wireshark/epan/dissectors/packet-vp8.c

619 lines
22 KiB
C

/* packet-vp8.c
* Routines for VP8 dissection
* Copyright 2014, Owen Williams williams.owen@gmail.com
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
/*
* RFC 6386 - VP8 Data Format and Decoding Guide
* RFC 7741 - RTP Payload Format for VP8 Video
*/
#include "config.h"
#include <epan/packet.h>
#include <epan/prefs.h>
#include <epan/expert.h>
void proto_reg_handoff_vp8(void);
void proto_register_vp8(void);
#define BIT_1_MASK 0x80
#define BIT_2_MASK 0x40
#define BIT_3_MASK 0x20
#define BIT_4_MASK 0x10
#define BIT_5_MASK 0x08
#define BIT_6_MASK 0x04
#define BIT_7_MASK 0x02
#define BIT_8_MASK 0x01
#define BIT_123_MASK 0xE0
#define BIT_234_MASK 0x70
#define BIT_5678_MASK 0x0F
#define BIT_567_MASK 0x0E
#define BIT_45678_MASK 0x1F
#define BIT_12_MASK 0xC0
#define BIT_NO_MASK 0xFF
#define BIT_2BYTE_NO_MASK 0xFFFF
#define BIT_3BYTE_NO_MASK 0xFFFFFF
#define BIT_EXT_PICTURE_MASK 0x7FFF
#define BIT_PARTITION_SIZE_MASK 0xE0FFFF
static range_t *temp_dynamic_payload_type_range = NULL;
static dissector_handle_t vp8_handle;
/* Initialize the protocol and registered fields */
static int proto_vp8 = -1;
static int hf_vp8_pld_x_bit = -1;
static int hf_vp8_pld_r_bit = -1;
static int hf_vp8_pld_n_bit = -1;
static int hf_vp8_pld_s_bit = -1;
static int hf_vp8_pld_part_id = -1;
static int hf_vp8_pld_i_bit = -1;
static int hf_vp8_pld_l_bit = -1;
static int hf_vp8_pld_t_bit = -1;
static int hf_vp8_pld_k_bit = -1;
static int hf_vp8_pld_rsv_a = -1;
static int hf_vp8_pld_picture_id = -1;
static int hf_vp8_pld_extended_picture_id = -1;
static int hf_vp8_pld_tl0picidx = -1;
static int hf_vp8_pld_tid = -1;
static int hf_vp8_pld_y_bit = -1;
static int hf_vp8_pld_keyidx = -1;
/* payload header fields */
static int hf_vp8_hdr_frametype = -1;
static int hf_vp8_hdr_version = -1;
static int hf_vp8_hdr_show_bit = -1;
static int hf_vp8_hdr_first_partition_size = -1;
/* keyframe fields */
static int hf_vp8_keyframe_start_code = -1;
static int hf_vp8_keyframe_width = -1;
static int hf_vp8_keyframe_horizontal_scale = -1;
static int hf_vp8_keyframe_height = -1;
static int hf_vp8_keyframe_vertical_scale = -1;
/* Initialize the subtree pointers */
static int ett_vp8 = -1;
static int ett_vp8_payload_descriptor = -1;
static int ett_vp8_payload_header = -1;
static int ett_vp8_payload = -1;
static int ett_vp8_keyframe = -1;
static expert_field ei_vp8_startcode = EI_INIT;
static expert_field ei_vp8_undecoded = EI_INIT;
static expert_field ei_vp8_continuation = EI_INIT;
static expert_field ei_vp8_first_partition_split = EI_INIT;
static expert_field ei_vp8_first_partition_plus = EI_INIT;
static void
dissect_vp8_payload_descriptor(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *vp8_tree, gint *offset, gboolean *hasHeader);
static void
dissect_vp8_payload_header(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *vp8_tree, gint *offset, gint *frametype, gint *partition1_size);
static void
dissect_vp8_payload(tvbuff_t *tvb, packet_info *pinfo, proto_tree *vp8_tree, gint *offset, gint *frametype, gint *partition1_size);
static gint *ett[] = {
&ett_vp8,
&ett_vp8_payload_descriptor,
&ett_vp8_payload_header,
&ett_vp8_payload,
&ett_vp8_keyframe
};
static const value_string vp8_type_values[] = {
