wireshark/epan/dissectors/packet-ftdi-ft.c

1766 lines
60 KiB
C

/* packet-ftdi-ft.c
* Routines for FTDI FTxxxx USB converters dissection
*
* Copyright 2019 Tomasz Mon
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include "config.h"
#include <epan/packet.h>
#include <epan/prefs.h>
#include <epan/expert.h>
#include <epan/reassemble.h>
#include "packet-usb.h"
#include "packet-ftdi-ft.h"
static int proto_ftdi_ft = -1;
static gint hf_setup_brequest = -1;
static gint hf_setup_lvalue = -1;
static gint hf_setup_lvalue_purge = -1;
static gint hf_setup_lvalue_dtr = -1;
static gint hf_setup_lvalue_rts = -1;
static gint hf_setup_lvalue_xon_char = -1;
static gint hf_setup_lvalue_baud_low = -1;
static gint hf_setup_lvalue_data_size = -1;
static gint hf_setup_lvalue_event_char = -1;
static gint hf_setup_lvalue_error_char = -1;
static gint hf_setup_lvalue_latency_time = -1;
static gint hf_setup_lvalue_bitmask = -1;
static gint hf_setup_hvalue = -1;
static gint hf_setup_hvalue_dtr = -1;
static gint hf_setup_hvalue_rts = -1;
static gint hf_setup_hvalue_xoff_char = -1;
static gint hf_setup_hvalue_baud_mid = -1;
static gint hf_setup_hvalue_parity = -1;
static gint hf_setup_hvalue_stop_bits = -1;
static gint hf_setup_hvalue_break_bit = -1;
static gint hf_setup_hvalue_trigger = -1;
static gint hf_setup_hvalue_error_replacement = -1;
static gint hf_setup_hvalue_bitmode = -1;
static gint hf_setup_lindex = -1;
static gint hf_setup_lindex_port_ab = -1;
static gint hf_setup_lindex_port_abcd = -1;
static gint hf_setup_lindex_baud_high = -1;
static gint hf_setup_hindex = -1;
static gint hf_setup_hindex_rts_cts = -1;
static gint hf_setup_hindex_dtr_dsr = -1;
static gint hf_setup_hindex_xon_xoff = -1;
static gint hf_setup_hindex_baud_high = -1;
static gint hf_setup_hindex_baud_clock_divide = -1;
static gint hf_setup_wlength = -1;
static gint hf_response_lat_timer = -1;
static gint hf_modem_status = -1;
static gint hf_modem_status_fs_max_packet = -1;
static gint hf_modem_status_hs_max_packet = -1;
static gint hf_modem_status_cts = -1;
static gint hf_modem_status_dsr = -1;
static gint hf_modem_status_ri = -1;
static gint hf_modem_status_dcd = -1;
static gint hf_line_status = -1;
static gint hf_line_status_receive_overflow = -1;
static gint hf_line_status_parity_error = -1;
static gint hf_line_status_framing_error = -1;
static gint hf_line_status_break_received = -1;
static gint hf_line_status_tx_holding_reg_empty = -1;
static gint hf_line_status_tx_empty = -1;
static gint hf_if_a_rx_payload = -1;
static gint hf_if_a_tx_payload = -1;
static gint hf_if_b_rx_payload = -1;
static gint hf_if_b_tx_payload = -1;
static gint hf_if_c_rx_payload = -1;
static gint hf_if_c_tx_payload = -1;
static gint hf_if_d_rx_payload = -1;
static gint hf_if_d_tx_payload = -1;
static gint hf_ftdi_fragments = -1;
static gint hf_ftdi_fragment = -1;
static gint hf_ftdi_fragment_overlap = -1;
static gint hf_ftdi_fragment_overlap_conflicts = -1;
static gint hf_ftdi_fragment_multiple_tails = -1;
static gint hf_ftdi_fragment_too_long_fragment = -1;
static gint hf_ftdi_fragment_error = -1;
static gint hf_ftdi_fragment_count = -1;
static gint hf_ftdi_reassembled_in = -1;
static gint hf_ftdi_reassembled_length = -1;
static gint ett_ftdi_ft = -1;
static gint ett_modem_ctrl_lvalue = -1;
static gint ett_modem_ctrl_hvalue = -1;
static gint ett_flow_ctrl_hindex = -1;
static gint ett_baudrate_lindex = -1;
static gint ett_baudrate_hindex = -1;
static gint ett_setdata_hvalue = -1;
static gint ett_modem_status = -1;
static gint ett_line_status = -1;
static gint ett_ftdi_fragment = -1;
static gint ett_ftdi_fragments = -1;
static const fragment_items ftdi_frag_items = {
/* Fragment subtrees */
&ett_ftdi_fragment,
&ett_ftdi_fragments,
/* Fragment Fields */
&hf_ftdi_fragments,
&hf_ftdi_fragment,
&hf_ftdi_fragment_overlap,
&hf_ftdi_fragment_overlap_conflicts,
&hf_ftdi_fragment_multiple_tails,
&hf_ftdi_fragment_too_long_fragment,
&hf_ftdi_fragment_error,
&hf_ftdi_fragment_count,
/* Reassembled in field */
&hf_ftdi_reassembled_in,
/* Reassembled length field */
&hf_ftdi_reassembled_length,
/* Reassembled data field */
NULL,
/* Tag */
"FTDI FT fragments"
};
static dissector_handle_t ftdi_mpsse_handle;
static expert_field ei_undecoded = EI_INIT;
static dissector_handle_t ftdi_ft_handle;
static reassembly_table ftdi_reassembly_table;
static wmem_tree_t *request_info = NULL;
static wmem_tree_t *bitmode_info = NULL;
static wmem_tree_t *desegment_info = NULL;
typedef struct _request_data {
guint32 bus_id;
guint32 device_address;
guint8 request;
guint8 hvalue;
guint8 lindex;
} request_data_t;
typedef struct _bitmode_data {
guint32 bus_id;
guint32 device_address;
FTDI_INTERFACE interface;
guint8 bitmode;
} bitmode_data_t;
typedef struct _desegment_data desegment_data_t;
struct _desegment_data {
guint32 bus_id;
guint32 device_address;
FTDI_INTERFACE interface;
guint8 bitmode;
gint p2p_dir;
/* First frame where the segmented data starts (reassembly key) */
guint32 first_frame;
guint32 last_frame;
gint first_frame_offset;
/* Points to desegment data if the previous desegment data ends
* in last_frame that is equal to this desegment data first_frame.
