
msdu_length = (rec_size - (int)vwr->STATS_LEN);
}
/* calculate start & end times (in sec/usec), converting 64-bit times to usec */
/* 64-bit times are "Corey-endian" */
s_time = pcoreytohll(&s_trail_ptr[vwr->STARTT_OFF]);
e_time = pcoreytohll(&s_trail_ptr[vwr->ENDT_OFF]);
/* find the packet duration (difference between start and end times) */
d_time = (guint32)((e_time - s_time) / NS_IN_US); /* find diff, converting to usec */
/* also convert the packet start time to seconds and microseconds */
start_time = s_time / NS_IN_US; /* convert to microseconds first */
s_sec = (start_time / US_IN_SEC); /* get the number of seconds */
s_usec = start_time - (s_sec * US_IN_SEC); /* get the number of microseconds */
/* also convert the packet end time to seconds and microseconds */
end_time = e_time / NS_IN_US; /* convert to microseconds first */
/* extract the 32 LSBs of the signature timestamp field */
mac_snap = (f_qos ? 34 : 32); /* 24 (MAC) + 2 (QoS) + 8 (SNAP) */
if (frame_type & vwr->IS_TCP) /* signature offset for TCP frame */
{
pay_off = mac_snap + 40;
}
else if (frame_type & vwr->IS_UDP) /* signature offset for UDP frame */
{
pay_off = mac_snap + 28;
}
else if (frame_type & vwr->IS_ICMP) /* signature offset for ICMP frame */
{
pay_off = mac_snap + 24;
}
else if (frame_type & vwr->IS_IGMP) /* signature offset for IGMPv2 frame */
{
pay_off = mac_snap + 28;
}
else /* signature offset for raw IP frame */
{
pay_off = mac_snap + 20;
}
sig_off = find_signature(m_ptr, pay_off, flow_id, flow_seq);
if ((m_ptr[sig_off] == 0xdd) && (sig_off + 15 <= msdu_length) && (f_flow != 0))
sig_ts = get_signature_ts(m_ptr, sig_off);
else
sig_ts = 0;
/* Set latency based on rx/tx and signature timestamp */
if (!IS_TX) {
if (tsid < s_time) {
latency = s_time - tsid;
} else {
/* Account for the rollover case. Since we cannot use 0x100000000 - l_time + s_time */
/* we look for a large difference between l_time and s_time. */
delta_b = tsid - s_time;
if (delta_b > 0x10000000)
latency = 0;
else
latency = delta_b;
}
}
/* fill up the per-packet header (amazingly like a PCAP packet header! ;-) */
/* frames are always 802.11, with an extended radiotap header */
/* caplen is the length that is captured into the file (i.e., the written-out frame */
/* block), and should always represent the actual number of bytes in the file */
/* len is the length of the original packet before truncation */
/* the FCS is NOT included */
r_hdr_len = STATS_COMMON_FIELDS_LEN + EXT_RTAP_FIELDS_LEN;
wth->phdr.len = (actual_octets - 4) + r_hdr_len;
wth->phdr.caplen = (msdu_length - 4) + r_hdr_len;
wth->phdr.presence_flags = WTAP_HAS_TS;
wth->phdr.ts.secs = (time_t)s_sec;
wth->phdr.ts.nsecs = (int)(s_usec * 1000);
wth->phdr.pkt_encap = WTAP_ENCAP_IXVERIWAVE;
/* generate and copy out the radiotap header, set the port type to 0 (WLAN) */
common_fields.vw_port_type = 0;
common_fields.it_len = STATS_COMMON_FIELDS_LEN;
er_fields.it_len = EXT_RTAP_FIELDS_LEN;
/* create the extended radiotap header fields */
er_fields.flags = radioflags;
if (info & vVW510021_W_IS_WEP)
er_fields.flags |= RADIOTAP_F_WEP;
if ((l1p_1 & vVW510021_W_PREAMBLE_MASK) != vVW510021_W_IS_LONGPREAMBLE)
er_fields.flags |= RADIOTAP_F_SHORTPRE;
er_fields.rate = rate;
er_fields.chanflags = chanflags;
if (f_tx) {