{ 0, "Keyframe" },
{ 1, "Interframe" },
{ 2, "Continuation" },
{ 0, NULL }
};
static const range_string vp8_hdr_version_vals[] = {
{ 0, 0, "Bicubic (Loop Filter=Normal)" },
{ 1, 1, "Bilinear (Loop Filter=Simple)" },
{ 2, 2, "Bilinear (Loop Filter=None)" },
{ 3, 3, "No filters" },
{ 4, 7, "Reserved for future use" },
{ 0, 0, NULL }
};
static const true_false_string vp8_x_bit_vals = {
"Extended control bits present (I L T K)",
"Extended control bits not present"
};
static const true_false_string vp8_r_bit_vals = {
"Reserved for future use (error: should be zero)",
"Reserved for future use"
};
static const true_false_string vp8_n_bit_vals = {
"Non-reference frame",
"Reference frame"
};
static const true_false_string vp8_s_bit_vals = {
"Start of VP8 partition",
"Continuation of VP8 partition"
};
static const true_false_string vp8_i_bit_vals = {
"Picture ID byte present",
"No Picture byte ID"
};
static const true_false_string vp8_l_bit_vals = {
"TL0PICIDX byte present",
"TL0PICIDX byte not present"
};
static const true_false_string vp8_t_bit_vals = {
"TID (temporal layer index) present",
"TID (temporal layer index) not present"
};
static const true_false_string vp8_k_bit_vals = {
"KEYIDX present",
"KEYIDX not present"
};
static const true_false_string vp8_hdr_frametype_vals = {
"interframe",
"keyframe"
};
static int
dissect_vp8(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* data _U_)
{
proto_item *item;
gint offset = 0, frametype = 0, partition1_size = -1;
proto_tree *vp8_tree;
gboolean hasHeader = FALSE;
col_set_str(pinfo->cinfo, COL_PROTOCOL, "VP8");
item = proto_tree_add_item(tree, proto_vp8, tvb, 0, -1, ENC_NA);
vp8_tree = proto_item_add_subtree(item, ett_vp8);
frametype = 2; /*continuation, will get overridden if there is a payload header*/
dissect_vp8_payload_descriptor(tvb, pinfo, vp8_tree, &offset, &hasHeader);
if (hasHeader)
{
dissect_vp8_payload_header(tvb, pinfo, vp8_tree, &offset, &frametype, &partition1_size);
}
dissect_vp8_payload(tvb, pinfo, vp8_tree, &offset, &frametype, &partition1_size);
col_append_fstr(pinfo->cinfo, COL_INFO, " - %s",
val_to_str(frametype, vp8_type_values, "Unknown Type (%u)"));
return tvb_captured_length(tvb);
}
static void
dissect_vp8_payload_descriptor(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *vp8_tree, gint *offset, gboolean *hasHeader)
{
proto_item *item_descriptor;
guint8 extended_bit, s_bit, partId;
proto_tree *vp8_payload_descriptor_tree;
/*
The first octets after the RTP header are the VP8 payload descriptor,
with the following structure.
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
|X|R|N|S|R| PID | (REQUIRED), second R bit is parsed as part of PID
+-+-+-+-+-+-+-+-+
X: |I|L|T|K| RSV | (OPTIONAL)
+-+-+-+-+-+-+-+-+
I: |M| PictureID | (OPTIONAL)
+-+-+-+-+-+-+-+-+
L: | TL0PICIDX | (OPTIONAL)
+-+-+-+-+-+-+-+-+
T/K: |TID|Y| KEYIDX | (OPTIONAL)
+-+-+-+-+-+-+-+-+
*/
vp8_payload_descriptor_tree = proto_tree_add_subtree(vp8_tree, tvb, *offset, -1, ett_vp8_payload_descriptor,
&item_descriptor, "Payload descriptor");