*/
desegment_data_t *previous;
};
typedef struct _ftdi_fragment_key {
guint32 bus_id;
guint32 device_address;
FTDI_INTERFACE interface;
guint8 bitmode;
gint p2p_dir;
guint32 id;
} ftdi_fragment_key_t;
#define REQUEST_RESET 0x00
#define REQUEST_MODEM_CTRL 0x01
#define REQUEST_SET_FLOW_CTRL 0x02
#define REQUEST_SET_BAUD_RATE 0x03
#define REQUEST_SET_DATA 0x04
#define REQUEST_GET_MODEM_STAT 0x05
#define REQUEST_SET_EVENT_CHAR 0x06
#define REQUEST_SET_ERROR_CHAR 0x07
#define REQUEST_SET_LAT_TIMER 0x09
#define REQUEST_GET_LAT_TIMER 0x0A
#define REQUEST_SET_BITMODE 0x0B
static const value_string request_vals[] = {
{REQUEST_RESET, "Reset"},
{REQUEST_MODEM_CTRL, "ModemCtrl"},
{REQUEST_SET_FLOW_CTRL, "SetFlowCtrl"},
{REQUEST_SET_BAUD_RATE, "SetBaudRate"},
{REQUEST_SET_DATA, "SetData"},
{REQUEST_GET_MODEM_STAT, "GetModemStat"},
{REQUEST_SET_EVENT_CHAR, "SetEventChar"},
{REQUEST_SET_ERROR_CHAR, "SetErrorChar"},
{REQUEST_SET_LAT_TIMER, "SetLatTimer"},
{REQUEST_GET_LAT_TIMER, "GetLatTimer"},
{REQUEST_SET_BITMODE, "SetBitMode"},
{0, NULL}
};
static value_string_ext request_vals_ext = VALUE_STRING_EXT_INIT(request_vals);
static const value_string reset_purge_vals[] = {
{0x00, "Purge RX and TX"},
{0x01, "Purge RX"},
{0x02, "Purge TX"},
{0, NULL}
};
static const value_string index_port_ab_vals[] = {
{0x00, "Port A"},
{0x01, "Port A"},
{0x02, "Port B"},
{0, NULL}
};
static const value_string index_port_abcd_vals[] = {
{0x00, "Port A"},
{0x01, "Port A"},
{0x02, "Port B"},
{0x03, "Port C"},
{0x04, "Port D"},
{0, NULL}
};
static const value_string data_size_vals[] = {
{0x07, "7 bit data"},
{0x08, "8 bit data"},
{0, NULL}
};
static const value_string parity_vals[] = {
{0x0, "None"},
{0x1, "Odd"},
{0x2, "Even"},
{0x3, "Mark"},
{0x4, "Space"},
{0, NULL}
};
static const value_string stop_bits_vals[] = {
{0, "1 stop bit"},
{1, "2 stop bits"},
{0, NULL}
};
static const value_string break_bit_vals[] = {
{0, "No Break"},
{1, "Set Break"},
{0, NULL}
};
static const value_string event_char_trigger_vals[] = {
{0x00, "No trigger"},
{0x01, "Trigger IN on Event Char"},
{0, NULL}
};
static const value_string error_replacement_vals[] = {
{0x00, "No Error Replacement"},
{0x01, "Error Replacement On"},
{0, NULL}
};
#define BITMODE_RESET 0x00
#define BITMODE_BITBANG 0x01
#define BITMODE_MPSSE 0x02
#define BITMODE_SYNCBB 0x04
#define BITMODE_MCU 0x08
#define BITMODE_OPTO 0x10
#define BITMODE_CBUS 0x20
#define BITMODE_SYNCFF 0x40
#define BITMODE_FT1284 0x80
static const value_string bitmode_vals[] = {
{BITMODE_RESET, "switch off bitbang mode, back to regular serial / FIFO"},
{BITMODE_BITBANG, "classical asynchronous bitbang mode, introduced with B-type chips"},
{BITMODE_MPSSE, "MPSSE mode, available on 2232x chips"},
{BITMODE_SYNCBB, "synchronous bitbang mode, available on 2232x and R-type chips"},
{BITMODE_MCU, "MCU Host Bus Emulation mode, available on 2232x chips"},
{BITMODE_OPTO, "Fast Opto-Isolated Serial Interface Mode, available on 2232x chips"},
{BITMODE_CBUS, "Bitbang on CBUS pins of R-type chips, configure in EEPROM before"},
{BITMODE_SYNCFF, "Single Channel Synchronous FIFO mode, available on 2232H chips"},
{BITMODE_FT1284, "FT1284 mode, available on 232H chips"},
{0, NULL}
};
#define MODEM_STATUS_BIT_FS_64_MAX_PACKET (1 << 0)
#define MODEM_STATUS_BIT_HS_512_MAX_PACKET (1 << 1)
void proto_register_ftdi_ft(void);
void proto_reg_handoff_ftdi_ft(void);
/* It is assumed that this function is called only when the device is known
* to be FTDI FT chip and thus the VID and PID is not checked here.
* This function determines chip based on bcdDevice version which cannot be
* altered by the hardware vendor.
*/
static FTDI_CHIP
identify_chip(usb_conv_info_t *usb_conv_info)
{
switch (usb_conv_info->deviceVersion)
{
case 0x0200:
if (usb_conv_info->iSerialNumber)
{
/* Serial number enabled - it is FT8U232AM */
return FTDI_CHIP_FT8U232AM;
}
/* No serial number - FT232B without (or with blank) EEPROM fitted */
return FTDI_CHIP_FT232B;
case 0x0400:
return FTDI_CHIP_FT232B;
case 0x0500:
return FTDI_CHIP_FT2232D;
case 0x0600:
return FTDI_CHIP_FT232R;
case 0x0700:
return FTDI_CHIP_FT2232H;
case 0x0800:
return FTDI_CHIP_FT4232H;
case 0x0900:
return FTDI_CHIP_FT232H;
case 0x1000:
return FTDI_CHIP_X_SERIES;
default:
return FTDI_CHIP_UNKNOWN;
}
}
static FTDI_INTERFACE
endpoint_to_interface(usb_conv_info_t *usb_conv_info)
{
switch (usb_conv_info->endpoint)
{
case 0x01: /* A OUT */
case 0x02: /* A IN */
return FTDI_INTERFACE_A;
case 0x03: /* B OUT */
case 0x04: /* B IN */
return FTDI_INTERFACE_B;
case 0x05: /* C OUT */
case 0x06: /* C IN */
return FTDI_INTERFACE_C;
case 0x07: /* D OUT */
case 0x08: /* D IN */
return FTDI_INTERFACE_D;
default:
return FTDI_INTERFACE_UNKNOWN;
}
}
static FTDI_INTERFACE
lindex_to_interface(guint8 lindex)
{
switch (lindex)
{
case 0: /* ANY, default to A */
case 1:
return FTDI_INTERFACE_A;
case 2:
return FTDI_INTERFACE_B;
case 3:
return FTDI_INTERFACE_C;
case 4:
return FTDI_INTERFACE_D;
default:
return FTDI_INTERFACE_UNKNOWN;
}
}
static gint
dissect_request_reset(tvbuff_t *tvb, packet_info *pinfo _U_, gint offset, proto_tree *tree)
{
gint offset_start = offset;
proto_tree_add_item(tree, hf_setup_lvalue_purge, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_hvalue, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_lindex_port_abcd, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_hindex, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
return offset - offset_start;
}
static gint
dissect_request_modem_ctrl(tvbuff_t *tvb, packet_info *pinfo _U_, gint offset, proto_tree *tree)
{
static int * const lvalue_bits[] = {
&hf_setup_lvalue_dtr,
&hf_setup_lvalue_rts,
NULL
};
static int * const hvalue_bits[] = {
&hf_setup_hvalue_dtr,
&hf_setup_hvalue_rts,
NULL
};
gint offset_start = offset;
proto_tree_add_bitmask(tree, tvb, offset, hf_setup_lvalue,
ett_modem_ctrl_lvalue, lvalue_bits, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_bitmask(tree, tvb, offset, hf_setup_hvalue,
ett_modem_ctrl_hvalue, hvalue_bits, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_lindex_port_abcd, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_hindex, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
return offset - offset_start;
}
static gint
dissect_request_set_flow_ctrl(tvbuff_t *tvb, packet_info *pinfo _U_, gint offset, proto_tree *tree)
{
static int * const hindex_bits[] = {
&hf_setup_hindex_rts_cts,
&hf_setup_hindex_dtr_dsr,
&hf_setup_hindex_xon_xoff,
NULL
};
gint offset_start = offset;
proto_tree_add_item(tree, hf_setup_lvalue_xon_char, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_hvalue_xoff_char, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_lindex_port_abcd, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_bitmask(tree, tvb, offset, hf_setup_hindex,
ett_flow_ctrl_hindex, hindex_bits, ENC_LITTLE_ENDIAN);
offset++;
return offset - offset_start;
}
static gint
dissect_request_set_baud_rate(tvbuff_t *tvb, packet_info *pinfo, gint offset, proto_tree *tree, FTDI_CHIP chip)
{
static int * const lindex_bits[] = {
&hf_setup_lindex_baud_high,
NULL
};
static int * const hindex_bits[] = {
&hf_setup_hindex_baud_high,
NULL
};
static int * const hindex_bits_hispeed[] = {
&hf_setup_hindex_baud_high,
&hf_setup_hindex_baud_clock_divide,
NULL
};
gint offset_start = offset;
proto_tree_add_item(tree, hf_setup_lvalue_baud_low, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_hvalue_baud_mid, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
switch (chip)
{
case FTDI_CHIP_FT8U232AM:
