wireshark/epan/dissectors/packet-ppi.c

1600 lines
70 KiB
C

/*
* packet-ppi.c
* Routines for PPI Packet Header dissection
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 2007 Gerald Combs
*
* Copyright (c) 2006 CACE Technologies, Davis (California)
* All rights reserved.
*
* SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only)
*
*
* Dustin Johnson - Dustin@Dustinj.us, Dustin.Johnson@cacetech.com
* May 7, 2008 - Added 'Aggregation Extension' and '802.3 Extension'
*/
#include "config.h"
#include <epan/packet.h>
#include <epan/capture_dissectors.h>
#include <epan/exceptions.h>
#include <epan/ptvcursor.h>
#include <epan/prefs.h>
#include <epan/expert.h>
#include <epan/reassemble.h>
#include <wsutil/802_11-utils.h>
#include <wsutil/pint.h>
#include <wsutil/str_util.h>
/*
* Per-Packet Information (PPI) header.
* See the PPI Packet Header documentation at
*
* https://wayback.archive.org/web/20120525190041/https://www.cacetech.com/documents/PPI%20Header%20format%201.0.10.pdf
*
* for details.
*/
/*
* PPI headers have the following format:
*
* ,---------------------------------------------------------.
* | PPH | PFH 1 | Field data 1 | PFH 2 | Field data 2 | ... |
* `---------------------------------------------------------'
*
* The PPH struct has the following format:
*
* typedef struct ppi_packetheader {
* guint8 pph_version; // Version. Currently 0
* guint8 pph_flags; // Flags.
* guint16 pph_len; // Length of entire message, including this header and TLV payload.
* guint32 pph_dlt; // libpcap Data Link Type of the captured packet data.
* } ppi_packetheader_t;
*
* The PFH struct has the following format:
*
* typedef struct ppi_fieldheader {
* guint16 pfh_type; // Type
* guint16 pfh_datalen; // Length of data
* } ppi_fieldheader_t;
*
* Anyone looking to add their own PPI dissector would probably do well to imitate the GPS
* ones separation into a distinct file. Here is a step by step guide:
* 1) add the number you received to the enum ppi_field_type declaration.
* 2) Add a value string for your number into vs_ppi_field_type
* 3) declare a dissector handle by the ppi_gps_handle, and initialize it inside proto_reg_handoff
* 4) add case inside dissect_ppi to call your new handle.
* 5) Write your parser, and get it loaded.
* Following these steps will result in less churn inside the ppi proper parser, and avoid namespace issues.
*/
#define PPI_PADDED (1 << 0)
#define PPI_V0_HEADER_LEN 8
#define PPI_80211_COMMON_LEN 20
#define PPI_80211N_MAC_LEN 12
#define PPI_80211N_MAC_PHY_OFF 9
#define PPI_80211N_MAC_PHY_LEN 48
#define PPI_AGGREGATION_EXTENSION_LEN 4
#define PPI_8023_EXTENSION_LEN 8
#define PPI_FLAG_ALIGN 0x01
#define IS_PPI_FLAG_ALIGN(x) ((x) & PPI_FLAG_ALIGN)
#define DOT11_FLAG_HAVE_FCS 0x0001
#define DOT11_FLAG_TSF_TIMER_MS 0x0002
#define DOT11_FLAG_FCS_INVALID 0x0004
#define DOT11_FLAG_PHY_ERROR 0x0008
#define DOT11N_FLAG_GREENFIELD 0x0001
#define DOT11N_FLAG_HT40 0x0002
#define DOT11N_FLAG_SHORT_GI 0x0004
#define DOT11N_FLAG_DUPLICATE_RX 0x0008
#define DOT11N_FLAG_IS_AGGREGATE 0x0010
#define DOT11N_FLAG_MORE_AGGREGATES 0x0020
#define DOT11N_FLAG_AGG_CRC_ERROR 0x0040
#define DOT11N_IS_AGGREGATE(flags) (flags & DOT11N_FLAG_IS_AGGREGATE)
#define DOT11N_MORE_AGGREGATES(flags) ( \
(flags & DOT11N_FLAG_MORE_AGGREGATES) && \
!(flags & DOT11N_FLAG_AGG_CRC_ERROR))
#define AGGREGATE_MAX 65535
#define AMPDU_MAX 16383
/* XXX - Start - Copied from packet-radiotap.c */
/* Channel flags. */
#define IEEE80211_CHAN_TURBO 0x0010 /* Turbo channel */
#define IEEE80211_CHAN_CCK 0x0020 /* CCK channel */
#define IEEE80211_CHAN_OFDM 0x0040 /* OFDM channel */
#define IEEE80211_CHAN_2GHZ 0x0080 /* 2 GHz spectrum channel. */
#define IEEE80211_CHAN_5GHZ 0x0100 /* 5 GHz spectrum channel */
#define IEEE80211_CHAN_PASSIVE 0x0200 /* Only passive scan allowed */
#define IEEE80211_CHAN_DYN 0x0400 /* Dynamic CCK-OFDM channel */
#define IEEE80211_CHAN_GFSK 0x0800 /* GFSK channel (FHSS PHY) */
#define IEEE80211_CHAN_ALL \
(IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_GFSK | \
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_DYN)
#define IEEE80211_CHAN_ALLTURBO \
(IEEE80211_CHAN_ALL | IEEE80211_CHAN_TURBO)
/*
* Useful combinations of channel characteristics.
