wireshark/packet-aodv.c

410 lines
12 KiB
C

/* packet-aodv.c
* Routines for AODV dissection
* Copyright 2000, Erik Nordström <erik.nordstrom@it.uu.se>
*
* $Id: packet-aodv.c,v 1.2 2002/04/28 20:49:51 guy Exp $
*
* Ethereal - Network traffic analyzer
* By Gerald Combs <gerald@ethereal.com>
* Copyright 1998 Gerald Combs
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef HAVE_SYS_TYPES_H
# include <sys/types.h>
#endif
#ifdef HAVE_NETINET_IN_H
# include <netinet/in.h>
#endif
#include <glib.h>
#include <epan/packet.h>
#define UDP_PORT_AODV 654
#define RREQ 1
#define RREP 2
#define RERR 3
/* Flag bits: */
#define RREQ_GRAT 0x20
#define RREQ_REP 0x40
#define RREQ_JOIN 0x80
#define RREP_ACK 0x40
#define RREP_REP 0x80
#define RERR_NODEL 0x80
static const true_false_string flags_set_truth = {
"Set",
"Not set"
};
static const value_string type_vals[] = {
{ RREQ, "RREQ" },
{ RREP, "RREP" },
{ RERR, "RERR" },
{ 0, NULL }
};
struct aodv_rreq {
guint8 type;
guint8 flags;
guint8 res;
guint8 hop_count;
guint32 rreq_id;
guint32 dest_addr;
guint32 dest_seqno;
guint32 orig_addr;
guint32 orig_seqno;
};
struct aodv_rrep {
guint8 type;
guint8 flags;
guint8 res2:3;
guint8 prefix:5;
guint8 hop_count;
guint32 dest_addr;
guint32 dest_seqno;
guint32 orig_addr;
guint32 lifetime;
};
struct aodv_rerr {
guint8 type;
guint8 flags;
guint8 res;
guint8 dest_count;
guint32 dest_addr;
guint32 dest_seqno;
};
static struct aodv_rreq rreq;
static struct aodv_rrep rrep;
static struct aodv_rerr rerr;
/* Initialize the protocol and registered fields */
static int proto_aodv = -1;
static int hf_aodv_type = -1;
static int hf_aodv_flags = -1;
static int hf_aodv_hopcount = -1;
static int hf_aodv_rreq_id = -1;
static int hf_aodv_dest_ip = -1;
static int hf_aodv_dest_seqno = -1;
static int hf_aodv_orig_ip = -1;
static int hf_aodv_orig_seqno = -1;
static int hf_aodv_lifetime = -1;
static int hf_aodv_destcount = -1;
static int hf_aodv_unreach_dest_ip = -1;
static int hf_aodv_unreach_dest_seqno = -1;
static int hf_aodv_flags_rreq_join = -1;
static int hf_aodv_flags_rreq_repair = -1;
static int hf_aodv_flags_rreq_gratuitous = -1;
static int hf_aodv_flags_rrep_repair = -1;
static int hf_aodv_flags_rrep_ack = -1;
static int hf_aodv_flags_rerr_nodelete = -1;
/* Initialize the subtree pointers */
static gint ett_aodv = -1;
static gint ett_aodv_flags = -1;
static gint ett_aodv_unreach_dest = -1;
/* Code to actually dissect the packets */
static int
dissect_aodv(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
proto_item *ti = NULL, *tj = NULL, *tk = NULL;
proto_tree *aodv_tree = NULL, *aodv_flags_tree = NULL,
*aodv_unreach_dest_tree = NULL;
guint8 type;
int i;
/* Make entries in Protocol column and Info column on summary display */
if (check_col(pinfo->cinfo, COL_PROTOCOL))
col_set_str(pinfo->cinfo, COL_PROTOCOL, "AODV");
if (check_col(pinfo->cinfo, COL_INFO))
col_clear(pinfo->cinfo, COL_INFO);
/* Check the type of AODV packet. */
type = tvb_get_guint8(tvb, 0);
if (type < 1 || type > 3) {
/*
* We assume this is not an AODV packet.