proto_tree_add_item(tree, hf_setup_lindex, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_hindex, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
break;
case FTDI_CHIP_FT232B:
case FTDI_CHIP_FT232R:
proto_tree_add_bitmask(tree, tvb, offset, hf_setup_lindex,
ett_baudrate_lindex, lindex_bits, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_hindex, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
break;
case FTDI_CHIP_FT2232D:
case FTDI_CHIP_X_SERIES:
proto_tree_add_item(tree, hf_setup_lindex_port_ab, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_bitmask(tree, tvb, offset, hf_setup_hindex,
ett_baudrate_hindex, hindex_bits, ENC_LITTLE_ENDIAN);
offset++;
break;
case FTDI_CHIP_FT2232H:
case FTDI_CHIP_FT4232H:
case FTDI_CHIP_FT232H:
proto_tree_add_item(tree, hf_setup_lindex_port_abcd, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_bitmask(tree, tvb, offset, hf_setup_hindex,
ett_baudrate_hindex, hindex_bits_hispeed, ENC_LITTLE_ENDIAN);
offset++;
break;
case FTDI_CHIP_UNKNOWN:
default:
proto_tree_add_expert(tree, pinfo, &ei_undecoded, tvb, offset, 2);
offset += 2;
break;
}
return offset - offset_start;
}
static gint
dissect_request_set_data(tvbuff_t *tvb, packet_info *pinfo _U_, gint offset, proto_tree *tree)
{
static int * const hvalue_bits[] = {
&hf_setup_hvalue_parity,
&hf_setup_hvalue_stop_bits,
&hf_setup_hvalue_break_bit,
NULL
};
gint offset_start = offset;
proto_tree_add_item(tree, hf_setup_lvalue_data_size, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_bitmask(tree, tvb, offset, hf_setup_hvalue,
ett_setdata_hvalue, hvalue_bits, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_lindex_port_abcd, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_hindex, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
return offset - offset_start;
}
static gint
dissect_request_get_modem_stat(tvbuff_t *tvb, packet_info *pinfo _U_, gint offset, proto_tree *tree)
{
gint offset_start = offset;
proto_tree_add_item(tree, hf_setup_lvalue, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_hvalue, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_lindex_port_abcd, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_hindex, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
return offset - offset_start;
}
static gint
dissect_request_set_event_char(tvbuff_t *tvb, packet_info *pinfo _U_, gint offset, proto_tree *tree)
{
gint offset_start = offset;
proto_tree_add_item(tree, hf_setup_lvalue_event_char, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_hvalue_trigger, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_lindex_port_abcd, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_hindex, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
return offset - offset_start;
}
static gint
dissect_request_set_error_char(tvbuff_t *tvb, packet_info *pinfo _U_, gint offset, proto_tree *tree)
{
gint offset_start = offset;
proto_tree_add_item(tree, hf_setup_lvalue_error_char, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_hvalue_error_replacement, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_lindex_port_abcd, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_hindex, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
return offset - offset_start;
}
static gint
dissect_request_set_lat_timer(tvbuff_t *tvb, packet_info *pinfo _U_, gint offset, proto_tree *tree)
{
gint offset_start = offset;
proto_tree_add_item(tree, hf_setup_lvalue_latency_time, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_hvalue, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_lindex_port_abcd, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_hindex, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
return offset - offset_start;
}
static gint
dissect_request_get_lat_timer(tvbuff_t *tvb, packet_info *pinfo _U_, gint offset, proto_tree *tree)
{
gint offset_start = offset;
proto_tree_add_item(tree, hf_setup_lvalue, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_hvalue, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_lindex_port_abcd, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_hindex, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
return offset - offset_start;
}
static gint
dissect_response_get_lat_timer(tvbuff_t *tvb, packet_info *pinfo _U_, gint offset, proto_tree *tree)
{
gint offset_start = offset;
proto_tree_add_item(tree, hf_response_lat_timer, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
return offset - offset_start;
}
static gint
dissect_request_set_bitmode(tvbuff_t *tvb, packet_info *pinfo _U_, gint offset, proto_tree *tree)
{
gint offset_start = offset;
proto_tree_add_item(tree, hf_setup_lvalue_bitmask, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_hvalue_bitmode, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_lindex_port_abcd, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_hindex, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
return offset - offset_start;
}
static gint
dissect_modem_status_bytes(tvbuff_t *tvb, packet_info *pinfo _U_, gint offset, proto_tree *tree, gint *out_rx_len)
{
static int * const modem_status_bits[] = {
&hf_modem_status_fs_max_packet,
&hf_modem_status_hs_max_packet,
&hf_modem_status_cts,
&hf_modem_status_dsr,
&hf_modem_status_ri,
&hf_modem_status_dcd,
NULL
};
static int * const line_status_bits[] = {
&hf_line_status_receive_overflow,
&hf_line_status_parity_error,
&hf_line_status_framing_error,
&hf_line_status_break_received,
&hf_line_status_tx_holding_reg_empty,
&hf_line_status_tx_empty,
NULL
};
guint64 modem_status;
proto_tree_add_bitmask_ret_uint64(tree, tvb, offset, hf_modem_status,
ett_modem_status, modem_status_bits, ENC_LITTLE_ENDIAN, &modem_status);
offset++;
proto_tree_add_bitmask(tree, tvb, offset, hf_line_status,
ett_line_status, line_status_bits, ENC_LITTLE_ENDIAN);
offset++;
if (out_rx_len)
{
*out_rx_len = tvb_reported_length_remaining(tvb, offset);
if (modem_status & MODEM_STATUS_BIT_FS_64_MAX_PACKET)
{
/* 2 bytes modem status, 62 bytes payload */
*out_rx_len = MIN(*out_rx_len, 62);
}
else if (modem_status & MODEM_STATUS_BIT_HS_512_MAX_PACKET)
{
/* 2 bytes modem status, 510 bytes payload */
*out_rx_len = MIN(*out_rx_len, 510);
}
}
return 2;
}
static void
record_interface_mode(packet_info *pinfo, usb_conv_info_t *usb_conv_info, FTDI_INTERFACE interface, guint8 bitmode)
{
guint32 k_bus_id = usb_conv_info->bus_id;
guint32 k_device_address = usb_conv_info->device_address;
guint32 k_interface = (guint32)interface;
wmem_tree_key_t key[] = {
{1, &k_bus_id},
{1, &k_device_address},
{1, &k_interface},
{1, &pinfo->num},
{0, NULL}
};
bitmode_data_t *bitmode_data = NULL;
bitmode_data = wmem_new(wmem_file_scope(), bitmode_data_t);
bitmode_data->bus_id = usb_conv_info->bus_id;
bitmode_data->device_address = usb_conv_info->device_address;
bitmode_data->interface = interface;
bitmode_data->bitmode = bitmode;
wmem_tree_insert32_array(bitmode_info, key, bitmode_data);
}
static guint8
get_recorded_interface_mode(packet_info *pinfo, usb_conv_info_t *usb_conv_info, FTDI_INTERFACE interface)
{
guint32 k_bus_id = usb_conv_info->bus_id;
guint32 k_device_address = usb_conv_info->device_address;
guint32 k_interface = (guint32)interface;
wmem_tree_key_t key[] = {
{1, &k_bus_id},
{1, &k_device_address},
{1, &k_interface},
{1, &pinfo->num},
{0, NULL}
};
bitmode_data_t *bitmode_data = NULL;
bitmode_data = (bitmode_data_t *)wmem_tree_lookup32_array_le(bitmode_info, key);
if (bitmode_data && bitmode_data->bus_id == k_bus_id && bitmode_data->device_address == k_device_address &&