er_fields.tx_power = (gint8)tx_power;
er_fields.signal = 100;
}
else {
er_fields.tx_power = 100;
er_fields.signal = (gint8)rssi;
}
/* fill in the VeriWave flags field */
er_fields.vw_flags = 0;
if (f_tx)
er_fields.vw_flags |= RADIOTAP_VWF_TXF;
if (errors & vwr->FCS_ERROR)
er_fields.vw_flags |= RADIOTAP_VWF_FCSERR;
if (!f_tx && (errors & vwr->CRYPTO_ERR))
er_fields.vw_flags |= RADIOTAP_VWF_DCRERR;
if (!f_tx && (errors & vwr->RETRY_ERR))
er_fields.vw_flags |= RADIOTAP_VWF_RETRERR;
if (info & vwr->WEPTYPE)
er_fields.vw_flags |= RADIOTAP_VWF_IS_WEP;
else if (info & vwr->TKIPTYPE)
er_fields.vw_flags |= RADIOTAP_VWF_IS_TKIP;
else if (info & vwr->CCMPTYPE)
er_fields.vw_flags |= RADIOTAP_VWF_IS_CCMP;
er_fields.vw_errors = (guint32)errors;
common_fields.vw_vcid = (guint16)vc_id;
common_fields.vw_msdu_length = (guint16)msdu_length;
er_fields.vw_ht_length = (guint16)ht_len;
common_fields.vw_flowid = (guint32)flow_id;
common_fields.vw_seqnum = (guint16)flow_seq;
if (!f_tx && (sig_ts != 0) )
common_fields.vw_latency = (guint32)latency;
else
common_fields.vw_latency = 0;
common_fields.vw_pktdur = (guint32)d_time;
er_fields.vw_info = (guint16)info;
/*
er_fields.vw_startt = s_time;
er_fields.vw_endt = e_time;
*/
common_fields.vw_startt = start_time; /* record start & end times of frame */
common_fields.vw_endt = end_time;
common_fields.vw_sig_ts = (guint32)(sig_ts);/* 32 LSBs of signature */
/* put common_fields into the packet buffer in little-endian byte order */
phtoles(&data_ptr[bytes_written], common_fields.vw_port_type);
bytes_written += 2;
phtoles(&data_ptr[bytes_written], common_fields.it_len);
bytes_written += 2;
phtoles(&data_ptr[bytes_written], common_fields.vw_msdu_length);
bytes_written += 2;
/* padding */
memset(&data_ptr[bytes_written], 0, 2);
bytes_written += 2;
phtolel(&data_ptr[bytes_written], common_fields.vw_flowid);
bytes_written += 4;
phtoles(&data_ptr[bytes_written], common_fields.vw_vcid);
bytes_written += 2;
phtoles(&data_ptr[bytes_written], common_fields.vw_seqnum);
bytes_written += 2;
phtolel(&data_ptr[bytes_written], common_fields.vw_latency);
bytes_written += 4;
phtolel(&data_ptr[bytes_written], common_fields.vw_sig_ts);
bytes_written += 4;
phtolell(&data_ptr[bytes_written], common_fields.vw_startt);
bytes_written += 8;
phtolell(&data_ptr[bytes_written], common_fields.vw_endt);
bytes_written += 8;
phtolel(&data_ptr[bytes_written], common_fields.vw_pktdur);
bytes_written += 4;
/* padding */
memset(&data_ptr[bytes_written], 0, 4);
bytes_written += 4;
/* put er_fields into the packet buffer in little-endian byte order */
phtoles(&data_ptr[bytes_written], er_fields.it_len);
bytes_written += 2;
phtoles(&data_ptr[bytes_written], er_fields.flags);
bytes_written += 2;
phtoles(&data_ptr[bytes_written], er_fields.chanflags);
bytes_written += 2;
data_ptr[bytes_written] = er_fields.rate;
bytes_written += 1;
data_ptr[bytes_written] = er_fields.signal;
bytes_written += 1;
data_ptr[bytes_written] = er_fields.tx_power;
bytes_written += 1;
/* padding */
data_ptr[bytes_written] = 0;
bytes_written += 1;
phtoles(&data_ptr[bytes_written], er_fields.vw_flags);
bytes_written += 2;
phtoles(&data_ptr[bytes_written], er_fields.vw_ht_length);
bytes_written += 2;
phtoles(&data_ptr[bytes_written], er_fields.vw_info);