*/
#define IEEE80211_CHAN_FHSS \
(IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_GFSK)
#define IEEE80211_CHAN_DSSS \
(IEEE80211_CHAN_2GHZ)
#define IEEE80211_CHAN_A \
(IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_OFDM)
#define IEEE80211_CHAN_B \
(IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_CCK)
#define IEEE80211_CHAN_PUREG \
(IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_OFDM)
#define IEEE80211_CHAN_G \
(IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_DYN)
#define IEEE80211_CHAN_108A \
(IEEE80211_CHAN_A | IEEE80211_CHAN_TURBO)
#define IEEE80211_CHAN_108G \
(IEEE80211_CHAN_G | IEEE80211_CHAN_TURBO)
#define IEEE80211_CHAN_108PUREG \
(IEEE80211_CHAN_PUREG | IEEE80211_CHAN_TURBO)
/* XXX - End - Copied from packet-radiotap.c */
void proto_register_ppi(void);
void proto_reg_handoff_ppi(void);
typedef enum {
/* 0 - 29999: Public types */
PPI_80211_COMMON = 2,
PPI_80211N_MAC = 3,
PPI_80211N_MAC_PHY = 4,
PPI_SPECTRUM_MAP = 5,
PPI_PROCESS_INFO = 6,
PPI_CAPTURE_INFO = 7,
PPI_AGGREGATION_EXTENSION = 8,
PPI_8023_EXTENSION = 9,
/* 11 - 29999: RESERVED */
/* 30000 - 65535: Private types */
INTEL_CORP_PRIVATE = 30000,
MOHAMED_THAGA_PRIVATE = 30001,
PPI_GPS_INFO = 30002, /* 30002 - 30005 described in PPI-GEOLOCATION specifcation */
PPI_VECTOR_INFO = 30003, /* currently available in draft from. jellch@harris.com */
PPI_SENSOR_INFO = 30004,
PPI_ANTENNA_INFO = 30005,
FNET_PRIVATE = 0xC017,
CACE_PRIVATE = 0xCACE
/* All others RESERVED. Contact the WinPcap team for an assignment */
} ppi_field_type;
/* Protocol */
static int proto_ppi = -1;
/* Packet header */
static int hf_ppi_head_version = -1;
static int hf_ppi_head_flags = -1;
static int hf_ppi_head_flag_alignment = -1;
static int hf_ppi_head_flag_reserved = -1;
static int hf_ppi_head_len = -1;
static int hf_ppi_head_dlt = -1;
/* Field header */
static int hf_ppi_field_type = -1;
static int hf_ppi_field_len = -1;
/* 802.11 Common */
static int hf_80211_common_tsft = -1;
static int hf_80211_common_flags = -1;
static int hf_80211_common_flags_fcs = -1;
static int hf_80211_common_flags_tsft = -1;
static int hf_80211_common_flags_fcs_valid = -1;
static int hf_80211_common_flags_phy_err = -1;
static int hf_80211_common_rate = -1;
static int hf_80211_common_chan_freq = -1;
static int hf_80211_common_chan_flags = -1;
static int hf_80211_common_chan_flags_turbo = -1;
static int hf_80211_common_chan_flags_cck = -1;
static int hf_80211_common_chan_flags_ofdm = -1;
static int hf_80211_common_chan_flags_2ghz = -1;
static int hf_80211_common_chan_flags_5ghz = -1;
static int hf_80211_common_chan_flags_passive = -1;
static int hf_80211_common_chan_flags_dynamic = -1;
static int hf_80211_common_chan_flags_gfsk = -1;
static int hf_80211_common_fhss_hopset = -1;
static int hf_80211_common_fhss_pattern = -1;
static int hf_80211_common_dbm_antsignal = -1;
static int hf_80211_common_dbm_antnoise = -1;
/* 802.11n MAC */
static int hf_80211n_mac_flags = -1;
static int hf_80211n_mac_flags_greenfield = -1;
static int hf_80211n_mac_flags_ht20_40 = -1;
static int hf_80211n_mac_flags_rx_guard_interval = -1;
static int hf_80211n_mac_flags_duplicate_rx = -1;
static int hf_80211n_mac_flags_more_aggregates = -1;
static int hf_80211n_mac_flags_aggregate = -1;
static int hf_80211n_mac_flags_delimiter_crc_after = -1;
static int hf_80211n_mac_ampdu_id = -1;
static int hf_80211n_mac_num_delimiters = -1;
static int hf_80211n_mac_reserved = -1;
/* 802.11n MAC+PHY */
static int hf_80211n_mac_phy_mcs = -1;
static int hf_80211n_mac_phy_num_streams = -1;
static int hf_80211n_mac_phy_rssi_combined = -1;
static int hf_80211n_mac_phy_rssi_ant0_ctl = -1;
static int hf_80211n_mac_phy_rssi_ant1_ctl = -1;