bitmode_data->interface == interface)
{
return bitmode_data->bitmode;
}
return 0; /* Default to 0, which is plain serial data */
}
static desegment_data_t *
record_desegment_data(packet_info *pinfo, usb_conv_info_t *usb_conv_info,
FTDI_INTERFACE interface, guint8 bitmode)
{
guint32 k_bus_id = usb_conv_info->bus_id;
guint32 k_device_address = usb_conv_info->device_address;
guint32 k_interface = (guint32)interface;
guint32 k_p2p_dir = (guint32)pinfo->p2p_dir;
wmem_tree_key_t key[] = {
{1, &k_bus_id},
{1, &k_device_address},
{1, &k_interface},
{1, &k_p2p_dir},
{1, &pinfo->num},
{0, NULL}
};
desegment_data_t *desegment_data = NULL;
desegment_data = wmem_new(wmem_file_scope(), desegment_data_t);
desegment_data->bus_id = usb_conv_info->bus_id;
desegment_data->device_address = usb_conv_info->device_address;
desegment_data->interface = interface;
desegment_data->bitmode = bitmode;
desegment_data->p2p_dir = pinfo->p2p_dir;
desegment_data->first_frame = pinfo->num;
/* Last frame is currently unknown */
desegment_data->last_frame = 0;
desegment_data->first_frame_offset = 0;
desegment_data->previous = NULL;
wmem_tree_insert32_array(desegment_info, key, desegment_data);
return desegment_data;
}
static desegment_data_t *
get_recorded_desegment_data(packet_info *pinfo, usb_conv_info_t *usb_conv_info,
FTDI_INTERFACE interface, guint8 bitmode)
{
guint32 k_bus_id = usb_conv_info->bus_id;
guint32 k_device_address = usb_conv_info->device_address;
guint32 k_interface = (guint32)interface;
guint32 k_p2p_dir = (guint32)pinfo->p2p_dir;
wmem_tree_key_t key[] = {
{1, &k_bus_id},
{1, &k_device_address},
{1, &k_interface},
{1, &k_p2p_dir},
{1, &pinfo->num},
{0, NULL}
};
desegment_data_t *desegment_data = NULL;
desegment_data = (desegment_data_t*)wmem_tree_lookup32_array_le(desegment_info, key);
if (desegment_data && desegment_data->bus_id == k_bus_id && desegment_data->device_address == k_device_address &&
desegment_data->interface == interface && desegment_data->bitmode == bitmode &&
desegment_data->p2p_dir == pinfo->p2p_dir)
{
/* Return desegment data only if it is relevant to current packet */
if ((desegment_data->last_frame == 0) || (desegment_data->last_frame >= pinfo->num))
{
return desegment_data;
}
}
return NULL;
}
static guint ftdi_fragment_key_hash(gconstpointer k)
{
const ftdi_fragment_key_t *key = (const ftdi_fragment_key_t *)k;
return key->id;
}
static gint ftdi_fragment_key_equal(gconstpointer k1, gconstpointer k2)
{
const ftdi_fragment_key_t *key1 = (const ftdi_fragment_key_t *)k1;
const ftdi_fragment_key_t *key2 = (const ftdi_fragment_key_t *)k2;
/* id is most likely to differ and thus should be checked first */
return (key1->id == key2->id) &&
(key1->bus_id == key2->bus_id) &&
(key1->device_address == key2->device_address) &&
(key1->interface == key2->interface) &&
(key1->bitmode == key2->bitmode) &&
(key1->p2p_dir == key2->p2p_dir);
}
static gpointer ftdi_fragment_key(const packet_info *pinfo _U_, const guint32 id, const void *data)
{
desegment_data_t *desegment_data = (desegment_data_t *)data;
ftdi_fragment_key_t *key = g_slice_new(ftdi_fragment_key_t);
key->bus_id = desegment_data->bus_id;
key->device_address = desegment_data->device_address;
key->interface = desegment_data->interface;
key->bitmode = desegment_data->bitmode;
key->p2p_dir = desegment_data->p2p_dir;
key->id = id;
return (gpointer)key;
}
static void ftdi_fragment_free_key(gpointer ptr)
{
ftdi_fragment_key_t *key = (ftdi_fragment_key_t *)ptr;
g_slice_free(ftdi_fragment_key_t, key);
}
static const reassembly_table_functions ftdi_reassembly_table_functions = {
.hash_func = ftdi_fragment_key_hash,
.equal_func = ftdi_fragment_key_equal,
.temporary_key_func = ftdi_fragment_key,
.persistent_key_func = ftdi_fragment_key,
.free_temporary_key_func = ftdi_fragment_free_key,
.free_persistent_key_func = ftdi_fragment_free_key,
};
static void
dissect_payload(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, usb_conv_info_t *usb_conv_info,
FTDI_INTERFACE interface, guint8 bitmode)
{
guint32 k_bus_id;
guint32 k_device_address;
k_bus_id = usb_conv_info->bus_id;
k_device_address = usb_conv_info->device_address;
if (tvb && ((bitmode == BITMODE_MPSSE) || (bitmode == BITMODE_MCU)))
{
ftdi_mpsse_info_t mpsse_info = {
.bus_id = k_bus_id,
.device_address = k_device_address,
.chip = identify_chip(usb_conv_info),
.iface = interface,
.mcu_mode = (bitmode == BITMODE_MCU),
};
call_dissector_with_data(ftdi_mpsse_handle, tvb, pinfo, tree, &mpsse_info);
}
}
static gint
dissect_serial_payload(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, proto_tree *ftdi_tree,
usb_conv_info_t *usb_conv_info, FTDI_INTERFACE interface)
{
guint16 save_can_desegment;
int save_desegment_offset;
guint32 save_desegment_len;
desegment_data_t *desegment_data;
guint32 bytes;
save_can_desegment = pinfo->can_desegment;
save_desegment_offset = pinfo->desegment_offset;
save_desegment_len = pinfo->desegment_len;
bytes = tvb_reported_length(tvb);
if (bytes > 0)
{
tvbuff_t *payload_tvb = NULL;
guint32 reassembled_bytes = 0;
guint8 bitmode;
guint8 curr_layer_num = pinfo->curr_layer_num;
bitmode = get_recorded_interface_mode(pinfo, usb_conv_info, interface);
pinfo->can_desegment = 2;
pinfo->desegment_offset = 0;
pinfo->desegment_len = 0;
desegment_data = get_recorded_desegment_data(pinfo, usb_conv_info, interface, bitmode);
if (desegment_data)
{
fragment_head *fd_head;
desegment_data_t *next_desegment_data = NULL;
if ((desegment_data->previous) && (desegment_data->first_frame == pinfo->num))
{
DISSECTOR_ASSERT(desegment_data->previous->last_frame == pinfo->num);
next_desegment_data = desegment_data;
desegment_data = desegment_data->previous;
}
if (!PINFO_FD_VISITED(pinfo))
{
/* Combine data reassembled so far with current tvb and check if this is last fragment or not */
fragment_item *item;
fd_head = fragment_get(&ftdi_reassembly_table, pinfo, desegment_data->first_frame, desegment_data);
DISSECTOR_ASSERT(fd_head && !(fd_head->flags & FD_DEFRAGMENTED) && fd_head->next);
payload_tvb = tvb_new_composite();
for (item = fd_head->next; item; item = item->next)
{
DISSECTOR_ASSERT(reassembled_bytes == item->offset);
tvb_composite_append(payload_tvb, item->tvb_data);
reassembled_bytes += item->len;
}
tvb_composite_append(payload_tvb, tvb);
tvb_composite_finalize(payload_tvb);
}
else
{
fd_head = fragment_get_reassembled(&ftdi_reassembly_table, desegment_data->first_frame);
payload_tvb = process_reassembled_data(tvb, 0, pinfo, "Reassembled", fd_head,
&ftdi_frag_items, NULL, ftdi_tree);
}
if (next_desegment_data)
{
fragment_head *next_head;
next_head = fragment_get_reassembled(&ftdi_reassembly_table, next_desegment_data->first_frame);
process_reassembled_data(tvb, 0, pinfo, "Reassembled", next_head, &ftdi_frag_items, NULL, ftdi_tree);
}
if ((desegment_data->first_frame == pinfo->num) && (desegment_data->first_frame_offset > 0))
{
payload_tvb = tvb_new_subset_length(tvb, 0, desegment_data->first_frame_offset);
}
}
else
{
/* Packet is not part of reassembly sequence, simply use it without modifications */
payload_tvb = tvb;
}
dissect_payload(payload_tvb, pinfo, tree, usb_conv_info, interface, bitmode);
if (!PINFO_FD_VISITED(pinfo))
{
/* FTDI FT dissector doesn't know if the last fragment is really the last one unless it passes
* the data to the next dissector. There is absolutely no metadata that could help with it as
* FTDI FT is pretty much a direct replacement to UART (COM port) and is pretty much transparent
* to the actual serial protocol used.