bytes_written += 2;
phtolel(&data_ptr[bytes_written], er_fields.vw_errors);
bytes_written += 4;
/* finally, copy the whole MAC frame to the packet buffer as-is; exclude 4-byte FCS */
if ( rec_size < ((int)actual_octets + (int)vwr->STATS_LEN) )
/*something's been truncated, DUMP AS-IS*/
memcpy(&data_ptr[bytes_written], m_ptr, msdu_length);
else if (msdu_length >= 4)
memcpy(&data_ptr[bytes_written], m_ptr, msdu_length - 4);
else
memcpy(&data_ptr[bytes_written], m_ptr, msdu_length);
}
/* read an Ethernet packet */
/* copy the actual packet data from the capture file into the target data block */
/* the packet is constructed as a 38-byte VeriWave-extended Radiotap header plus the raw */
/* MAC octets */
static void vwr_read_rec_data_ethernet(wtap *wth, guint8 *data_ptr, guint8 *rec, int rec_size, int IS_TX)
{
vwr_t *vwr = (vwr_t *)wth->priv;
int bytes_written = 0; /* bytes output to buf so far */
register int i; /* temps */
register guint8 *s_ptr, *m_ptr; /* stats and MPDU pointers */
guint16 msdu_length,actual_octets; /* octets in frame */
guint8 flow_seq; /* seqnum */
guint64 s_time = LL_ZERO, e_time = LL_ZERO; /* start/end */
/* times, nsec */
guint32 latency = 0;
guint64 start_time, s_sec, s_usec = LL_ZERO; /* start time, sec + usec */
guint64 end_time; /* end time */
guint16 l4id, info, validityBits; /* INFO/ERRORS fields in stats */
guint32 errors;
guint16 vc_id; /* VC ID, total (incl of aggregates) */
guint32 flow_id, d_time; /* packet duration */
int f_flow; /* flags: flow valid */
guint32 frame_type; /* frame type field */
stats_ethernettap_fields etap_hdr; /* VWR ethernettap header */
stats_common_fields common_hdr; /* VWR common header */
guint16 e_hdr_len; /* length of ethernettap headers */
int mac_len, sig_off, pay_off; /* MAC header len, signature offset */
guint64 sig_ts, tsid; /* 32 LSBs of timestamp in signature */
guint64 delta_b; /* Used for calculating latency */
/* calculate the start of the statistics block in the buffer */
/* also get a bunch of fields from the stats block */
m_ptr = &(rec[0]); /* point to the data block */
s_ptr = &(rec[rec_size - vwr->STATS_LEN]); /* point to the stats block */
msdu_length = pntohs(&s_ptr[vwr->OCTET_OFF]);
actual_octets = msdu_length;
/* sanity check the msdu_length field to determine if it is OK (or segfaults result) */
/* if it's greater, then truncate to the indicated message length */
if (msdu_length > (rec_size - (int)vwr->STATS_LEN)) {
msdu_length = (rec_size - (int)vwr->STATS_LEN);
}
vc_id = pntohs(&s_ptr[vwr->VCID_OFF]) & vwr->VCID_MASK;
flow_seq = s_ptr[vwr->FLOWSEQ_OFF];
frame_type = pntohl(&s_ptr[vwr->FRAME_TYPE_OFF]);
if (vwr->FPGA_VERSION == vVW510024_E_FPGA) {
validityBits = pntohs(&s_ptr[vwr->VALID_OFF]);
f_flow = validityBits & vwr->FLOW_VALID;
mac_len = (validityBits & vwr->IS_VLAN) ? 16 : 14; /* MAC hdr length based on VLAN tag */
errors = pntohs(&s_ptr[vwr->ERRORS_OFF]);
}
else {
f_flow = s_ptr[vwr->VALID_OFF] & vwr->FLOW_VALID;
mac_len = (frame_type & vwr->IS_VLAN) ? 16 : 14; /* MAC hdr length based on VLAN tag */
/*for older fpga errors is only represented by 16 bits)*/
errors = pntohs(&s_ptr[vwr->ERRORS_OFF]);
}
info = pntohs(&s_ptr[vwr->INFO_OFF]);
/* 24 LSBs */
flow_id = pntoh24(&s_ptr[vwr->FLOWID_OFF]);
/* for tx latency is duration, for rx latency is timestamp */