*/
return 0;
}
if (tree) {
ti = proto_tree_add_protocol_format(tree, proto_aodv, tvb, 0, -1,
"Ad hoc On-demand Distance Vector Routing Protocol, %s",
val_to_str(type, type_vals, "Unknown AODV Packet Type (%u)"));
aodv_tree = proto_item_add_subtree(ti, ett_aodv);
proto_tree_add_uint(aodv_tree, hf_aodv_type, tvb, 0, 1, type);
tj = proto_tree_add_text(aodv_tree, tvb, 1, 1, "Flags:");
aodv_flags_tree = proto_item_add_subtree(tj, ett_aodv_flags);
}
switch (type) {
case RREQ:
rreq.type = type;
rreq.flags = tvb_get_guint8(tvb, 1);
rreq.hop_count = tvb_get_guint8(tvb, 3);
rreq.rreq_id = tvb_get_ntohl(tvb, 4);
tvb_memcpy(tvb, (guint8 *)&rreq.dest_addr, 8, 4);
rreq.dest_seqno = tvb_get_ntohl(tvb, 12);
tvb_memcpy(tvb, (guint8 *)&rreq.orig_addr, 16, 4);
rreq.orig_seqno = tvb_get_ntohl(tvb, 20);
if (tree) {
proto_tree_add_boolean(aodv_flags_tree, hf_aodv_flags_rreq_join, tvb, 1, 1, rreq.flags);
proto_tree_add_boolean(aodv_flags_tree, hf_aodv_flags_rreq_repair, tvb, 1, 1, rreq.flags);
proto_tree_add_boolean(aodv_flags_tree, hf_aodv_flags_rreq_gratuitous, tvb, 1, 1, rreq.flags);
if (rreq.flags & RREQ_JOIN)
proto_item_append_text(tj, " J");
if (rreq.flags & RREQ_REP)
proto_item_append_text(tj, " R");
if (rreq.flags & RREQ_GRAT)
proto_item_append_text(tj, " G");
proto_tree_add_uint(aodv_tree, hf_aodv_hopcount, tvb, 3, 1, rreq.hop_count);
proto_tree_add_uint(aodv_tree, hf_aodv_rreq_id, tvb, 4, 4, rreq.rreq_id);
proto_tree_add_ipv4(aodv_tree, hf_aodv_dest_ip, tvb, 8, 4, rreq.dest_addr);
proto_tree_add_uint(aodv_tree, hf_aodv_dest_seqno, tvb, 12, 4, rreq.dest_seqno);
proto_tree_add_ipv4(aodv_tree, hf_aodv_orig_ip, tvb, 16, 4, rreq.orig_addr);
proto_tree_add_uint(aodv_tree, hf_aodv_orig_seqno, tvb, 20, 4, rreq.orig_seqno);
proto_item_append_text(ti, ", Dest IP: %s, Orig IP: %s, Id=%u", ip_to_str(tvb_get_ptr(tvb, 8, 4)), ip_to_str(tvb_get_ptr(tvb, 16, 4)), rreq.rreq_id);
}
if (check_col(pinfo->cinfo, COL_INFO))
col_add_fstr(pinfo->cinfo, COL_INFO, "%s, D: %s O: %s Id=%u Hcnt=%u DSN=%u OSN=%u",
val_to_str(type, type_vals,
"Unknown AODV Packet Type (%u)"),
ip_to_str(tvb_get_ptr(tvb, 8, 4)),
ip_to_str(tvb_get_ptr(tvb, 16, 4)),
rreq.rreq_id,
rreq.hop_count,
rreq.dest_seqno,
rreq.orig_seqno);
break;
case RREP:
rrep.type = type;
rrep.flags = tvb_get_guint8(tvb, 1);
rrep.hop_count = tvb_get_guint8(tvb, 3);
tvb_memcpy(tvb, (guint8 *)&rrep.dest_addr, 4, 4);
rrep.dest_seqno = tvb_get_ntohl(tvb, 8);
tvb_memcpy(tvb, (guint8 *)&rrep.orig_addr, 12, 4);
rrep.lifetime = tvb_get_ntohl(tvb, 16);
if (tree) {
proto_tree_add_boolean(aodv_flags_tree, hf_aodv_flags_rrep_repair, tvb, 1, 1, rrep.flags);
proto_tree_add_boolean(aodv_flags_tree, hf_aodv_flags_rrep_ack, tvb, 1, 1, rrep.flags);