*
* Passing the data to next dissector results in curr_layer_num being increased if it dissected
* the data (when it is the last fragment). This would prevent the process_reassembled_data()
* (after the first pass) from returning the reassembled tvb in FTFI FT which in turn prevents
* the data from being passed to the next dissector.
*
* Override pinfo->curr_layer_num value when the fragments are being added to reassembly table.
* This is ugly hack. Is there any better approach?
*
* There doesn't seem to be a mechanism to "back-track" just added fragments to reassembly table,
* or any way to "shorten" the last added fragment. The most problematic case is when current
* packet is both last packet for previous reassembly and a first packet for next reassembly.
*/
guint8 save_curr_layer_num = pinfo->curr_layer_num;
pinfo->curr_layer_num = curr_layer_num;
if (!pinfo->desegment_len)
{
if (desegment_data)
{
/* Current tvb is really the last fragment */
fragment_add_check(&ftdi_reassembly_table, tvb, 0, pinfo, desegment_data->first_frame,
desegment_data, reassembled_bytes, bytes, FALSE);
desegment_data->last_frame = pinfo->num;
}
}
else
{
DISSECTOR_ASSERT_HINT(pinfo->desegment_len == DESEGMENT_ONE_MORE_SEGMENT,
"FTDI FT supports only DESEGMENT_ONE_MORE_SEGMENT");
if (!desegment_data)
{
/* Start desegmenting */
gint fragment_length = tvb_reported_length_remaining(tvb, pinfo->desegment_offset);
desegment_data = record_desegment_data(pinfo, usb_conv_info, interface, bitmode);
desegment_data->first_frame_offset = pinfo->desegment_offset;
fragment_add_check(&ftdi_reassembly_table, tvb, pinfo->desegment_offset, pinfo,
desegment_data->first_frame, desegment_data, 0, fragment_length, TRUE);
}
else if (pinfo->desegment_offset == 0)
{
/* Continue reassembling */
fragment_add_check(&ftdi_reassembly_table, tvb, 0, pinfo, desegment_data->first_frame,
desegment_data, reassembled_bytes, bytes, TRUE);
}
else
{
gint fragment_length;
gint previous_bytes;
desegment_data_t *previous_desegment_data;
/* This packet contains both an end from a previous reassembly and start of a new one */
DISSECTOR_ASSERT((guint32)pinfo->desegment_offset > reassembled_bytes);
previous_bytes = pinfo->desegment_offset - reassembled_bytes;
fragment_add_check(&ftdi_reassembly_table, tvb, 0, pinfo, desegment_data->first_frame,
desegment_data, reassembled_bytes, previous_bytes, FALSE);
desegment_data->last_frame = pinfo->num;
previous_desegment_data = desegment_data;
fragment_length = bytes - previous_bytes;
desegment_data = record_desegment_data(pinfo, usb_conv_info, interface, bitmode);
desegment_data->first_frame_offset = previous_bytes;
desegment_data->previous = previous_desegment_data;
fragment_add_check(&ftdi_reassembly_table, tvb, previous_bytes, pinfo, desegment_data->first_frame,
desegment_data, 0, fragment_length, TRUE);
}
}
pinfo->curr_layer_num = save_curr_layer_num;
}
}
pinfo->can_desegment = save_can_desegment;
pinfo->desegment_offset = save_desegment_offset;
pinfo->desegment_len = save_desegment_len;
return bytes;
}
static gint
dissect_ftdi_ft(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data)
{
proto_item *main_item;
proto_tree *main_tree;
gint offset = 0;
usb_conv_info_t *usb_conv_info = (usb_conv_info_t *)data;
request_data_t *request_data = NULL;
wmem_tree_key_t key[4];
guint32 k_bus_id;
guint32 k_device_address;
if (!usb_conv_info)
{
return offset;
}
if (usb_conv_info->is_setup)
{
/* This dissector can only process device Vendor specific setup data */
if ((USB_TYPE(usb_conv_info->setup_requesttype) != RQT_SETUP_TYPE_VENDOR) ||
(USB_RECIPIENT(usb_conv_info->setup_requesttype) != RQT_SETUP_RECIPIENT_DEVICE))
{
return offset;
}
}
k_bus_id = usb_conv_info->bus_id;
k_device_address = usb_conv_info->device_address;
key[0].length = 1;
key[0].key = &k_bus_id;
key[1].length = 1;
key[1].key = &k_device_address;
key[2].length = 1;
key[2].key = &pinfo->num;
key[3].length = 0;
key[3].key = NULL;
main_item = proto_tree_add_item(tree, proto_ftdi_ft, tvb, offset, -1, ENC_NA);
main_tree = proto_item_add_subtree(main_item, ett_ftdi_ft);
if (usb_conv_info->transfer_type == URB_CONTROL)
{
col_set_str(pinfo->cinfo, COL_PROTOCOL, "FTDI FT");
col_set_str(pinfo->cinfo, COL_INFO, "FTDI FT ");
col_append_str(pinfo->cinfo, COL_INFO, usb_conv_info->is_request ? "Request" : "Response");
if (usb_conv_info->is_setup)
{
gint bytes_dissected;
guint8 brequest;
guint8 hvalue;
guint8 lindex;
brequest = tvb_get_guint8(tvb, offset);
col_append_fstr(pinfo->cinfo, COL_INFO, ": %s",
val_to_str_ext_const(brequest, &request_vals_ext, "Unknown"));
proto_tree_add_item(main_tree, hf_setup_brequest, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
hvalue = tvb_get_guint8(tvb, offset + 1);
lindex = tvb_get_guint8(tvb, offset + 2);
switch (brequest)
{
case REQUEST_RESET:
bytes_dissected = dissect_request_reset(tvb, pinfo, offset, main_tree);
break;
case REQUEST_MODEM_CTRL:
bytes_dissected = dissect_request_modem_ctrl(tvb, pinfo, offset, main_tree);
break;
case REQUEST_SET_FLOW_CTRL:
bytes_dissected = dissect_request_set_flow_ctrl(tvb, pinfo, offset, main_tree);
break;
case REQUEST_SET_BAUD_RATE:
{
FTDI_CHIP chip = identify_chip(usb_conv_info);
bytes_dissected = dissect_request_set_baud_rate(tvb, pinfo, offset, main_tree, chip);
break;
}
case REQUEST_SET_DATA:
bytes_dissected = dissect_request_set_data(tvb, pinfo, offset, main_tree);
break;
case REQUEST_GET_MODEM_STAT:
bytes_dissected = dissect_request_get_modem_stat(tvb, pinfo, offset, main_tree);
break;
case REQUEST_SET_EVENT_CHAR:
bytes_dissected = dissect_request_set_event_char(tvb, pinfo, offset, main_tree);
break;
case REQUEST_SET_ERROR_CHAR:
bytes_dissected = dissect_request_set_error_char(tvb, pinfo, offset, main_tree);
break;
case REQUEST_SET_LAT_TIMER:
bytes_dissected = dissect_request_set_lat_timer(tvb, pinfo, offset, main_tree);
break;
case REQUEST_GET_LAT_TIMER:
bytes_dissected = dissect_request_get_lat_timer(tvb, pinfo, offset, main_tree);
break;
case REQUEST_SET_BITMODE:
bytes_dissected = dissect_request_set_bitmode(tvb, pinfo, offset, main_tree);
break;
default:
bytes_dissected = 0;
break;
}
offset += bytes_dissected;
if (bytes_dissected < 4)
{
proto_tree_add_expert(main_tree, pinfo, &ei_undecoded, tvb, offset, 4 - bytes_dissected);
offset += 4 - bytes_dissected;
}
proto_tree_add_item(main_tree, hf_setup_wlength, tvb, offset, 2, ENC_LITTLE_ENDIAN);
offset += 2;
/* Record the request type so we can find it when dissecting response */
request_data = wmem_new(wmem_file_scope(), request_data_t);
request_data->bus_id = usb_conv_info->bus_id;
request_data->device_address = usb_conv_info->device_address;
request_data->request = brequest;
request_data->hvalue = hvalue;
request_data->lindex = lindex;
wmem_tree_insert32_array(request_info, key, request_data);
}
else
{
/* Retrieve request type */
request_data = (request_data_t *)wmem_tree_lookup32_array_le(request_info, key);
if (request_data && request_data->bus_id == k_bus_id && request_data->device_address == k_device_address)
{
col_append_fstr(pinfo->cinfo, COL_INFO, ": %s",
val_to_str_ext_const(request_data->request, &request_vals_ext, "Unknown"));
switch (request_data->request)
{
case REQUEST_GET_MODEM_STAT:
offset += dissect_modem_status_bytes(tvb, pinfo, offset, main_tree, NULL);
break;
case REQUEST_GET_LAT_TIMER:
offset += dissect_response_get_lat_timer(tvb, pinfo, offset, main_tree);
break;
case REQUEST_SET_BITMODE:
/* TODO: Record interface mode only if the control request has succeeded */
record_interface_mode(pinfo, usb_conv_info, lindex_to_interface(request_data->lindex), request_data->hvalue);
break;
default:
break;
}
}
else
{
col_append_str(pinfo->cinfo, COL_INFO, ": Unknown");
}
/* Report any potentially undissected response data */
if (tvb_reported_length_remaining(tvb, offset) > 0)
{
proto_tree_add_expert(main_tree, pinfo, &ei_undecoded, tvb, offset, -1);
}
}
}
else
{
const char *interface_str;
FTDI_INTERFACE interface;
gint rx_hf, tx_hf;
interface = endpoint_to_interface(usb_conv_info);
switch (interface)
{
case FTDI_INTERFACE_A:
interface_str = "A";
rx_hf = hf_if_a_rx_payload;
tx_hf = hf_if_a_tx_payload;
break;
case FTDI_INTERFACE_B:
interface_str = "B";
rx_hf = hf_if_b_rx_payload;
tx_hf = hf_if_b_tx_payload;
break;
case FTDI_INTERFACE_C:
interface_str = "C";
rx_hf = hf_if_c_rx_payload;
tx_hf = hf_if_c_tx_payload;
break;
case FTDI_INTERFACE_D:
interface_str = "D";
rx_hf = hf_if_d_rx_payload;
tx_hf = hf_if_d_tx_payload;
break;
default:
return offset;
}
col_set_str(pinfo->cinfo, COL_PROTOCOL, "FTDI FT");
if (pinfo->p2p_dir == P2P_DIR_RECV)
{
gint total_rx_len = 0;
gint rx_len;
tvbuff_t *rx_tvb = tvb_new_composite();
col_add_fstr(pinfo->cinfo, COL_INFO, "INTERFACE %s RX", interface_str);
do
{
/* First two bytes are status */
offset += dissect_modem_status_bytes(tvb, pinfo, offset, main_tree, &rx_len);
total_rx_len += rx_len;
if (rx_len > 0)
{
tvbuff_t *rx_tvb_fragment = tvb_new_subset_length(tvb, offset, rx_len);
tvb_composite_append(rx_tvb, rx_tvb_fragment);
proto_tree_add_item(main_tree, rx_hf, tvb, offset, rx_len, ENC_NA);
offset += rx_len;
}
}
while (tvb_reported_length_remaining(tvb, offset) > 0);
if (total_rx_len > 0)
{
tvb_composite_finalize(rx_tvb);
col_append_fstr(pinfo->cinfo, COL_INFO, " %d bytes", total_rx_len);
add_new_data_source(pinfo, rx_tvb, "RX Payload");
dissect_serial_payload(rx_tvb, pinfo, tree, main_tree, usb_conv_info, interface);
}
else
{
tvb_free_chain(rx_tvb);
}
}
else
{
gint bytes;
col_add_fstr(pinfo->cinfo, COL_INFO, "INTERFACE %s TX", interface_str);
bytes = tvb_reported_length_remaining(tvb, offset);
if (bytes > 0)
{
tvbuff_t *tx_tvb;
col_append_fstr(pinfo->cinfo, COL_INFO, " %d bytes", bytes);
proto_tree_add_item(main_tree, tx_hf, tvb, offset, bytes, ENC_NA);
tx_tvb = tvb_new_subset_length(tvb, offset, bytes);
add_new_data_source(pinfo, tx_tvb, "TX Payload");
dissect_serial_payload(tx_tvb, pinfo, tree, main_tree, usb_conv_info, interface);
offset += bytes;
}
}
}
return offset;
}
void
proto_register_ftdi_ft(void)
{
expert_module_t *expert_module;
static hf_register_info hf[] = {
{ &hf_setup_brequest,
{ "Request", "ftdi-ft.bRequest",
FT_UINT8, BASE_DEC | BASE_EXT_STRING, &request_vals_ext, 0x0,
NULL, HFILL }
},
{ &hf_setup_lvalue,
{ "lValue", "ftdi-ft.lValue",
FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }
},
{ &hf_setup_lvalue_purge,
{ "lValue", "ftdi-ft.lValue",
FT_UINT8, BASE_HEX, VALS(reset_purge_vals), 0x0,
NULL, HFILL }
},
{ &hf_setup_lvalue_dtr,
{ "DTR Active", "ftdi-ft.lValue.b0",
FT_BOOLEAN, 8, NULL, (1 << 0),
NULL, HFILL }
},
{ &hf_setup_lvalue_rts,
{ "RTS Active", "ftdi-ft.lValue.b1",
FT_BOOLEAN, 8, NULL, (1 << 1),
NULL, HFILL }
},
{ &hf_setup_lvalue_xon_char,
{ "XON Char", "ftdi-ft.lValue",
FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }
},
{ &hf_setup_lvalue_baud_low,