proto_tree_add_item(vp8_payload_descriptor_tree, hf_vp8_pld_x_bit, tvb, *offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(vp8_payload_descriptor_tree, hf_vp8_pld_r_bit, tvb, *offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(vp8_payload_descriptor_tree, hf_vp8_pld_n_bit, tvb, *offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(vp8_payload_descriptor_tree, hf_vp8_pld_s_bit, tvb, *offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(vp8_payload_descriptor_tree, hf_vp8_pld_part_id, tvb, *offset, 1, ENC_BIG_ENDIAN);
extended_bit = tvb_get_guint8(tvb, *offset) & BIT_1_MASK;
s_bit = tvb_get_guint8(tvb, *offset) & BIT_4_MASK;
partId = tvb_get_guint8(tvb, *offset) & BIT_5678_MASK;
if ((s_bit > 0) && (partId == 0)) {
*hasHeader=TRUE;
}
if (extended_bit)
{
guint8 i_bit, l_bit, t_bit, k_bit;
(*offset)++;
proto_tree_add_item(vp8_payload_descriptor_tree, hf_vp8_pld_i_bit, tvb, *offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(vp8_payload_descriptor_tree, hf_vp8_pld_l_bit, tvb, *offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(vp8_payload_descriptor_tree, hf_vp8_pld_t_bit, tvb, *offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(vp8_payload_descriptor_tree, hf_vp8_pld_k_bit, tvb, *offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(vp8_payload_descriptor_tree, hf_vp8_pld_rsv_a, tvb, *offset, 1, ENC_BIG_ENDIAN);
i_bit = tvb_get_guint8(tvb, *offset) & BIT_1_MASK;
l_bit = tvb_get_guint8(tvb, *offset) & BIT_2_MASK;
t_bit = tvb_get_guint8(tvb, *offset) & BIT_3_MASK;
k_bit = tvb_get_guint8(tvb, *offset) & BIT_4_MASK;
if (i_bit)
{
(*offset)++;
if(tvb_get_guint8(tvb, *offset) & BIT_1_MASK)
{
proto_tree_add_item(vp8_payload_descriptor_tree, hf_vp8_pld_extended_picture_id, tvb, *offset, 2, ENC_BIG_ENDIAN);
(*offset)++;
}
else
{
proto_tree_add_item(vp8_payload_descriptor_tree, hf_vp8_pld_picture_id, tvb, *offset, 1, ENC_BIG_ENDIAN);
}
}
if (l_bit)
{
(*offset)++;
proto_tree_add_item(vp8_payload_descriptor_tree, hf_vp8_pld_tl0picidx, tvb, *offset, 1, ENC_BIG_ENDIAN);
}
if (t_bit || k_bit)
{
(*offset)++;
proto_tree_add_item(vp8_payload_descriptor_tree, hf_vp8_pld_tid, tvb, *offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(vp8_payload_descriptor_tree, hf_vp8_pld_y_bit, tvb, *offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(vp8_payload_descriptor_tree, hf_vp8_pld_keyidx, tvb, *offset, 1, ENC_BIG_ENDIAN);
}
}
(*offset)++;
/* now we know the length of payload descriptor */
proto_item_set_len(item_descriptor, *offset);
}
static void
dissect_vp8_payload_header(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *vp8_tree, gint *offset, gint *frametype, gint *partition1_size)
{
proto_item *item_header;
proto_tree *vp8_payload_header_tree;
gint size0, size1, size2;
/*
The first three octets of an encoded VP8 frame are referred to as an
"uncompressed data chunk" in [RFC6386], and co-serve as payload
header in this RTP format. The codec bitstream format specifies two
different variants of the uncompressed data chunk: a 3 octet version
for interframes and a 10 octet version for key frames. The first 3
octets are common to both variants. In the case of a key frame the
remaining 7 octets are considered to be part of the remaining payload
in this RTP format. Note that the header is present only in packets
which have the S bit equal to one and the PartID equal to zero in the
payload descriptor. Subsequent packets for the same frame do not
carry the payload header.