if (rrep.flags & RREP_REP)
proto_item_append_text(tj, " R");
if (rrep.flags & RREP_ACK)
proto_item_append_text(tj, " A");
proto_tree_add_uint(aodv_tree, hf_aodv_hopcount, tvb, 3, 1, rrep.hop_count);
proto_tree_add_ipv4(aodv_tree, hf_aodv_dest_ip, tvb, 4, 4, rrep.dest_addr);
proto_tree_add_uint(aodv_tree, hf_aodv_dest_seqno, tvb, 8, 4, rrep.dest_seqno);
proto_tree_add_ipv4(aodv_tree, hf_aodv_orig_ip, tvb, 12, 4, rrep.orig_addr);
proto_tree_add_uint(aodv_tree, hf_aodv_lifetime, tvb, 16, 4, rrep.lifetime);
proto_item_append_text(ti, ", Dest IP: %s, Orig IP: %s, Lifetime=%u", ip_to_str(tvb_get_ptr(tvb, 4, 4)), ip_to_str(tvb_get_ptr(tvb, 12, 4)), rrep.lifetime);
}
if (check_col(pinfo->cinfo, COL_INFO))
col_add_fstr(pinfo->cinfo, COL_INFO, "%s D: %s O: %s Hcnt=%u DSN=%u Lifetime=%u",
val_to_str(type, type_vals,
"Unknown AODV Packet Type (%u)"),
ip_to_str(tvb_get_ptr(tvb, 4, 4)),
ip_to_str(tvb_get_ptr(tvb, 12, 4)),
rrep.hop_count,
rrep.dest_seqno,
rrep.lifetime);
break;
case RERR:
rerr.type = type;
rerr.flags = tvb_get_guint8(tvb, 1);
rerr.dest_count = tvb_get_guint8(tvb, 3);
if (tree) {
proto_tree_add_boolean(aodv_flags_tree, hf_aodv_flags_rerr_nodelete, tvb, 1, 1, rerr.flags);
if (rerr.flags & RERR_NODEL)
proto_item_append_text(tj, " N");
proto_tree_add_uint(aodv_tree, hf_aodv_destcount, tvb, 3, 1, rerr.dest_count);
tk = proto_tree_add_text(aodv_tree, tvb, 4, 8*rerr.dest_count, "Unreachable Destinations:");
aodv_unreach_dest_tree = proto_item_add_subtree(tk, ett_aodv_unreach_dest);
for (i = 0; i < rerr.dest_count; i++) {
tvb_memcpy(tvb, (guint8 *)&rerr.dest_addr, 4+8*i, 4);
rerr.dest_seqno = tvb_get_ntohl(tvb, 8+8*i);
proto_tree_add_ipv4(aodv_unreach_dest_tree, hf_aodv_dest_ip, tvb, 4+8*i, 4, rerr.dest_addr);
proto_tree_add_uint(aodv_unreach_dest_tree, hf_aodv_dest_seqno, tvb, 8+8*i, 4, rerr.dest_seqno);
}
}
if (check_col(pinfo->cinfo, COL_INFO))
col_add_fstr(pinfo->cinfo, COL_INFO, "%s, Dest Count=%u",
val_to_str(type, type_vals,
"Unknown AODV Packet Type (%u)"),
rerr.dest_count);
break;
default:
proto_tree_add_text(aodv_tree, tvb, 0,
1, "Unknown AODV Packet Type (%u)",
type);
}
return tvb_length(tvb);
}
/* Register the protocol with Ethereal */
void
proto_register_aodv(void)
{
static hf_register_info hf[] = {
{ &hf_aodv_type,
{ "Type", "aodv.type",
FT_UINT8, BASE_DEC, VALS(type_vals), 0x0,
"AODV packet type", HFILL }
},
{ &hf_aodv_flags,
{ "Flags", "aodv.flags",
FT_UINT16, BASE_DEC, NULL, 0x0,
"Flags", HFILL }
},
{ &hf_aodv_flags_rreq_join,
{ "RREQ Join", "aodv.flags.rreq_join",
FT_BOOLEAN, 8, TFS(&flags_set_truth), RREQ_JOIN,
"", HFILL }
},
{ &hf_aodv_flags_rreq_repair,