static int hf_80211n_mac_phy_rssi_ant2_ctl = -1;
static int hf_80211n_mac_phy_rssi_ant3_ctl = -1;
static int hf_80211n_mac_phy_rssi_ant0_ext = -1;
static int hf_80211n_mac_phy_rssi_ant1_ext = -1;
static int hf_80211n_mac_phy_rssi_ant2_ext = -1;
static int hf_80211n_mac_phy_rssi_ant3_ext = -1;
static int hf_80211n_mac_phy_ext_chan_freq = -1;
static int hf_80211n_mac_phy_ext_chan_flags = -1;
static int hf_80211n_mac_phy_ext_chan_flags_turbo = -1;
static int hf_80211n_mac_phy_ext_chan_flags_cck = -1;
static int hf_80211n_mac_phy_ext_chan_flags_ofdm = -1;
static int hf_80211n_mac_phy_ext_chan_flags_2ghz = -1;
static int hf_80211n_mac_phy_ext_chan_flags_5ghz = -1;
static int hf_80211n_mac_phy_ext_chan_flags_passive = -1;
static int hf_80211n_mac_phy_ext_chan_flags_dynamic = -1;
static int hf_80211n_mac_phy_ext_chan_flags_gfsk = -1;
static int hf_80211n_mac_phy_dbm_ant0signal = -1;
static int hf_80211n_mac_phy_dbm_ant0noise = -1;
static int hf_80211n_mac_phy_dbm_ant1signal = -1;
static int hf_80211n_mac_phy_dbm_ant1noise = -1;
static int hf_80211n_mac_phy_dbm_ant2signal = -1;
static int hf_80211n_mac_phy_dbm_ant2noise = -1;
static int hf_80211n_mac_phy_dbm_ant3signal = -1;
static int hf_80211n_mac_phy_dbm_ant3noise = -1;
static int hf_80211n_mac_phy_evm0 = -1;
static int hf_80211n_mac_phy_evm1 = -1;
static int hf_80211n_mac_phy_evm2 = -1;
static int hf_80211n_mac_phy_evm3 = -1;
/* 802.11n-Extensions A-MPDU fragments */
static int hf_ampdu_reassembled_in = -1;
/* static int hf_ampdu_segments = -1; */
static int hf_ampdu_segment = -1;
static int hf_ampdu_count = -1;
/* Spectrum-Map */
static int hf_spectrum_map = -1;
/* Process-Info */
static int hf_process_info = -1;
/* Capture-Info */
static int hf_capture_info = -1;
/* Aggregation Extension */
static int hf_aggregation_extension_interface_id = -1;
/* 802.3 Extension */
static int hf_8023_extension_flags = -1;
static int hf_8023_extension_flags_fcs_present = -1;
static int hf_8023_extension_errors = -1;
static int hf_8023_extension_errors_fcs = -1;
static int hf_8023_extension_errors_sequence = -1;
static int hf_8023_extension_errors_symbol = -1;
static int hf_8023_extension_errors_data = -1;
/* Generated from convert_proto_tree_add_text.pl */
static int hf_ppi_antenna = -1;
static int hf_ppi_harris = -1;
static int hf_ppi_reserved = -1;
static int hf_ppi_vector = -1;
static int hf_ppi_fnet = -1;
static int hf_ppi_gps = -1;
static gint ett_ppi_pph = -1;
static gint ett_ppi_flags = -1;
static gint ett_dot11_common = -1;
static gint ett_dot11_common_flags = -1;
static gint ett_dot11_common_channel_flags = -1;
static gint ett_dot11n_mac = -1;
static gint ett_dot11n_mac_flags = -1;
static gint ett_dot11n_mac_phy = -1;
static gint ett_dot11n_mac_phy_ext_channel_flags = -1;
static gint ett_ampdu_segments = -1;
static gint ett_ampdu = -1;
static gint ett_ampdu_segment = -1;
static gint ett_aggregation_extension = -1;
static gint ett_8023_extension = -1;
static gint ett_8023_extension_flags = -1;
static gint ett_8023_extension_errors = -1;
/* Generated from convert_proto_tree_add_text.pl */
static expert_field ei_ppi_invalid_length = EI_INIT;
static dissector_handle_t ppi_handle;
static dissector_handle_t ieee80211_radio_handle;
static dissector_handle_t pcap_pktdata_handle;
static dissector_handle_t ppi_gps_handle, ppi_vector_handle, ppi_sensor_handle, ppi_antenna_handle;
static dissector_handle_t ppi_fnet_handle;
static const true_false_string tfs_ppi_head_flag_alignment = { "32-bit aligned", "Not aligned" };
static const true_false_string tfs_tsft_ms = { "milliseconds", "microseconds" };
static const true_false_string tfs_ht20_40 = { "HT40", "HT20" };
static const true_false_string tfs_phy_error = { "PHY error", "No errors"};