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
|Size0|H| VER |P|
+-+-+-+-+-+-+-+-+
| Size1 |
+-+-+-+-+-+-+-+-+
| Size2 |
+-+-+-+-+-+-+-+-+
| Bytes 4..N of |
| VP8 payload |
: :
+-+-+-+-+-+-+-+-+
| OPTIONAL RTP |
| padding |
: :
+-+-+-+-+-+-+-+-+
*/
vp8_payload_header_tree = proto_tree_add_subtree(vp8_tree, tvb, *offset, 3, ett_vp8_payload_header, &item_header, "Payload header");
proto_tree_add_item(vp8_payload_header_tree, hf_vp8_hdr_frametype, tvb, *offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(vp8_payload_header_tree, hf_vp8_hdr_version, tvb, *offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(vp8_payload_header_tree, hf_vp8_hdr_show_bit, tvb, *offset, 1, ENC_BIG_ENDIAN);
*frametype = tvb_get_guint8(tvb, *offset) & BIT_8_MASK;
size0 = (tvb_get_guint8(tvb, *offset) & BIT_123_MASK) >> 5;
size1 = tvb_get_guint8(tvb, *offset + 1);
size2 = tvb_get_guint8(tvb, *offset + 2);
(*partition1_size) = size0 + (size1*8) + (size2*2048);
proto_tree_add_uint(vp8_payload_header_tree, hf_vp8_hdr_first_partition_size, tvb, *offset, 3, *partition1_size);
(*offset)++;
(*offset)++;
(*offset)++;
}
static void
dissect_vp8_payload(tvbuff_t *tvb, packet_info *pinfo, proto_tree *vp8_tree, gint *offset, gint *frametype, gint *partition1_size)
{
proto_tree *vp8_payload_tree;
proto_item *payload_item;
gint remainder;
vp8_payload_tree = proto_tree_add_subtree(vp8_tree, tvb, *offset, -1, ett_vp8_payload, &payload_item, "Payload");
if (*frametype == 0)
{
guint16 width, height;
gint start1, start2, start3, horizontal_scale, vertical_scale;
proto_tree *vp8_keyframe_tree;
vp8_keyframe_tree = proto_tree_add_subtree(vp8_payload_tree, tvb, *offset, -1, ett_vp8_keyframe, NULL, "Keyframe header");
proto_tree_add_item(vp8_keyframe_tree, hf_vp8_keyframe_start_code, tvb, *offset, 3, ENC_BIG_ENDIAN);
start1 = tvb_get_guint8(tvb, *offset);
start2 = tvb_get_guint8(tvb, *offset + 1);
start3 = tvb_get_guint8(tvb, *offset + 2);
/* check start code is correct */
if ((start1 != 0x9d) || (start2 != 0x01) || (start3 != 0x2a))
{
expert_add_info(pinfo, vp8_keyframe_tree, &ei_vp8_startcode);
}
(*offset)++;
(*offset)++;
(*offset)++;
width = tvb_get_letohs(tvb, *offset) & 0x3FFF;
horizontal_scale = tvb_get_letohs(tvb, *offset)>>14;
proto_tree_add_uint(vp8_keyframe_tree, hf_vp8_keyframe_horizontal_scale, tvb, *offset, 2, horizontal_scale);
proto_tree_add_uint(vp8_keyframe_tree, hf_vp8_keyframe_width, tvb, *offset, 2, width);
(*offset)++;
(*offset)++;
height = tvb_get_letohs(tvb, *offset) & 0x3FFF;
vertical_scale = tvb_get_letohs(tvb, *offset)>>14;
proto_tree_add_uint(vp8_keyframe_tree, hf_vp8_keyframe_vertical_scale, tvb, *offset, 2, vertical_scale);
proto_tree_add_uint(vp8_keyframe_tree, hf_vp8_keyframe_height, tvb, *offset, 2, height);
(*offset)++;
(*offset)++;
}
remainder = tvb_reported_length_remaining(tvb, (*offset));
if ((*partition1_size) == -1)
{
/*no header, continuation?*/
proto_tree_add_expert_format(vp8_payload_tree, pinfo, &ei_vp8_continuation, tvb, *offset, -1, "Continuation of partition fragment (%d bytes)", remainder);
}
else
{
if (remainder < *partition1_size)
{
