wireshark/packet-chdlc.c
Guy Harris ee5ca25d31 Include files from the "epan" directory and subdirectories thereof with
"epan/..." pathnames, so as to avoid collisions with header files in any
of the directories in which we look (e.g., "proto.h", as some other
package has its own "proto.h" file which it installs in the top-level
include directory).

Don't add "-I" flags to search "epan", as that's no longer necessary
(and we want includes of "epan" headers to fail if the "epan/" is left
out, so that we don't re-introduce includes lacking "epan/").

svn path=/trunk/; revision=4586
2002-01-21 07:37:49 +00:00

323 lines
9.4 KiB
C

/* packet-chdlc.c
* Routines for Cisco HDLC packet disassembly
*
* $Id: packet-chdlc.c,v 1.10 2002/01/21 07:36:32 guy Exp $
*
* Ethereal - Network traffic analyzer
* By Gerald Combs <gerald@ethereal.com>
* Copyright 1998 Gerald Combs
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#ifdef HAVE_SYS_TYPES_H
# include <sys/types.h>
#endif
#include <glib.h>
#include <epan/packet.h>
#include "etypes.h"
#include <epan/resolv.h>
#include "packet-chdlc.h"
#include "packet-ip.h"
/*
* See section 4.3.1 of RFC 1547, and
*
* http://www.nethelp.no/net/cisco-hdlc.txt
*/
static int proto_chdlc = -1;
static int hf_chdlc_addr = -1;
static int hf_chdlc_proto = -1;
static gint ett_chdlc = -1;
static int proto_slarp = -1;
static int hf_slarp_ptype = -1;
static int hf_slarp_address = -1;
static int hf_slarp_mysequence = -1;
static int hf_slarp_yoursequence = -1;
static gint ett_slarp = -1;
static dissector_handle_t data_handle;
/*
* Protocol types for the Cisco HDLC format.
*
* As per the above, according to RFC 1547, these are "standard 16 bit
* Ethernet protocol type code[s]", but 0x8035 is Reverse ARP, and
* that is (at least according to the Linux ISDN code) not the
* same as Cisco SLARP.
*
* In addition, 0x2000 is apparently the Cisco Discovery Protocol, but
* on Ethernet those are encapsulated inside SNAP with an OUI of
* OUI_CISCO, not OUI_ENCAP_ETHER.
*
* Perhaps we should set up a protocol table for those protocols
* that differ between Ethernet and Cisco HDLC, and have the PPP
* code first try that table and, if it finds nothing in that
* table, call "ethertype()". (Unfortunately, that means that -
* assuming we had a Cisco SLARP dissector - said dissector were
* disabled, SLARP packets would be dissected as Reverse ARP
* packets, not as data.)
*/
#define CISCO_SLARP 0x8035 /* Cisco SLARP protocol */
static dissector_table_t subdissector_table;
static const value_string chdlc_address_vals[] = {
{CHDLC_ADDR_UNICAST, "Unicast"},
{CHDLC_ADDR_MULTICAST, "Multicast"},
{0, NULL}
};
const value_string chdlc_vals[] = {
{0x2000, "Cisco Discovery Protocol"},
{ETHERTYPE_IP, "IP"},
{CISCO_SLARP, "SLARP"},
{ETHERTYPE_DEC_LB, "DEC LanBridge"},
{ETHERTYPE_ATALK, "Appletalk"},
{ETHERTYPE_AARP, "AARP"},
{ETHERTYPE_IPX, "Netware IPX/SPX"},