/* get 64-bit latency value */
tsid = (s_ptr[vwr->LATVAL_OFF + 6] << 8) | (s_ptr[vwr->LATVAL_OFF + 7]);
for (i = 0; i < 4; i++)
tsid = (tsid << 8) | s_ptr[vwr->LATVAL_OFF + i];
l4id = pntohs(&s_ptr[vwr->L4ID_OFF]);
/* calculate start & end times (in sec/usec), converting 64-bit times to usec */
/* 64-bit times are "Corey-endian" */
s_time = pcoreytohll(&s_ptr[vwr->STARTT_OFF]);
e_time = pcoreytohll(&s_ptr[vwr->ENDT_OFF]);
/* find the packet duration (difference between start and end times) */
d_time = (guint32)((e_time - s_time)); /* find diff, leaving in nsec for Ethernet */
/* also convert the packet start time to seconds and microseconds */
start_time = s_time / NS_IN_US; /* convert to microseconds first */
s_sec = (start_time / US_IN_SEC); /* get the number of seconds */
s_usec = start_time - (s_sec * US_IN_SEC); /* get the number of microseconds */
/* also convert the packet end time to seconds and microseconds */
end_time = e_time / NS_IN_US; /* convert to microseconds first */
if (frame_type & vwr->IS_TCP) /* signature offset for TCP frame */
{
pay_off = mac_len + 40;
}
else if (frame_type & vwr->IS_UDP) /* signature offset for UDP frame */
{
pay_off = mac_len + 28;
}
else if (frame_type & vwr->IS_ICMP) /* signature offset for ICMP frame */
{
pay_off = mac_len + 24;
}
else if (frame_type & vwr->IS_IGMP) /* signature offset for IGMPv2 frame */
{
pay_off = mac_len + 28;
}
else /* signature offset for raw IP frame */
{
pay_off = mac_len + 20;
}
sig_off = find_signature(m_ptr, pay_off, flow_id, flow_seq);
if ((m_ptr[sig_off] == 0xdd) && (sig_off + 15 <= msdu_length) && (f_flow != 0))
sig_ts = get_signature_ts(m_ptr, sig_off);
else
sig_ts = 0;
/* Set latency based on rx/tx and signature timestamp */
if (!IS_TX) {
if (sig_ts < s_time) {
latency = (guint32)(s_time - sig_ts);
} else {
/* Account for the rollover case. Since we cannot use 0x100000000 - l_time + s_time */
/* we look for a large difference between l_time and s_time. */
delta_b = sig_ts - s_time;
if (delta_b > 0x10000000) {
latency = 0;
} else
latency = (guint32)delta_b;
}
}
/* fill up the per-packet header (amazingly like a PCAP packet header! ;-) */
/* frames are always wired ethernet with a wired ethernettap header */
/* caplen is the length that is captured into the file (i.e., the written-out frame */
/* block), and should always represent the actual number of bytes in the file */
/* len is the length of the original packet before truncation*/
/* the FCS is NEVER included */
e_hdr_len = STATS_COMMON_FIELDS_LEN + STATS_ETHERNETTAP_FIELDS_LEN;
wth->phdr.len = (actual_octets - 4) + e_hdr_len;
wth->phdr.caplen = (msdu_length - 4) + e_hdr_len;
wth->phdr.presence_flags = WTAP_HAS_TS;
wth->phdr.ts.secs = (time_t)s_sec;
wth->phdr.ts.nsecs = (int)(s_usec * 1000);
wth->phdr.pkt_encap = WTAP_ENCAP_IXVERIWAVE;
/* generate and copy out the ETHERNETTAP header, set the port type to 1 (Ethernet) */
common_hdr.vw_port_type = 1;
common_hdr.it_len = STATS_COMMON_FIELDS_LEN;
etap_hdr.it_len = STATS_ETHERNETTAP_FIELDS_LEN;
etap_hdr.vw_errors = (guint32)errors;
etap_hdr.vw_info = (guint16)info;
common_hdr.vw_msdu_length = (guint16)msdu_length;
/*etap_hdr.vw_ip_length = (guint16)ip_len;*/
common_hdr.vw_flowid = (guint32)flow_id;