/* partition size has already been added to vp8 header tree, but it would be useful to provide additional explanation */
proto_tree_add_expert_format(vp8_payload_tree, pinfo, &ei_vp8_first_partition_split, tvb, *offset, -1,
"First partition is split with %d bytes in this packet and %d bytes in subsequent frames", remainder, ((*partition1_size)-remainder));
}
else
{
(*offset)= (*offset) + (*partition1_size);
proto_tree_add_expert_format(vp8_payload_tree, pinfo, &ei_vp8_first_partition_plus, tvb, *offset, -1,
"This frame contains all of first partition (%d bytes) and also %d bytes from other partitions",
*partition1_size, remainder);
}
}
expert_add_info(pinfo, payload_item, &ei_vp8_undecoded);
}
void
proto_register_vp8(void)
{
module_t *vp8_module;
expert_module_t* expert_vp8;
static hf_register_info hf[] = {
{ &hf_vp8_pld_x_bit,
{ "X bit", "vp8.pld.x",
FT_BOOLEAN, 8, TFS(&vp8_x_bit_vals), BIT_1_MASK,
NULL, HFILL }
},
{ &hf_vp8_pld_r_bit,
{ "R bit", "vp8.pld.r",
FT_BOOLEAN, 8, TFS(&vp8_r_bit_vals), BIT_2_MASK,
NULL, HFILL }
},
{ &hf_vp8_pld_n_bit,
{ "N bit", "vp8.pld.n",
FT_BOOLEAN, 8, TFS(&vp8_n_bit_vals), BIT_3_MASK,
NULL, HFILL }
},
{ &hf_vp8_pld_s_bit,
{ "S bit", "vp8.pld.s",
FT_BOOLEAN, 8, TFS(&vp8_s_bit_vals), BIT_4_MASK,
NULL, HFILL }
},
{ &hf_vp8_pld_part_id,
{ "2nd R bit and Part Id", "vp8.pld.partid",
FT_UINT8, BASE_DEC, NULL, BIT_5678_MASK,
NULL, HFILL }
},
{ &hf_vp8_pld_i_bit,
{ "I bit", "vp8.pld.i",
FT_BOOLEAN, 8, TFS(&vp8_i_bit_vals), BIT_1_MASK,
NULL, HFILL }
},
{ &hf_vp8_pld_l_bit,
{ "L bit", "vp8.pld.l",
FT_BOOLEAN, 8, TFS(&vp8_l_bit_vals), BIT_2_MASK,
NULL, HFILL }
},
{ &hf_vp8_pld_t_bit,
{ "T bit", "vp8.pld.t",
FT_BOOLEAN, 8, TFS(&vp8_t_bit_vals), BIT_3_MASK,
NULL, HFILL }
},
{ &hf_vp8_pld_k_bit,
{ "K bit", "vp8.pld.k",
FT_BOOLEAN, 8, TFS(&vp8_k_bit_vals), BIT_4_MASK,
NULL, HFILL }
},
{ &hf_vp8_pld_rsv_a,
{ "Reserved A", "vp8.pld.rsva",
FT_UINT8, BASE_DEC, NULL, BIT_5678_MASK,
NULL, HFILL }
},
{ &hf_vp8_pld_picture_id,
{ "Picture ID", "vp8.pld.pictureid",
FT_UINT8, BASE_DEC, NULL, BIT_NO_MASK,
NULL, HFILL }
},
{ &hf_vp8_pld_extended_picture_id,
{ "Extended Picture ID", "vp8.pld.pictureid",
FT_UINT8, BASE_DEC, NULL, BIT_EXT_PICTURE_MASK,
NULL, HFILL }
},
{ &hf_vp8_pld_tl0picidx,
{ "Temporal layer zero Picture Index (TL0PICIDX)", "vp8.pld.tl0picidx",
FT_UINT8, BASE_DEC, NULL, BIT_NO_MASK,
NULL, HFILL }
},
{ &hf_vp8_pld_tid,
{ "Temporal layer Index (TID)", "vp8.pld.tid",
FT_UINT8, BASE_DEC, NULL, BIT_12_MASK,
NULL, HFILL }
},
{ &hf_vp8_pld_y_bit,
{ "1 layer sync bit (Y)", "vp8.pld.y",
FT_BOOLEAN, 8, NULL, BIT_3_MASK,
NULL, HFILL }
},
{ &hf_vp8_pld_keyidx,
{ "Temporal Key Frame Index (KEYIDX)", "vp8.pld.keyidx",
FT_UINT8, BASE_DEC, NULL, BIT_45678_MASK,
NULL, HFILL }
},
{ &hf_vp8_hdr_frametype,
{ "frametype", "vp8.hdr.frametype",
FT_BOOLEAN, 8, TFS(&vp8_hdr_frametype_vals), BIT_8_MASK,
NULL, HFILL }
},
{ &hf_vp8_hdr_version,
{ "version", "vp8.hdr.version",
FT_UINT8, BASE_DEC | BASE_RANGE_STRING, RVALS(vp8_hdr_version_vals), BIT_567_MASK,
NULL, HFILL }
},
{ &hf_vp8_hdr_show_bit,
{ "Show bit", "vp8.hdr.show",
FT_BOOLEAN, 8, NULL, BIT_4_MASK,
"Set when current frame is for display", HFILL }