{ETHERTYPE_ETHBRIDGE, "Transparent Ethernet bridging" },
{0, NULL}
};
void
capture_chdlc( const u_char *pd, int offset, int len, packet_counts *ld ) {
if (!BYTES_ARE_IN_FRAME(offset, len, 2)) {
ld->other++;
return;
}
switch (pntohs(&pd[offset + 2])) {
case ETHERTYPE_IP:
capture_ip(pd, offset + 4, len, ld);
break;
default:
ld->other++;
break;
}
}
void
chdlctype(guint16 chdlctype, tvbuff_t *tvb, int offset_after_chdlctype,
packet_info *pinfo, proto_tree *tree, proto_tree *fh_tree,
int chdlctype_id)
{
tvbuff_t *next_tvb;
if (tree) {
proto_tree_add_uint(fh_tree, chdlctype_id, tvb,
offset_after_chdlctype - 2, 2, chdlctype);
}
next_tvb = tvb_new_subset(tvb, offset_after_chdlctype, -1, -1);
/* do lookup with the subdissector table */
if (!dissector_try_port(subdissector_table, chdlctype, next_tvb, pinfo, tree)) {
if (check_col(pinfo->cinfo, COL_PROTOCOL))
col_add_fstr(pinfo->cinfo, COL_PROTOCOL, "0x%04x", chdlctype);
call_dissector(data_handle,next_tvb, pinfo, tree);
}
}
static void
dissect_chdlc(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
proto_item *ti;
proto_tree *fh_tree = NULL;
guint8 addr;
guint16 proto;
if (check_col(pinfo->cinfo, COL_RES_DL_SRC))
col_set_str(pinfo->cinfo, COL_RES_DL_SRC, "N/A");
if (check_col(pinfo->cinfo, COL_RES_DL_DST))
col_set_str(pinfo->cinfo, COL_RES_DL_DST, "N/A");
if (check_col(pinfo->cinfo, COL_PROTOCOL))
col_set_str(pinfo->cinfo, COL_PROTOCOL, "CHDLC");
if (check_col(pinfo->cinfo, COL_INFO))
col_clear(pinfo->cinfo, COL_INFO);
addr = tvb_get_guint8(tvb, 0);
proto = tvb_get_ntohs(tvb, 2);
if (tree) {
ti = proto_tree_add_item(tree, proto_chdlc, tvb, 0, 4, FALSE);
fh_tree = proto_item_add_subtree(ti, ett_chdlc);
proto_tree_add_uint(fh_tree, hf_chdlc_addr, tvb, 0, 1, addr);
}
chdlctype(proto, tvb, 4, pinfo, tree, fh_tree, hf_chdlc_proto);
}
void
proto_register_chdlc(void)
{
static hf_register_info hf[] = {
{ &hf_chdlc_addr,
{ "Address", "chdlc.address", FT_UINT8, BASE_HEX,
VALS(chdlc_address_vals), 0x0, "", HFILL }},
{ &hf_chdlc_proto,
{ "Protocol", "chdlc.protocol", FT_UINT16, BASE_HEX,
VALS(chdlc_vals), 0x0, "", HFILL }},
};
static gint *ett[] = {
&ett_chdlc,
};
proto_chdlc = proto_register_protocol("Cisco HDLC", "CHDLC", "chdlc");
proto_register_field_array(proto_chdlc, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));
/* subdissector code */
subdissector_table = register_dissector_table("chdlctype",
"Cisco HDLC frame type", FT_UINT16, BASE_HEX);
register_dissector("chdlc", dissect_chdlc, proto_chdlc);
}
void
proto_reg_handoff_chdlc(void)
{
dissector_handle_t chdlc_handle;
data_handle = find_dissector("data");
chdlc_handle = find_dissector("chdlc");
dissector_add("wtap_encap", WTAP_ENCAP_CHDLC, chdlc_handle);
}
#define SLARP_REQUEST 0
#define SLARP_REPLY 1
#define SLARP_LINECHECK 2
static const value_string slarp_ptype_vals[] = {
{SLARP_REQUEST, "Request"},
{SLARP_REPLY, "Reply"},
{SLARP_LINECHECK, "Line keepalive"},
{0, NULL}
};
static void