common_hdr.vw_vcid = (guint16)vc_id;
common_hdr.vw_seqnum = (guint16)flow_seq;
if (!IS_TX && (sig_ts != 0))
common_hdr.vw_latency = (guint32)latency;
else
common_hdr.vw_latency = 0;
common_hdr.vw_pktdur = (guint32)d_time;
etap_hdr.vw_l4id = (guint32)l4id;
etap_hdr.vw_flags = 0;
if (IS_TX)
etap_hdr.vw_flags |= RADIOTAP_VWF_TXF;
if (errors & vwr->FCS_ERROR)
etap_hdr.vw_flags |= RADIOTAP_VWF_FCSERR;
common_hdr.vw_startt = start_time; /* record start & end times of frame */
common_hdr.vw_endt = end_time;
common_hdr.vw_sig_ts = (guint32)(sig_ts);
etap_hdr.it_pad2 = 0;
/* put common_hdr into the packet buffer in little-endian byte order */
phtoles(&data_ptr[bytes_written], common_hdr.vw_port_type);
bytes_written += 2;
phtoles(&data_ptr[bytes_written], common_hdr.it_len);
bytes_written += 2;
phtoles(&data_ptr[bytes_written], common_hdr.vw_msdu_length);
bytes_written += 2;
/* padding */
memset(&data_ptr[bytes_written], 0, 2);
bytes_written += 2;
phtolel(&data_ptr[bytes_written], common_hdr.vw_flowid);
bytes_written += 4;
phtoles(&data_ptr[bytes_written], common_hdr.vw_vcid);
bytes_written += 2;
phtoles(&data_ptr[bytes_written], common_hdr.vw_seqnum);
bytes_written += 2;
phtolel(&data_ptr[bytes_written], common_hdr.vw_latency);
bytes_written += 4;
phtolel(&data_ptr[bytes_written], common_hdr.vw_sig_ts);
bytes_written += 4;
phtolell(&data_ptr[bytes_written], common_hdr.vw_startt);
bytes_written += 8;
phtolell(&data_ptr[bytes_written], common_hdr.vw_endt);
bytes_written += 8;
phtolel(&data_ptr[bytes_written], common_hdr.vw_pktdur);
bytes_written += 4;
/* padding */
memset(&data_ptr[bytes_written], 0, 4);
bytes_written += 4;
/* put etap_hdr into the packet buffer in little-endian byte order */
phtoles(&data_ptr[bytes_written], etap_hdr.it_len);
bytes_written += 2;
phtoles(&data_ptr[bytes_written], etap_hdr.vw_flags);
bytes_written += 2;
phtoles(&data_ptr[bytes_written], etap_hdr.vw_info);
bytes_written += 2;
/* padding */
memset(&data_ptr[bytes_written], 0, 2);
bytes_written += 2;
phtolel(&data_ptr[bytes_written], etap_hdr.vw_errors);
bytes_written += 4;
phtolel(&data_ptr[bytes_written], etap_hdr.vw_l4id);
bytes_written += 4;
/* padding */
memset(&data_ptr[bytes_written], 0, 4);
bytes_written += 4;
/* finally, copy the whole MAC frame to the packet bufffer as-is; ALWAYS exclude 4-byte FCS */
if ( rec_size < ((int)actual_octets + (int)vwr->STATS_LEN) )
/*something's been truncated, DUMP AS-IS*/
memcpy(&data_ptr[bytes_written], m_ptr, msdu_length);
else if (msdu_length >= 4)
memcpy(&data_ptr[bytes_written], m_ptr, msdu_length - 4);
else
memcpy(&data_ptr[bytes_written], m_ptr, msdu_length);
}
/*--------------------------------------------------------------------------------------*/
/* utility to split up and decode a 16-byte message record */
static int decode_msg(vwr_t *vwr, guint8 *rec, int *v_type, int *IS_TX)
{
guint8 cmd; /* components of message */
guint32 wd2, wd3;
int v_size = 0; /* size of var-len message */
/* assume it's zero */
/* break up the message record into its pieces */
cmd = rec[0];
wd2 = pntohl(&rec[8]);
wd3 = pntohl(&rec[12]);
if (vwr != NULL) {
if ((cmd & vwr->HEADER_IS_TX) == vwr->HEADER_IS_TX)
*IS_TX = 1;
else if ((cmd & vwr->HEADER_IS_RX) == vwr->HEADER_IS_RX)
*IS_TX = 0;
else *IS_TX = 2; /*NULL case*/
}