static const value_string vs_ppi_field_type[] = {
{PPI_80211_COMMON, "802.11-Common"},
{PPI_80211N_MAC, "802.11n MAC Extensions"},
{PPI_80211N_MAC_PHY, "802.11n MAC+PHY Extensions"},
{PPI_SPECTRUM_MAP, "Spectrum-Map"},
{PPI_PROCESS_INFO, "Process-Info"},
{PPI_CAPTURE_INFO, "Capture-Info"},
{PPI_AGGREGATION_EXTENSION, "Aggregation Extension"},
{PPI_8023_EXTENSION, "802.3 Extension"},
{INTEL_CORP_PRIVATE, "Intel Corporation (private)"},
{MOHAMED_THAGA_PRIVATE, "Mohamed Thaga (private)"},
{PPI_GPS_INFO, "GPS Tagging"},
{PPI_VECTOR_INFO, "Vector Tagging"},
{PPI_SENSOR_INFO, "Sensor tagging"},
{PPI_ANTENNA_INFO, "Antenna Tagging"},
{FNET_PRIVATE, "FlukeNetworks (private)"},
{CACE_PRIVATE, "CACE Technologies (private)"},
{0, NULL}
};
/* Table for A-MPDU reassembly */
static reassembly_table ampdu_reassembly_table;
/* Reassemble A-MPDUs? */
static gboolean ppi_ampdu_reassemble = TRUE;
static gboolean
capture_ppi(const guchar *pd, int offset _U_, int len, capture_packet_info_t *cpinfo, const union wtap_pseudo_header *pseudo_header _U_)
{
guint32 dlt;
guint ppi_len;
ppi_len = pletoh16(pd+2);
if(ppi_len < PPI_V0_HEADER_LEN || !BYTES_ARE_IN_FRAME(0, len, ppi_len))
return FALSE;
dlt = pletoh32(pd+4);
return try_capture_dissector("ppi", dlt, pd, ppi_len, len, cpinfo, pseudo_header);
}
static void
ptvcursor_add_invalid_check(ptvcursor_t *csr, int hf, gint len, guint64 invalid_val) {
proto_item *ti;
guint64 val = invalid_val;
switch (len) {
case 8:
val = tvb_get_letoh64(ptvcursor_tvbuff(csr),
ptvcursor_current_offset(csr));
break;
case 4:
val = tvb_get_letohl(ptvcursor_tvbuff(csr),
ptvcursor_current_offset(csr));
break;
case 2:
val = tvb_get_letohs(ptvcursor_tvbuff(csr),
ptvcursor_current_offset(csr));
break;
case 1:
val = tvb_get_guint8(ptvcursor_tvbuff(csr),
ptvcursor_current_offset(csr));
break;
default:
DISSECTOR_ASSERT_NOT_REACHED();
}
ti = ptvcursor_add(csr, hf, len, ENC_LITTLE_ENDIAN);
if (val == invalid_val)
proto_item_append_text(ti, " [invalid]");
}
static void
add_ppi_field_header(tvbuff_t *tvb, proto_tree *tree, int *offset)
{
ptvcursor_t *csr;
csr = ptvcursor_new(wmem_packet_scope(), tree, tvb, *offset);
ptvcursor_add(csr, hf_ppi_field_type, 2, ENC_LITTLE_ENDIAN);
ptvcursor_add(csr, hf_ppi_field_len, 2, ENC_LITTLE_ENDIAN);
ptvcursor_free(csr);
*offset=ptvcursor_current_offset(csr);
}
/* XXX - The main dissection function in the 802.11 dissector has the same name. */
static void
dissect_80211_common(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, int offset, int data_len, struct ieee_802_11_phdr *phdr)
{
proto_tree *ftree;
proto_item *ti;
ptvcursor_t *csr;
guint64 tsft_raw;
guint rate_raw;
guint rate_kbps;
guint32 common_flags;
guint16 common_frequency;
guint16 chan_flags;
gint8 dbm_value;
gchar *chan_str;
ftree = proto_tree_add_subtree(tree, tvb, offset, data_len, ett_dot11_common, NULL, "802.11-Common");
add_ppi_field_header(tvb, ftree, &offset);
data_len -= 4; /* Subtract field header length */
if (data_len != PPI_80211_COMMON_LEN) {
proto_tree_add_expert_format(ftree, pinfo, &ei_ppi_invalid_length, tvb, offset, data_len, "Invalid length: %u", data_len);
return;
}
common_flags = tvb_get_letohs(tvb, offset + 8);
if (common_flags & DOT11_FLAG_HAVE_FCS)
phdr->fcs_len = 4;
else
phdr->fcs_len = 0;
csr = ptvcursor_new(pinfo->pool, ftree, tvb, offset);
tsft_raw = tvb_get_letoh64(tvb, offset);
if (tsft_raw != 0) {
phdr->has_tsf_timestamp = TRUE;
if (common_flags & DOT11_FLAG_TSF_TIMER_MS)
phdr->tsf_timestamp = tsft_raw * 1000;
else
phdr->tsf_timestamp = tsft_raw;
}
ptvcursor_add_invalid_check(csr, hf_80211_common_tsft, 8, 0);
ptvcursor_add_with_subtree(csr, hf_80211_common_flags, 2, ENC_LITTLE_ENDIAN,
ett_dot11_common_flags);