{ "Baud low", "ftdi-ft.lValue",
FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }
},
{ &hf_setup_lvalue_data_size,
{ "Data Size", "ftdi-ft.lValue",
FT_UINT8, BASE_HEX, VALS(data_size_vals), 0x0,
NULL, HFILL }
},
{ &hf_setup_lvalue_event_char,
{ "Event Char", "ftdi-ft.lValue",
FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }
},
{ &hf_setup_lvalue_error_char,
{ "Parity Error Char", "ftdi-ft.lValue",
FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }
},
{ &hf_setup_lvalue_latency_time,
{ "Latency Time", "ftdi-ft.lValue",
FT_UINT8, BASE_DEC, NULL, 0x0,
"Latency time in milliseconds", HFILL }
},
{ &hf_setup_lvalue_bitmask,
{ "Bit Mask", "ftdi-ft.lValue",
FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }
},
{ &hf_setup_hvalue,
{ "hValue", "ftdi-ft.hValue",
FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }
},
{ &hf_setup_hvalue_dtr,
{ "en DTR for writing", "ftdi-ft.hValue.b0",
FT_BOOLEAN, 8, NULL, (1 << 0),
NULL, HFILL }
},
{ &hf_setup_hvalue_rts,
{ "en RTS for writing", "ftdi-ft.hValue.b1",
FT_BOOLEAN, 8, NULL, (1 << 1),
NULL, HFILL }
},
{ &hf_setup_hvalue_xoff_char,
{ "XOFF Char", "ftdi-ft.hValue",
FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }
},
{ &hf_setup_hvalue_baud_mid,
{ "Baud mid", "ftdi-ft.hValue",
FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }
},
{ &hf_setup_hvalue_parity,
{ "Parity", "ftdi-ft.hValue.parity",
FT_UINT8, BASE_HEX, VALS(parity_vals), (0x7 << 0),
NULL, HFILL }
},
{ &hf_setup_hvalue_stop_bits,
{ "Stop Bits", "ftdi-ft.hValue.b4",
FT_UINT8, BASE_HEX, VALS(stop_bits_vals), (1 << 4),
NULL, HFILL }
},
{ &hf_setup_hvalue_break_bit,
{ "Break Bit", "ftdi-ft.hValue.b6",
FT_UINT8, BASE_HEX, VALS(break_bit_vals), (1 << 6),
NULL, HFILL }
},
{ &hf_setup_hvalue_trigger,
{ "hValue", "ftdi-ft.hValue",
FT_UINT8, BASE_HEX, VALS(event_char_trigger_vals), 0x0,
NULL, HFILL }
},
{ &hf_setup_hvalue_error_replacement,
{ "hValue", "ftdi-ft.hValue",
FT_UINT8, BASE_HEX, VALS(error_replacement_vals), 0x0,
NULL, HFILL }
},
{ &hf_setup_hvalue_bitmode,
{ "Bit Mode", "ftdi-ft.hValue",
FT_UINT8, BASE_HEX, VALS(bitmode_vals), 0x0,
NULL, HFILL }
},
{ &hf_setup_lindex,
{ "lIndex", "ftdi-ft.lIndex",
FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }
},
{ &hf_setup_lindex_port_ab,
{ "lIndex", "ftdi-ft.lIndex",
FT_UINT8, BASE_HEX, VALS(index_port_ab_vals), 0x0,
NULL, HFILL }
},
{ &hf_setup_lindex_port_abcd,
{ "lIndex", "ftdi-ft.lIndex",
FT_UINT8, BASE_HEX, VALS(index_port_abcd_vals), 0x0,
NULL, HFILL }
},
{ &hf_setup_lindex_baud_high,
{ "Baud High", "ftdi-ft.lIndex.b0",
FT_UINT8, BASE_HEX, NULL, (1 << 0),
NULL, HFILL }
},
{ &hf_setup_hindex,
{ "hIndex", "ftdi-ft.hIndex",
FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }
},
{ &hf_setup_hindex_rts_cts,
{ "RTS/CTS Flow Control", "ftdi-ft.hIndex.b0",
FT_BOOLEAN, 8, NULL, (1 << 0),
NULL, HFILL }
},
{ &hf_setup_hindex_dtr_dsr,
{ "DTR/DSR Flow Control", "ftdi-ft.hIndex.b1",
FT_BOOLEAN, 8, NULL, (1 << 1),
NULL, HFILL }
},
{ &hf_setup_hindex_xon_xoff,
{ "XON/XOFF Flow Control", "ftdi-ft.hIndex.b2",
FT_BOOLEAN, 8, NULL, (1 << 2),
NULL, HFILL }
},
{ &hf_setup_hindex_baud_high,
{ "Baud High", "ftdi-ft.baud_high.b0",
FT_UINT8, BASE_HEX, NULL, (1 << 0),
NULL, HFILL }
},
{ &hf_setup_hindex_baud_clock_divide,
{ "Baud Clock Divide off", "ftdi-ft.baud_clock_divide.b1",
FT_BOOLEAN, 8, NULL, (1 << 1),
"When active 120 MHz is max frequency instead of 48 MHz", HFILL }
},
{ &hf_setup_wlength,
{ "wLength", "ftdi-ft.wLength",
FT_UINT16, BASE_DEC, NULL, 0x0,
NULL, HFILL }
},
{ &hf_response_lat_timer,
{ "Latency Time", "ftdi-ft.latency_time",
FT_UINT8, BASE_DEC, NULL, 0x0,
"Latency time in milliseconds", HFILL }
},
{ &hf_modem_status,
{ "Modem Status", "ftdi-ft.modem_status",
FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }
},
{ &hf_modem_status_fs_max_packet,
{ "Full Speed 64 byte MAX packet", "ftdi-ft.modem_status.b0",
FT_BOOLEAN, 8, NULL, (1 << 0),
NULL, HFILL }
},
{ &hf_modem_status_hs_max_packet,
{ "High Speed 512 byte MAX packet", "ftdi-ft.modem_status.b1",
FT_BOOLEAN, 8, NULL, (1 << 1),
NULL, HFILL }
},
{ &hf_modem_status_cts,
{ "CTS", "ftdi-ft.modem_status.b4",
FT_BOOLEAN, 8, NULL, (1 << 4),
NULL, HFILL }
},
{ &hf_modem_status_dsr,
{ "DSR", "ftdi-ft.modem_status.b5",
FT_BOOLEAN, 8, NULL, (1 << 5),
NULL, HFILL }
},
{ &hf_modem_status_ri,
{ "RI", "ftdi-ft.modem_status.b6",
FT_BOOLEAN, 8, NULL, (1 << 6),
NULL, HFILL }
},
{ &hf_modem_status_dcd,
{ "DCD", "ftdi-ft.modem_status.b7",
FT_BOOLEAN, 8, NULL, (1 << 7),
NULL, HFILL }
},
{ &hf_line_status,
{ "Line Status", "ftdi-ft.line_status",
FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }
},
{ &hf_line_status_receive_overflow,
{ "Receive Overflow Error", "ftdi-ft.line_status.b1",
FT_BOOLEAN, 8, NULL, (1 << 1),
NULL, HFILL }
},
{ &hf_line_status_parity_error,
{ "Parity Error", "ftdi-ft.line_status.b2",
FT_BOOLEAN, 8, NULL, (1 << 2),
NULL, HFILL }
},
{ &hf_line_status_framing_error,
{ "Framing Error", "ftdi-ft.line_status.b3",
FT_BOOLEAN, 8, NULL, (1 << 3),
NULL, HFILL }
},
{ &hf_line_status_break_received,
{ "Break Received", "ftdi-ft.line_status.b4",
FT_BOOLEAN, 8, NULL, (1 << 4),
NULL, HFILL }
},
{ &hf_line_status_tx_holding_reg_empty,
{ "Transmitter Holding Register Empty", "ftdi-ft.line_status.b5",
FT_BOOLEAN, 8, NULL, (1 << 5),
NULL, HFILL }
},
{ &hf_line_status_tx_empty,
{ "Transmitter Empty", "ftdi-ft.line_status.b6",
FT_BOOLEAN, 8, NULL, (1 << 6),