},
{ &hf_vp8_hdr_first_partition_size,
{ "First partition size", "vp8.hdr.partition_size",
FT_UINT8, BASE_DEC, NULL, BIT_PARTITION_SIZE_MASK,
NULL, HFILL }
},
{ &hf_vp8_keyframe_start_code,
{ "VP8 Start code", "vp8.keyframe.start_code",
FT_UINT24, BASE_HEX, NULL, BIT_3BYTE_NO_MASK,
NULL, HFILL }
},
{ &hf_vp8_keyframe_width,
{ "Width", "vp8.keyframe.width",
FT_UINT16, BASE_DEC, NULL, BIT_2BYTE_NO_MASK,
NULL, HFILL }
},
{ &hf_vp8_keyframe_height,
{ "Height", "vp8.keyframe.height",
FT_UINT16, BASE_DEC, NULL, BIT_2BYTE_NO_MASK,
NULL, HFILL }
},
{ &hf_vp8_keyframe_horizontal_scale,
{ "Horizontal Scale", "vp8.keyframe.horizontal_scale",
FT_UINT8, BASE_DEC, NULL, BIT_12_MASK,
NULL, HFILL }
},
{ &hf_vp8_keyframe_vertical_scale,
{ "Vertical Scale", "vp8.keyframe.vertical_scale",
FT_UINT8, BASE_DEC, NULL, BIT_12_MASK,
NULL, HFILL }
}
};
static ei_register_info ei[] = {
{ &ei_vp8_startcode, { "vp8.keyframe.startcode", PI_PROTOCOL, PI_ERROR, "Startcode is incorrect", EXPFILL }},
{ &ei_vp8_undecoded, { "vp8.undecoded", PI_UNDECODED, PI_NOTE, "Payload not fully decoded", EXPFILL }},
{ &ei_vp8_continuation, { "vp8.continuation", PI_REASSEMBLE, PI_CHAT, "Continuation of partition fragment", EXPFILL }},
{ &ei_vp8_first_partition_split, { "vp8.first_partition_split", PI_REASSEMBLE, PI_CHAT, "First partition is split", EXPFILL }},
{ &ei_vp8_first_partition_plus, { "vp8.first_partition_plus", PI_REASSEMBLE, PI_CHAT, "This frame contains all of first partition and also bytes from other partitions", EXPFILL }},
};
proto_vp8 = proto_register_protocol (
"VP8", /* name */
"VP8", /* short name */
"vp8" /* abbrev */
);
proto_register_field_array(proto_vp8, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));
vp8_module = prefs_register_protocol(proto_vp8, proto_reg_handoff_vp8);
expert_vp8 = expert_register_protocol(proto_vp8);
expert_register_field_array(expert_vp8, ei, array_length(ei));
prefs_register_range_preference(vp8_module, "dynamic.payload.type",
"vp8 dynamic payload types",
"Dynamic payload types which will be interpreted as vp8"
"; Values must be in the range 1 - 127",
&temp_dynamic_payload_type_range, 127);
vp8_handle = register_dissector("vp8", dissect_vp8, proto_vp8);
}
void
proto_reg_handoff_vp8(void)
{
static range_t *dynamic_payload_type_range = NULL;
static gboolean vp8_prefs_initialized = FALSE;
if (!vp8_prefs_initialized) {
dissector_add_string("rtp_dyn_payload_type" , "VP8", vp8_handle);
vp8_prefs_initialized = TRUE;
} else {
dissector_delete_uint_range("rtp.pt", dynamic_payload_type_range, vp8_handle);
wmem_free(wmem_epan_scope(), dynamic_payload_type_range);
}
dynamic_payload_type_range = range_copy(wmem_epan_scope(), temp_dynamic_payload_type_range);
range_remove_value(wmem_epan_scope(), &dynamic_payload_type_range, 0);
dissector_add_uint_range("rtp.pt", dynamic_payload_type_range, vp8_handle);
}
/*
* Editor modelines - https://www.wireshark.org/tools/modelines.html
*
* Local variables:
* c-basic-offset: 4
* tab-width: 8
* indent-tabs-mode: nil
* End:
*
* vi: set shiftwidth=4 tabstop=8 expandtab:
* :indentSize=4:tabSize=8:noTabs=true:
*/