ptvcursor_add_no_advance(csr, hf_80211_common_flags_fcs, 2, ENC_LITTLE_ENDIAN);
ptvcursor_add_no_advance(csr, hf_80211_common_flags_tsft, 2, ENC_LITTLE_ENDIAN);
ptvcursor_add_no_advance(csr, hf_80211_common_flags_fcs_valid, 2, ENC_LITTLE_ENDIAN);
ptvcursor_add(csr, hf_80211_common_flags_phy_err, 2, ENC_LITTLE_ENDIAN);
ptvcursor_pop_subtree(csr);
rate_raw = tvb_get_letohs(tvb, ptvcursor_current_offset(csr));
if (rate_raw != 0) {
phdr->has_data_rate = TRUE;
phdr->data_rate = rate_raw;
}
rate_kbps = rate_raw * 500;
ti = proto_tree_add_uint_format(ftree, hf_80211_common_rate, tvb,
ptvcursor_current_offset(csr), 2, rate_kbps, "Rate: %.1f Mbps",
rate_kbps / 1000.0);
if (rate_kbps == 0)
proto_item_append_text(ti, " [invalid]");
col_add_fstr(pinfo->cinfo, COL_TX_RATE, "%.1f Mbps", rate_kbps / 1000.0);
ptvcursor_advance(csr, 2);
common_frequency = tvb_get_letohs(ptvcursor_tvbuff(csr), ptvcursor_current_offset(csr));
if (common_frequency != 0) {
gint calc_channel;
phdr->has_frequency = TRUE;
phdr->frequency = common_frequency;
calc_channel = ieee80211_mhz_to_chan(common_frequency);
if (calc_channel != -1) {
phdr->has_channel = TRUE;
phdr->channel = calc_channel;
}
}
chan_str = ieee80211_mhz_to_str(common_frequency);
proto_tree_add_uint_format_value(ptvcursor_tree(csr), hf_80211_common_chan_freq, ptvcursor_tvbuff(csr),
ptvcursor_current_offset(csr), 2, common_frequency, "%s", chan_str);
col_add_fstr(pinfo->cinfo, COL_FREQ_CHAN, "%s", chan_str);
g_free(chan_str);
ptvcursor_advance(csr, 2);
memset(&phdr->phy_info, 0, sizeof(phdr->phy_info));
chan_flags = tvb_get_letohs(ptvcursor_tvbuff(csr), ptvcursor_current_offset(csr));
switch (chan_flags & IEEE80211_CHAN_ALLTURBO) {
case IEEE80211_CHAN_FHSS:
phdr->phy = PHDR_802_11_PHY_11_FHSS;
break;
case IEEE80211_CHAN_DSSS:
phdr->phy = PHDR_802_11_PHY_11_DSSS;
break;
case IEEE80211_CHAN_A:
phdr->phy = PHDR_802_11_PHY_11A;
phdr->phy_info.info_11a.has_turbo_type = TRUE;
phdr->phy_info.info_11a.turbo_type = PHDR_802_11A_TURBO_TYPE_NORMAL;
break;
case IEEE80211_CHAN_B:
phdr->phy = PHDR_802_11_PHY_11B;
break;
case IEEE80211_CHAN_PUREG:
phdr->phy = PHDR_802_11_PHY_11G;
phdr->phy_info.info_11g.has_mode = TRUE;
phdr->phy_info.info_11g.mode = PHDR_802_11G_MODE_NORMAL;
break;
case IEEE80211_CHAN_G:
phdr->phy = PHDR_802_11_PHY_11G;
phdr->phy_info.info_11g.has_mode = TRUE;
phdr->phy_info.info_11g.mode = PHDR_802_11G_MODE_NORMAL;
break;
case IEEE80211_CHAN_108A:
phdr->phy = PHDR_802_11_PHY_11A;
phdr->phy_info.info_11a.has_turbo_type = TRUE;
/* We assume non-STURBO is dynamic turbo */
phdr->phy_info.info_11a.turbo_type = PHDR_802_11A_TURBO_TYPE_DYNAMIC_TURBO;
break;
case IEEE80211_CHAN_108PUREG:
phdr->phy = PHDR_802_11_PHY_11G;
phdr->phy_info.info_11g.has_mode = TRUE;
phdr->phy_info.info_11g.mode = PHDR_802_11G_MODE_SUPER_G;
break;
}
ptvcursor_add_with_subtree(csr, hf_80211_common_chan_flags, 2, ENC_LITTLE_ENDIAN,
ett_dot11_common_channel_flags);
ptvcursor_add_no_advance(csr, hf_80211_common_chan_flags_turbo, 2, ENC_LITTLE_ENDIAN);
ptvcursor_add_no_advance(csr, hf_80211_common_chan_flags_cck, 2, ENC_LITTLE_ENDIAN);
ptvcursor_add_no_advance(csr, hf_80211_common_chan_flags_ofdm, 2, ENC_LITTLE_ENDIAN);
ptvcursor_add_no_advance(csr, hf_80211_common_chan_flags_2ghz, 2, ENC_LITTLE_ENDIAN);
ptvcursor_add_no_advance(csr, hf_80211_common_chan_flags_5ghz, 2, ENC_LITTLE_ENDIAN);
ptvcursor_add_no_advance(csr, hf_80211_common_chan_flags_passive, 2, ENC_LITTLE_ENDIAN);
ptvcursor_add_no_advance(csr, hf_80211_common_chan_flags_dynamic, 2, ENC_LITTLE_ENDIAN);
ptvcursor_add(csr, hf_80211_common_chan_flags_gfsk, 2, ENC_LITTLE_ENDIAN);
ptvcursor_pop_subtree(csr);
if (phdr->phy == PHDR_802_11_PHY_11_FHSS) {
phdr->phy_info.info_11_fhss.has_hop_set = TRUE;