/* now decode based on the command byte */
switch (cmd) {
case 0x21:
case 0x31:
v_size = (int)(wd2 & 0xffff);
*v_type = VT_FRAME;
break;
case 0xc1:
case 0x8b:
v_size = (int)(wd2 & 0xffff);
*v_type = VT_CPMSG;
break;
case 0xfe:
v_size = (int)(wd3 & 0xffff);
*v_type = VT_CPMSG;
break;
default:
break;
}
return(v_size);
}
/*--------------------------------------------------------------------------------------*/
/* utilities to extract and decode the PHY bit rate from 802.11 PLCP headers (OFDM/CCK) */
/* they are passed a pointer to 4 or 6 consecutive bytes of PLCP header */
/* the integer returned by the get_xxx_rate() functions is in units of 0.5 Mb/s */
/* The string returned by the decode_xxx_rate() functions is 3 characters wide */
static guint8 get_ofdm_rate(guint8 *plcp)
{
/* extract the RATE field (LS nibble of first byte) then decode it */
switch (plcp[0] & 0x0f) {
case 0x0b: return(6 * 2);
case 0x0f: return(9 * 2);
case 0x0a: return(12 * 2);
case 0x0e: return(18 * 2);
case 0x09: return(24 * 2);
case 0x0d: return(36 * 2);
case 0x08: return(48 * 2);
case 0x0c: return(54 * 2);
default: return(0);
}
}
static guint8 get_cck_rate(guint8 *plcp)
{
/* extract rate from the SIGNAL field, 1 byte */
switch (plcp[0]) {
case 0x0a: return(1 * 2);
case 0x14: return(2 * 2);
case 0x37: return(11); /* 5.5 Mb/s */
case 0x6e: return(11 * 2);
default: return(0);
}
}
/*--------------------------------------------------------------------------------------*/
/* utility to set up offsets and bitmasks for decoding the stats blocks */
static void setup_defaults(vwr_t *vwr, guint16 fpga)
{
switch (fpga) {
/* WLAN frames */
case vVW510021_W_FPGA:
vwr->STATS_LEN = vVW510021_W_STATS_LEN;
vwr->VALID_OFF = vVW510021_W_VALID_OFF;
vwr->MTYPE_OFF = vVW510021_W_MTYPE_OFF;
vwr->VCID_OFF = vVW510021_W_VCID_OFF;
vwr->FLOWSEQ_OFF = vVW510021_W_FLOWSEQ_OFF;
vwr->FLOWID_OFF = vVW510021_W_FLOWID_OFF;
/*vwr->OCTET_OFF = v22_W_OCTET_OFF;*/
vwr->ERRORS_OFF = vVW510021_W_ERRORS_OFF;
vwr->PATN_OFF = vVW510021_W_MATCH_OFF;
vwr->RSSI_OFF = vVW510021_W_RSSI_TXPOWER_OFF;
vwr->STARTT_OFF = vVW510021_W_STARTT_OFF;
vwr->ENDT_OFF = vVW510021_W_ENDT_OFF;
vwr->LATVAL_OFF = vVW510021_W_LATVAL_OFF;
vwr->INFO_OFF = vVW510021_W_INFO_OFF;
vwr->FPGA_VERSION_OFF = vVW510021_W_FPGA_VERSION_OFF;
vwr->HEADER_VERSION_OFF = vVW510021_W_HEADER_VERSION_OFF;
vwr->OCTET_OFF = vVW510021_W_MSDU_LENGTH_OFF;
vwr->L1P_1_OFF = vVW510021_W_L1P_1_OFF;
vwr->L1P_2_OFF = vVW510021_W_L1P_2_OFF;
vwr->L4ID_OFF = vVW510021_W_L4ID_OFF;
vwr->IPLEN_OFF = vVW510021_W_IPLEN_OFF;
vwr->PLCP_LENGTH_OFF = vVW510021_W_PLCP_LENGTH_OFF;
vwr->HEADER_IS_RX = vVW510021_W_HEADER_IS_RX;
vwr->HEADER_IS_TX = vVW510021_W_HEADER_IS_TX;
vwr->MT_MASK = vVW510021_W_SEL_MASK;
vwr->MCS_INDEX_MASK = vVW510021_W_MCS_MASK;
vwr->VCID_MASK = 0xffff;
vwr->FLOW_VALID = vVW510021_W_FLOW_VALID;
vwr->STATS_START_OFF = vVW510021_W_HEADER_LEN;
vwr->FCS_ERROR = vVW510021_W_FCS_ERROR;
vwr->CRYPTO_ERR = v22_W_CRYPTO_ERR;
vwr->RETRY_ERR = v22_W_RETRY_ERR;
/*vwr->STATS_START_OFF = 0;*/
vwr->RXTX_OFF = vVW510021_W_RXTX_OFF;
vwr->MT_10_HALF = 0;
vwr->MT_10_FULL = 0;
vwr->MT_100_HALF = 0;
vwr->MT_100_FULL = 0;
vwr->MT_1G_HALF = 0;
vwr->MT_1G_FULL = 0;
vwr->MT_CCKL = v22_W_MT_CCKL;
vwr->MT_CCKS = v22_W_MT_CCKS;
/*vwr->MT_OFDM = vVW510021_W_MT_OFDM;*/