{ "RREQ Repair", "aodv.flags.rreq_repair",
FT_BOOLEAN, 8, TFS(&flags_set_truth), RREQ_REP,
"", HFILL }
},
{ &hf_aodv_flags_rreq_gratuitous,
{ "RREQ Gratuitous", "aodv.flags.rreq_gratuitous",
FT_BOOLEAN, 8, TFS(&flags_set_truth), RREQ_GRAT,
"", HFILL }
},
{ &hf_aodv_flags_rrep_repair,
{ "RREP Repair", "aodv.flags.rrep_repair",
FT_BOOLEAN, 8, TFS(&flags_set_truth), RREP_REP,
"", HFILL }
},
{ &hf_aodv_flags_rrep_ack,
{ "RREP Acknowledgement", "aodv.flags.rrep_ack",
FT_BOOLEAN, 8, TFS(&flags_set_truth), RREP_ACK,
"", HFILL }
},
{ &hf_aodv_flags_rerr_nodelete,
{ "RERR No Delete", "aodv.flags.rerr_nodelete",
FT_BOOLEAN, 8, TFS(&flags_set_truth), RERR_NODEL,
"", HFILL }
},
{ &hf_aodv_hopcount,
{ "Hop Count", "aodv.hopcount",
FT_UINT8, BASE_DEC, NULL, 0x0,
"Hop Count", HFILL }
},
{ &hf_aodv_rreq_id,
{ "RREQ Id", "aodv.rreq_id",
FT_UINT32, BASE_DEC, NULL, 0x0,
"RREQ Id", HFILL }
},
{ &hf_aodv_dest_ip,
{ "Destination IP", "aodv.dest_ip",
FT_IPv4, BASE_DEC, NULL, 0x0,
"Destination IP Address", HFILL }
},
{ &hf_aodv_dest_seqno,
{ "Destination Sequence Number", "aodv.dest_seqno",
FT_UINT32, BASE_DEC, NULL, 0x0,
"Destination Sequence Number", HFILL }
},
{ &hf_aodv_orig_ip,
{ "Originator IP", "aodv.orig_ip",
FT_IPv4, BASE_DEC, NULL, 0x0,
"Originator IP Address", HFILL }
},
{ &hf_aodv_orig_seqno,
{ "Originator Sequence Number", "aodv.orig_seqno",
FT_UINT32, BASE_DEC, NULL, 0x0,
"Originator Sequence Number", HFILL }
},
{ &hf_aodv_lifetime,
{ "Lifetime", "aodv.lifetime",
FT_UINT32, BASE_DEC, NULL, 0x0,
"Lifetime", HFILL }
},
{ &hf_aodv_destcount,
{ "Destination Count", "aodv.destcount",
FT_UINT8, BASE_DEC, NULL, 0x0,
"Unreachable Destinations Count", HFILL }
},
{ &hf_aodv_unreach_dest_ip,
{ "Unreachable Destination IP", "aodv.unreach_dest_ip",
FT_IPv4, BASE_DEC, NULL, 0x0,
"Unreachable Destination IP Address", HFILL }
},
{ &hf_aodv_unreach_dest_seqno,
{ "Unreachable Destination Sequence Number", "aodv.unreach_dest_seqno",
FT_UINT32, BASE_DEC, NULL, 0x0,
"Unreachable Destination Sequence Number", HFILL }
},
};
/* Setup protocol subtree array */
static gint *ett[] = {
&ett_aodv,
&ett_aodv_flags,
&ett_aodv_unreach_dest,
};
/* Register the protocol name and description */
proto_aodv = proto_register_protocol("Ad hoc On-demand Distance Vector Routing Protocol", "AODV", "aodv");
/* Required function calls to register the header fields and subtrees used */
proto_register_field_array(proto_aodv, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));
}
void
proto_reg_handoff_aodv(void)
{
dissector_handle_t aodv_handle;
aodv_handle = new_create_dissector_handle(dissect_aodv,
proto_aodv);
dissector_add("udp.port", UDP_PORT_AODV, aodv_handle);
}