phdr->phy_info.info_11_fhss.hop_set = tvb_get_guint8(ptvcursor_tvbuff(csr), ptvcursor_current_offset(csr));
}
ptvcursor_add(csr, hf_80211_common_fhss_hopset, 1, ENC_LITTLE_ENDIAN);
if (phdr->phy == PHDR_802_11_PHY_11_FHSS) {
phdr->phy_info.info_11_fhss.has_hop_pattern = TRUE;
phdr->phy_info.info_11_fhss.hop_pattern = tvb_get_guint8(ptvcursor_tvbuff(csr), ptvcursor_current_offset(csr));
}
ptvcursor_add(csr, hf_80211_common_fhss_pattern, 1, ENC_LITTLE_ENDIAN);
dbm_value = tvb_get_gint8(tvb, ptvcursor_current_offset(csr));
if (dbm_value != -128 && dbm_value != 0) {
/*
* XXX - the spec says -128 is invalid, presumably meaning "use
* -128 if you don't have the signal strength", but some captures
* have 0 for noise, presumably meaning it's incorrectly being
* used for "don't have it", so we check for it as well.
*/
col_add_fstr(pinfo->cinfo, COL_RSSI, "%d dBm", dbm_value);
phdr->has_signal_dbm = TRUE;
phdr->signal_dbm = dbm_value;
}
ptvcursor_add_invalid_check(csr, hf_80211_common_dbm_antsignal, 1, 0x80); /* -128 */
dbm_value = tvb_get_gint8(tvb, ptvcursor_current_offset(csr));
if (dbm_value != -128 && dbm_value != 0) {
/*
* XXX - the spec says -128 is invalid, presumably meaning "use
* -128 if you don't have the noise level", but some captures
* have 0, presumably meaning it's incorrectly being used for
* "don't have it", so we check for it as well.
*/
phdr->has_noise_dbm = TRUE;
phdr->noise_dbm = dbm_value;
}
ptvcursor_add_invalid_check(csr, hf_80211_common_dbm_antnoise, 1, 0x80);
ptvcursor_free(csr);
}
static void
dissect_80211n_mac(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree, int offset, int data_len, gboolean add_subtree, guint32 *n_mac_flags, guint32 *ampdu_id, struct ieee_802_11_phdr *phdr)
{
proto_tree *ftree = tree;
ptvcursor_t *csr;
guint32 flags;
phdr->phy = PHDR_802_11_PHY_11N;
if (add_subtree) {
ftree = proto_tree_add_subtree(tree, tvb, offset, data_len, ett_dot11n_mac, NULL, "802.11n MAC");
add_ppi_field_header(tvb, ftree, &offset);
data_len -= 4; /* Subtract field header length */
}
if (data_len != PPI_80211N_MAC_LEN) {
proto_tree_add_expert_format(ftree, pinfo, &ei_ppi_invalid_length, tvb, offset, data_len, "Invalid length: %u", data_len);
return;
}
csr = ptvcursor_new(pinfo->pool, ftree, tvb, offset);
flags = tvb_get_letohl(tvb, ptvcursor_current_offset(csr));
*n_mac_flags = flags;
phdr->phy_info.info_11n.has_bandwidth = TRUE;
phdr->phy_info.info_11n.has_short_gi = TRUE;
phdr->phy_info.info_11n.has_greenfield = TRUE;
phdr->phy_info.info_11n.bandwidth = ((flags & DOT11N_FLAG_HT40) != 0);
phdr->phy_info.info_11n.short_gi = ((flags & DOT11N_FLAG_SHORT_GI) != 0);
phdr->phy_info.info_11n.greenfield = ((flags & DOT11N_FLAG_GREENFIELD) != 0);
if (DOT11N_IS_AGGREGATE(flags)) {
phdr->has_aggregate_info = 1;
phdr->aggregate_flags = 0;
if (!(flags & DOT11N_FLAG_MORE_AGGREGATES))
phdr->aggregate_flags |= PHDR_802_11_LAST_PART_OF_A_MPDU;
if (flags & DOT11N_FLAG_AGG_CRC_ERROR)
phdr->aggregate_flags |= PHDR_802_11_A_MPDU_DELIM_CRC_ERROR;
}
ptvcursor_add_with_subtree(csr, hf_80211n_mac_flags, 4, ENC_LITTLE_ENDIAN,
ett_dot11n_mac_flags);
ptvcursor_add_no_advance(csr, hf_80211n_mac_flags_greenfield, 4, ENC_LITTLE_ENDIAN);
ptvcursor_add_no_advance(csr, hf_80211n_mac_flags_ht20_40, 4, ENC_LITTLE_ENDIAN);
ptvcursor_add_no_advance(csr, hf_80211n_mac_flags_rx_guard_interval, 4, ENC_LITTLE_ENDIAN);
ptvcursor_add_no_advance(csr, hf_80211n_mac_flags_duplicate_rx, 4, ENC_LITTLE_ENDIAN);
ptvcursor_add_no_advance(csr, hf_80211n_mac_flags_aggregate, 4, ENC_LITTLE_ENDIAN);
ptvcursor_add_no_advance(csr, hf_80211n_mac_flags_more_aggregates, 4, ENC_LITTLE_ENDIAN);
ptvcursor_add(csr, hf_80211n_mac_flags_delimiter_crc_after, 4, ENC_LITTLE_ENDIAN); /* Last */
ptvcursor_pop_subtree(csr);