NULL, HFILL }
},
{ &hf_if_a_rx_payload,
{ "A RX payload", "ftdi-ft.if_a_rx_payload",
FT_BYTES, BASE_NONE, NULL, 0x0,
"Data received on interface A", HFILL }
},
{ &hf_if_a_tx_payload,
{ "A TX payload", "ftdi-ft.if_a_tx_payload",
FT_BYTES, BASE_NONE, NULL, 0x0,
"Data to transmit on interface A", HFILL }
},
{ &hf_if_b_rx_payload,
{ "B RX payload", "ftdi-ft.if_b_rx_payload",
FT_BYTES, BASE_NONE, NULL, 0x0,
"Data received on interface B", HFILL }
},
{ &hf_if_b_tx_payload,
{ "B TX payload", "ftdi-ft.if_b_tx_payload",
FT_BYTES, BASE_NONE, NULL, 0x0,
"Data to transmit on interface B", HFILL }
},
{ &hf_if_c_rx_payload,
{ "C RX payload", "ftdi-ft.if_c_rx_payload",
FT_BYTES, BASE_NONE, NULL, 0x0,
"Data received on interface C", HFILL }
},
{ &hf_if_c_tx_payload,
{ "C TX payload", "ftdi-ft.if_c_tx_payload",
FT_BYTES, BASE_NONE, NULL, 0x0,
"Data to transmit on interface C", HFILL }
},
{ &hf_if_d_rx_payload,
{ "D RX payload", "ftdi-ft.if_d_rx_payload",
FT_BYTES, BASE_NONE, NULL, 0x0,
"Data received on interface D", HFILL }
},
{ &hf_if_d_tx_payload,
{ "D TX payload", "ftdi-ft.if_d_tx_payload",
FT_BYTES, BASE_NONE, NULL, 0x0,
"Data to transmit on interface D", HFILL }
},
{ &hf_ftdi_fragments,
{ "Payload fragments", "ftdi-ft.fragments",
FT_NONE, BASE_NONE, NULL, 0x0,
NULL, HFILL }
},
{ &hf_ftdi_fragment,
{ "Payload fragment", "ftdi-ft.fragment",
FT_FRAMENUM, BASE_NONE, NULL, 0x0,
NULL, HFILL }
},
{ &hf_ftdi_fragment_overlap,
{ "Payload fragment overlap", "ftdi-ft.fragment.overlap",
FT_BOOLEAN, BASE_NONE, NULL, 0x0,
NULL, HFILL }
},
{ &hf_ftdi_fragment_overlap_conflicts,
{ "Payload fragment overlapping with conflicting data", "ftdi-ft.fragment.overlap.conflicts",
FT_BOOLEAN, BASE_NONE, NULL, 0x0,
NULL, HFILL }
},
{ &hf_ftdi_fragment_multiple_tails,
{ "Payload has multiple tails", "ftdi-ft.fragment.multiple_tails",
FT_BOOLEAN, BASE_NONE, NULL, 0x0,
NULL, HFILL}
},
{ &hf_ftdi_fragment_too_long_fragment,
{ "Payload fragment too long", "ftdi-ft.fragment.too_long_fragment",
FT_BOOLEAN, BASE_NONE, NULL, 0x0,
NULL, HFILL }
},
{ &hf_ftdi_fragment_error,
{ "Payload defragmentation error", "ftdi-ft.fragment.error",
FT_FRAMENUM, BASE_NONE, NULL, 0x0,
NULL, HFILL }
},
{ &hf_ftdi_fragment_count,
{ "Payload fragment count", "ftdi-ft.fragment.count",
FT_UINT32, BASE_DEC, NULL, 0x0,
NULL, HFILL }
},
{ &hf_ftdi_reassembled_in,
{ "Payload reassembled in", "ftdi-ft.reassembled.in",
FT_FRAMENUM, BASE_NONE, NULL, 0x0,
NULL, HFILL }
},
{ &hf_ftdi_reassembled_length,
{ "Payload reassembled length", "ftdi-ft.reassembled.length",
FT_UINT32, BASE_DEC, NULL, 0x0,
NULL, HFILL }
},
};
static ei_register_info ei[] = {
{ &ei_undecoded, { "ftdi-ft.undecoded", PI_UNDECODED, PI_WARN, "Not dissected yet (report to wireshark.org)", EXPFILL }},
};
static gint *ett[] = {
&ett_ftdi_ft,
&ett_modem_ctrl_lvalue,
&ett_modem_ctrl_hvalue,
&ett_flow_ctrl_hindex,
&ett_baudrate_lindex,
&ett_baudrate_hindex,
&ett_setdata_hvalue,
&ett_modem_status,
&ett_line_status,
&ett_ftdi_fragment,
&ett_ftdi_fragments,
};
request_info = wmem_tree_new_autoreset(wmem_epan_scope(), wmem_file_scope());
bitmode_info = wmem_tree_new_autoreset(wmem_epan_scope(), wmem_file_scope());
desegment_info = wmem_tree_new_autoreset(wmem_epan_scope(), wmem_file_scope());
proto_ftdi_ft = proto_register_protocol("FTDI FT USB", "FTDI FT", "ftdi-ft");
proto_register_field_array(proto_ftdi_ft, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));
ftdi_ft_handle = register_dissector("ftdi-ft", dissect_ftdi_ft, proto_ftdi_ft);
expert_module = expert_register_protocol(proto_ftdi_ft);
expert_register_field_array(expert_module, ei, array_length(ei));
reassembly_table_register(&ftdi_reassembly_table, &ftdi_reassembly_table_functions);
}
void
proto_reg_handoff_ftdi_ft(void)
{
/* TODO: Add configuration option to specify VID and PID.
* The values below denote default VID/PID of FT converters (as of 2019)
* The VID and PID can be changed by hardware vendor.
*/
dissector_add_uint("usb.product", (0x0403 << 16) | 0x6001, ftdi_ft_handle);
dissector_add_uint("usb.product", (0x0403 << 16) | 0x6010, ftdi_ft_handle);
dissector_add_uint("usb.product", (0x0403 << 16) | 0x6011, ftdi_ft_handle);
dissector_add_uint("usb.product", (0x0403 << 16) | 0x6014, ftdi_ft_handle);
dissector_add_uint("usb.product", (0x0403 << 16) | 0x6015, ftdi_ft_handle);
/* Devices that use FTDI FT converter with changed Vendor ID and/or Product ID */
dissector_add_uint("usb.product", (0x0403 << 16) | 0xcff8, ftdi_ft_handle); /* Amontec JTAGkey */
dissector_add_uint("usb.product", (0x15ba << 16) | 0x0003, ftdi_ft_handle); /* Olimex ARM-USB-OCD */
dissector_add_uint("usb.product", (0x15ba << 16) | 0x0004, ftdi_ft_handle); /* Olimex ARM-USB-TINY */
dissector_add_uint("usb.product", (0x15ba << 16) | 0x002a, ftdi_ft_handle); /* Olimex ARM-USB-TINY-H */
dissector_add_uint("usb.product", (0x15ba << 16) | 0x002b, ftdi_ft_handle); /* Olimex ARM-USB-OCD-H */
dissector_add_uint("usb.product", (0x1d50 << 16) | 0x607c, ftdi_ft_handle); /* OpenVizsla USB sniffer/analyzer */
dissector_add_for_decode_as("usb.device", ftdi_ft_handle);
ftdi_mpsse_handle = find_dissector_add_dependency("ftdi-mpsse", proto_ftdi_ft);
}
/*
* Editor modelines - https://www.wireshark.org/tools/modelines.html
*
* Local variables:
* c-basic-offset: 4
* tab-width: 8
* indent-tabs-mode: nil
* End:
*
* vi: set shiftwidth=4 tabstop=8 expandtab:
* :indentSize=4:tabSize=8:noTabs=true:
*/