dissect_slarp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
proto_item *ti;
proto_tree *slarp_tree = NULL;
guint32 code;
guint32 mysequence;
guint32 yoursequence;
if (check_col(pinfo->cinfo, COL_PROTOCOL))
col_set_str(pinfo->cinfo, COL_PROTOCOL, "SLARP");
if (check_col(pinfo->cinfo, COL_INFO))
col_clear(pinfo->cinfo, COL_INFO);
code = tvb_get_ntohl(tvb, 0);
if (tree) {
ti = proto_tree_add_item(tree, proto_slarp, tvb, 0, 14, FALSE);
slarp_tree = proto_item_add_subtree(ti, ett_slarp);
}
switch (code) {
case SLARP_REQUEST:
case SLARP_REPLY:
if (check_col(pinfo->cinfo, COL_INFO)) {
col_add_fstr(pinfo->cinfo, COL_INFO, "%s, from %s, mask %s",
match_strval(code, slarp_ptype_vals),
get_hostname(htonl(tvb_get_ntohl(tvb, 4))),
ip_to_str(tvb_get_ptr(tvb, 8, 4)));
}
if (tree) {
proto_tree_add_uint(slarp_tree, hf_slarp_ptype, tvb, 0, 4, code);
proto_tree_add_item(slarp_tree, hf_slarp_address, tvb, 4, 4, FALSE);
proto_tree_add_text(slarp_tree, tvb, 8, 4,
"Netmask: %s", ip_to_str(tvb_get_ptr(tvb, 8, 4)));
}
break;
case SLARP_LINECHECK:
mysequence = tvb_get_ntohl(tvb, 4);
yoursequence = tvb_get_ntohl(tvb, 8);
if (check_col(pinfo->cinfo, COL_INFO)) {
col_add_fstr(pinfo->cinfo, COL_INFO,
"%s, outgoing sequence %u, returned sequence %u",
match_strval(code, slarp_ptype_vals),
mysequence, yoursequence);
}
if (tree) {
proto_tree_add_uint(slarp_tree, hf_slarp_ptype, tvb, 0, 4, code);
proto_tree_add_uint(slarp_tree, hf_slarp_mysequence, tvb, 4, 4,
mysequence);
proto_tree_add_uint(slarp_tree, hf_slarp_mysequence, tvb, 8, 4,
yoursequence);
}
break;
default:
if (check_col(pinfo->cinfo, COL_INFO))
col_add_fstr(pinfo->cinfo, COL_INFO, "Unknown packet type 0x%08X", code);
if (tree) {
proto_tree_add_uint(slarp_tree, hf_slarp_ptype, tvb, 0, 4, code);
call_dissector(data_handle,tvb_new_subset(tvb, 4,-1,tvb_reported_length_remaining(tvb,4)), pinfo, slarp_tree);
}
break;
}
}
void
proto_register_slarp(void)
{
static hf_register_info hf[] = {
{ &hf_slarp_ptype,
{ "Packet type", "slarp.ptype", FT_UINT32, BASE_DEC,
VALS(slarp_ptype_vals), 0x0, "", HFILL }},
{ &hf_slarp_address,
{ "Address", "slarp.address", FT_IPv4, BASE_NONE,
NULL, 0x0, "", HFILL }},
/* XXX - need an FT_ for netmasks, which is like FT_IPV4 but doesn't
get translated to a host name. */
{ &hf_slarp_mysequence,
{ "Outgoing sequence number", "slarp.mysequence", FT_UINT32, BASE_DEC,
NULL, 0x0, "", HFILL }},
{ &hf_slarp_yoursequence,
{ "Returned sequence number", "slarp.yoursequence", FT_UINT32, BASE_DEC,
NULL, 0x0, "", HFILL }},
};
static gint *ett[] = {
&ett_chdlc,
};
proto_slarp = proto_register_protocol("Cisco SLARP", "SLARP", "slarp");
proto_register_field_array(proto_slarp, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));
}
void
proto_reg_handoff_slarp(void)
{
dissector_handle_t slarp_handle;
slarp_handle = create_dissector_handle(dissect_slarp, proto_slarp);
dissector_add("chdlctype", CISCO_SLARP, slarp_handle);
}