if (DOT11N_IS_AGGREGATE(flags)) {
*ampdu_id = tvb_get_letohl(tvb, ptvcursor_current_offset(csr));
phdr->aggregate_id = *ampdu_id;
}
ptvcursor_add(csr, hf_80211n_mac_ampdu_id, 4, ENC_LITTLE_ENDIAN);
ptvcursor_add(csr, hf_80211n_mac_num_delimiters, 1, ENC_LITTLE_ENDIAN);
if (add_subtree) {
ptvcursor_add(csr, hf_80211n_mac_reserved, 3, ENC_LITTLE_ENDIAN);
}
ptvcursor_free(csr);
}
static void
dissect_80211n_mac_phy(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, int offset, int data_len, guint32 *n_mac_flags, guint32 *ampdu_id, struct ieee_802_11_phdr *phdr)
{
proto_tree *ftree;
proto_item *ti;
ptvcursor_t *csr;
guint8 mcs;
guint8 ness;
guint16 ext_frequency;
gchar *chan_str;
ftree = proto_tree_add_subtree(tree, tvb, offset, data_len, ett_dot11n_mac_phy, NULL, "802.11n MAC+PHY");
add_ppi_field_header(tvb, ftree, &offset);
data_len -= 4; /* Subtract field header length */
if (data_len != PPI_80211N_MAC_PHY_LEN) {
proto_tree_add_expert_format(ftree, pinfo, &ei_ppi_invalid_length, tvb, offset, data_len, "Invalid length: %u", data_len);
return;
}
dissect_80211n_mac(tvb, pinfo, ftree, offset, PPI_80211N_MAC_LEN,
FALSE, n_mac_flags, ampdu_id, phdr);
offset += PPI_80211N_MAC_PHY_OFF;
csr = ptvcursor_new(pinfo->pool, ftree, tvb, offset);
mcs = tvb_get_guint8(tvb, ptvcursor_current_offset(csr));
if (mcs != 255) {
phdr->phy_info.info_11n.has_mcs_index = TRUE;
phdr->phy_info.info_11n.mcs_index = mcs;
}
ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_mcs, 1, 255);
ness = tvb_get_guint8(tvb, ptvcursor_current_offset(csr));
phdr->phy_info.info_11n.has_ness = TRUE;
phdr->phy_info.info_11n.ness = ness;
ti = ptvcursor_add(csr, hf_80211n_mac_phy_num_streams, 1, ENC_LITTLE_ENDIAN);
if (tvb_get_guint8(tvb, ptvcursor_current_offset(csr) - 1) == 0)
proto_item_append_text(ti, " (unknown)");
ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_rssi_combined, 1, 255);
ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_rssi_ant0_ctl, 1, 255);
ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_rssi_ant1_ctl, 1, 255);
ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_rssi_ant2_ctl, 1, 255);
ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_rssi_ant3_ctl, 1, 255);
ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_rssi_ant0_ext, 1, 255);
ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_rssi_ant1_ext, 1, 255);
ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_rssi_ant2_ext, 1, 255);
ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_rssi_ant3_ext, 1, 255);
ext_frequency = tvb_get_letohs(ptvcursor_tvbuff(csr), ptvcursor_current_offset(csr));
chan_str = ieee80211_mhz_to_str(ext_frequency);
proto_tree_add_uint_format(ptvcursor_tree(csr), hf_80211n_mac_phy_ext_chan_freq, ptvcursor_tvbuff(csr),
ptvcursor_current_offset(csr), 2, ext_frequency, "Ext. Channel frequency: %s", chan_str);
g_free(chan_str);
ptvcursor_advance(csr, 2);
ptvcursor_add_with_subtree(csr, hf_80211n_mac_phy_ext_chan_flags, 2, ENC_LITTLE_ENDIAN,
ett_dot11n_mac_phy_ext_channel_flags);
ptvcursor_add_no_advance(csr, hf_80211n_mac_phy_ext_chan_flags_turbo, 2, ENC_LITTLE_ENDIAN);
ptvcursor_add_no_advance(csr, hf_80211n_mac_phy_ext_chan_flags_cck, 2, ENC_LITTLE_ENDIAN);
ptvcursor_add_no_advance(csr, hf_80211n_mac_phy_ext_chan_flags_ofdm, 2, ENC_LITTLE_ENDIAN);
ptvcursor_add_no_advance(csr, hf_80211n_mac_phy_ext_chan_flags_2ghz, 2, ENC_LITTLE_ENDIAN);
ptvcursor_add_no_advance(csr, hf_80211n_mac_phy_ext_chan_flags_5ghz, 2, ENC_LITTLE_ENDIAN);
ptvcursor_add_no_advance(csr, hf_80211n_mac_phy_ext_chan_flags_passive, 2, ENC_LITTLE_ENDIAN);
ptvcursor_add_no_advance(csr, hf_80211n_mac_phy_ext_chan_flags_dynamic, 2, ENC_LITTLE_ENDIAN);
ptvcursor_add(csr, hf_80211n_mac_phy_ext_chan_flags_gfsk, 2, ENC_LITTLE_ENDIAN);