vwr->WEPTYPE = vVW510021_W_WEPTYPE;
vwr->TKIPTYPE = vVW510021_W_TKIPTYPE;
vwr->CCMPTYPE = vVW510021_W_CCMPTYPE;
vwr->FRAME_TYPE_OFF = vVW510021_W_FRAME_TYPE_OFF;
vwr->IS_TCP = vVW510021_W_IS_TCP;
vwr->IS_UDP = vVW510021_W_IS_UDP;
vwr->IS_ICMP = vVW510021_W_IS_ICMP;
vwr->IS_IGMP = vVW510021_W_IS_IGMP;
vwr->IS_QOS = vVW510021_W_QOS_VALID;
break;
/* Ethernet frames */
case vVW510012_E_FPGA:
vwr->STATS_LEN = v22_E_STATS_LEN;
vwr->VALID_OFF = v22_E_VALID_OFF;
vwr->MTYPE_OFF = v22_E_MTYPE_OFF;
vwr->VCID_OFF = v22_E_VCID_OFF;
vwr->FLOWSEQ_OFF = v22_E_FLOWSEQ_OFF;
vwr->FLOWID_OFF = v22_E_FLOWID_OFF;
vwr->OCTET_OFF = v22_E_OCTET_OFF;
vwr->ERRORS_OFF = v22_E_ERRORS_OFF;
vwr->PATN_OFF = v22_E_PATN_OFF;
vwr->RSSI_OFF = v22_E_RSSI_OFF;
vwr->STARTT_OFF = v22_E_STARTT_OFF;
vwr->ENDT_OFF = v22_E_ENDT_OFF;
vwr->LATVAL_OFF = v22_E_LATVAL_OFF;
vwr->INFO_OFF = v22_E_INFO_OFF;
vwr->L4ID_OFF = v22_E_L4ID_OFF;
vwr->HEADER_IS_RX = v22_E_HEADER_IS_RX;
vwr->HEADER_IS_TX = v22_E_HEADER_IS_TX;
vwr->IS_RX = v22_E_IS_RX;
vwr->MT_MASK = v22_E_MT_MASK;
vwr->VCID_MASK = v22_E_VCID_MASK;
vwr->FLOW_VALID = v22_E_FLOW_VALID;
vwr->FCS_ERROR = v22_E_FCS_ERROR;
vwr->RX_DECRYPTS = v22_E_RX_DECRYPTS;
vwr->TX_DECRYPTS = v22_E_TX_DECRYPTS;
vwr->FC_PROT_BIT = v22_E_FC_PROT_BIT;
vwr->MT_10_HALF = v22_E_MT_10_HALF;
vwr->MT_10_FULL = v22_E_MT_10_FULL;
vwr->MT_100_HALF = v22_E_MT_100_HALF;
vwr->MT_100_FULL = v22_E_MT_100_FULL;
vwr->MT_1G_HALF = v22_E_MT_1G_HALF;
vwr->MT_1G_FULL = v22_E_MT_1G_FULL;
vwr->MT_CCKL = 0;
vwr->MT_CCKS = 0;
vwr->MT_OFDM = 0;
vwr->FRAME_TYPE_OFF = v22_E_FRAME_TYPE_OFF;
vwr->IS_TCP = v22_E_IS_TCP;
vwr->IS_UDP = v22_E_IS_UDP;
vwr->IS_ICMP = v22_E_IS_ICMP;
vwr->IS_IGMP = v22_E_IS_IGMP;
vwr->IS_QOS = v22_E_IS_QOS;
vwr->IS_VLAN = v22_E_IS_VLAN;
break;
/* WLAN frames */
case vVW510006_W_FPGA:
vwr->STATS_LEN = v22_W_STATS_LEN;
vwr->MTYPE_OFF = v22_W_MTYPE_OFF;
vwr->VALID_OFF = v22_W_VALID_OFF;
vwr->VCID_OFF = v22_W_VCID_OFF;
vwr->FLOWSEQ_OFF = v22_W_FLOWSEQ_OFF;
vwr->FLOWID_OFF = v22_W_FLOWID_OFF;
vwr->OCTET_OFF = v22_W_OCTET_OFF;
vwr->ERRORS_OFF = v22_W_ERRORS_OFF;
vwr->PATN_OFF = v22_W_PATN_OFF;
vwr->RSSI_OFF = v22_W_RSSI_OFF;
vwr->STARTT_OFF = v22_W_STARTT_OFF;
vwr->ENDT_OFF = v22_W_ENDT_OFF;
vwr->LATVAL_OFF = v22_W_LATVAL_OFF;
vwr->INFO_OFF = v22_W_INFO_OFF;
vwr->L4ID_OFF = v22_W_L4ID_OFF;
vwr->IPLEN_OFF = v22_W_IPLEN_OFF;
vwr->PLCP_LENGTH_OFF = v22_W_PLCP_LENGTH_OFF;
vwr->FCS_ERROR = v22_W_FCS_ERROR;
vwr->CRYPTO_ERR = v22_W_CRYPTO_ERR;
vwr->PAYCHK_ERR = v22_W_PAYCHK_ERR;
vwr->RETRY_ERR = v22_W_RETRY_ERR;
vwr->IS_RX = v22_W_IS_RX;
vwr->MT_MASK = v22_W_MT_MASK;
vwr->VCID_MASK = v22_W_VCID_MASK;
vwr->FLOW_VALID = v22_W_FLOW_VALID;
vwr->HEADER_IS_RX = v22_W_HEADER_IS_RX;
vwr->HEADER_IS_TX = v22_W_HEADER_IS_TX;
vwr->RX_DECRYPTS = v22_W_RX_DECRYPTS;
vwr->TX_DECRYPTS = v22_W_TX_DECRYPTS;
vwr->FC_PROT_BIT = v22_W_FC_PROT_BIT;
vwr->MT_10_HALF = 0;
vwr->MT_10_FULL = 0;
vwr->MT_100_HALF = 0;
vwr->MT_100_FULL = 0;
vwr->MT_1G_HALF = 0;
vwr->MT_1G_FULL = 0;
vwr->MT_CCKL = v22_W_MT_CCKL;
vwr->MT_CCKS = v22_W_MT_CCKS;
vwr->MT_OFDM = v22_W_MT_OFDM;
vwr->WEPTYPE = v22_W_WEPTYPE;
vwr->TKIPTYPE = v22_W_TKIPTYPE;
vwr->CCMPTYPE = v22_W_CCMPTYPE;
vwr->FRAME_TYPE_OFF = v22_W_FRAME_TYPE_OFF;
vwr->IS_TCP = v22_W_IS_TCP;
vwr->IS_UDP = v22_W_IS_UDP;
vwr->IS_ICMP = v22_W_IS_ICMP;
vwr->IS_IGMP = v22_W_IS_IGMP;
vwr->IS_QOS = v22_W_IS_QOS;
break;
/* Ethernet frames */
case vVW510024_E_FPGA:
vwr->STATS_LEN = vVW510024_E_STATS_LEN;
vwr->VALID_OFF = vVW510024_E_VALID_OFF;
vwr->VCID_OFF = vVW510024_E_VCID_OFF;
vwr->FLOWSEQ_OFF = vVW510024_E_FLOWSEQ_OFF;
vwr->FLOWID_OFF = vVW510024_E_FLOWID_OFF;
vwr->OCTET_OFF = vVW510024_E_MSDU_LENGTH_OFF;
vwr->ERRORS_OFF = vVW510024_E_ERRORS_OFF;
vwr->PATN_OFF = vVW510024_E_MATCH_OFF;
vwr->STARTT_OFF = vVW510024_E_STARTT_OFF;
vwr->ENDT_OFF = vVW510024_E_ENDT_OFF;
vwr->LATVAL_OFF = vVW510024_E_LATVAL_OFF;
vwr->INFO_OFF = vVW510024_E_INFO_OFF;
vwr->L4ID_OFF = vVW510024_E_L4ID_OFF;
vwr->IPLEN_OFF = vVW510024_E_IPLEN_OFF;
vwr->FPGA_VERSION_OFF = vVW510024_E_FPGA_VERSION_OFF;
vwr->HEADER_VERSION_OFF = vVW510024_E_HEADER_VERSION_OFF;
vwr->HEADER_IS_RX = vVW510024_E_HEADER_IS_RX;
vwr->HEADER_IS_TX = vVW510024_E_HEADER_IS_TX;
vwr->VCID_MASK = vVW510024_E_VCID_MASK;
vwr->FLOW_VALID = vVW510024_E_FLOW_VALID;
vwr->FCS_ERROR = v22_E_FCS_ERROR;
vwr->FRAME_TYPE_OFF = vVW510024_E_FRAME_TYPE_OFF;
vwr->IS_TCP = vVW510024_E_IS_TCP;
vwr->IS_UDP = vVW510024_E_IS_UDP;
vwr->IS_ICMP = vVW510024_E_IS_ICMP;
vwr->IS_IGMP = vVW510024_E_IS_IGMP;
vwr->IS_QOS = vVW510024_E_QOS_VALID;
vwr->IS_VLAN = vVW510024_E_IS_VLAN;
break;
}
}
#define SIG_SCAN_RANGE 64 /* range of signature scanning region */
/* utility routine: check that signature is at specified location; scan for it if not */
/* if we can't find a signature at all, then simply return the originally supplied offset */
int find_signature(guint8 *m_ptr, int pay_off, guint32 flow_id, guint8 flow_seq)
{
int tgt; /* temps */
guint32 fid;
/* initial check is very simple: look for a '0xdd' at the target location */
if (m_ptr[pay_off] == 0xdd) /* if magic byte is present */
return(pay_off); /* got right offset, return it */
/* hmmm, signature magic byte is not where it is supposed to be; scan from start of */
/* payload until maximum scan range exhausted to see if we can find it */
/* the scanning process consists of looking for a '0xdd', then checking for the correct */
/* flow ID and sequence number at the appropriate offsets */
for (tgt = pay_off; tgt < (pay_off + SIG_SCAN_RANGE); tgt++) {
if (m_ptr[tgt] == 0xdd) { /* found magic byte? check fields */
if (m_ptr[tgt + 15] == 0xe2) {
if (m_ptr[tgt + 4] != flow_seq)
continue;
fid = pletoh24(&m_ptr[tgt + 1]);
if (fid != flow_id)
continue;
return (tgt);
}
else
{ /* out which one... */
if (m_ptr[tgt + SIG_FSQ_OFF] != flow_seq) /* check sequence number */
continue; /* if failed, keep scanning */
fid = pletoh24(&m_ptr[tgt + SIG_FID_OFF]); /* assemble flow ID from signature */
if (fid != flow_id) /* check flow ID against expected */
continue; /* if failed, keep scanning */
/* matched magic byte, sequence number, flow ID; found the signature */
return (tgt); /* return offset of signature */
}
}
}
/* failed to find the signature, return the original offset as default */
return(pay_off);
}
/* utility routine: harvest the signature time stamp from the data frame */
guint64 get_signature_ts(guint8 *m_ptr,int sig_off)
{
int ts_offset;
guint64 sig_ts;
if (m_ptr[sig_off + 15] == 0xe2)
ts_offset = 5;
else
ts_offset = 8;
sig_ts = pletohl(&m_ptr[sig_off + ts_offset]);
return(sig_ts & 0xffffffff);
}