ptvcursor_pop_subtree(csr);
ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_dbm_ant0signal, 1, 0x80); /* -128 */
ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_dbm_ant0noise, 1, 0x80);
ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_dbm_ant1signal, 1, 0x80);
ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_dbm_ant1noise, 1, 0x80);
ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_dbm_ant2signal, 1, 0x80);
ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_dbm_ant2noise, 1, 0x80);
ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_dbm_ant3signal, 1, 0x80);
ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_dbm_ant3noise, 1, 0x80);
ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_evm0, 4, 0);
ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_evm1, 4, 0);
ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_evm2, 4, 0);
ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_evm3, 4, 0);
ptvcursor_free(csr);
}
static void
dissect_aggregation_extension(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree, int offset, int data_len)
{
proto_tree *ftree;
ptvcursor_t *csr;
ftree = proto_tree_add_subtree(tree, tvb, offset, data_len, ett_aggregation_extension, NULL, "Aggregation Extension");
add_ppi_field_header(tvb, ftree, &offset);
data_len -= 4; /* Subtract field header length */
if (data_len != PPI_AGGREGATION_EXTENSION_LEN) {
proto_tree_add_expert_format(ftree, pinfo, &ei_ppi_invalid_length, tvb, offset, data_len, "Invalid length: %u", data_len);
return;
}
csr = ptvcursor_new(pinfo->pool, ftree, tvb, offset);
ptvcursor_add(csr, hf_aggregation_extension_interface_id, 4, ENC_LITTLE_ENDIAN); /* Last */
ptvcursor_free(csr);
}
static void
dissect_8023_extension(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree, int offset, int data_len)
{
proto_tree *ftree;
ptvcursor_t *csr;
ftree = proto_tree_add_subtree(tree, tvb, offset, data_len, ett_8023_extension, NULL, "802.3 Extension");
add_ppi_field_header(tvb, ftree, &offset);
data_len -= 4; /* Subtract field header length */
if (data_len != PPI_8023_EXTENSION_LEN) {
proto_tree_add_expert_format(ftree, pinfo, &ei_ppi_invalid_length, tvb, offset, data_len, "Invalid length: %u", data_len);
return;
}
csr = ptvcursor_new(pinfo->pool, ftree, tvb, offset);
ptvcursor_add_with_subtree(csr, hf_8023_extension_flags, 4, ENC_LITTLE_ENDIAN, ett_8023_extension_flags);
ptvcursor_add(csr, hf_8023_extension_flags_fcs_present, 4, ENC_LITTLE_ENDIAN);
ptvcursor_pop_subtree(csr);
ptvcursor_add_with_subtree(csr, hf_8023_extension_errors, 4, ENC_LITTLE_ENDIAN, ett_8023_extension_errors);
ptvcursor_add_no_advance(csr, hf_8023_extension_errors_fcs, 4, ENC_LITTLE_ENDIAN);
ptvcursor_add_no_advance(csr, hf_8023_extension_errors_sequence, 4, ENC_LITTLE_ENDIAN);
ptvcursor_add_no_advance(csr, hf_8023_extension_errors_symbol, 4, ENC_LITTLE_ENDIAN);
ptvcursor_add(csr, hf_8023_extension_errors_data, 4, ENC_LITTLE_ENDIAN);
ptvcursor_pop_subtree(csr);
ptvcursor_free(csr);
}
#define PADDING4(x) ((((x + 3) >> 2) << 2) - x)
#define ADD_BASIC_TAG(hf_tag) \
if (tree) \
proto_tree_add_item(ppi_tree, hf_tag, tvb, offset, data_len, ENC_NA)
static int
dissect_ppi(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* data _U_)
{
proto_tree *ppi_tree = NULL, *ppi_flags_tree = NULL, *seg_tree = NULL, *ampdu_tree = NULL;
proto_tree *agg_tree = NULL;
proto_item *ti = NULL;
tvbuff_t *next_tvb;
int offset = 0;
guint version, flags;
gint tot_len, data_len;
guint data_type;
guint32 dlt;
guint32 n_ext_flags = 0;
guint32 ampdu_id = 0;
fragment_head *fd_head = NULL;
fragment_item *ft_fdh = NULL;
gint mpdu_count = 0;
gchar *mpdu_str;
gboolean first_mpdu = TRUE;
guint last_frame = 0;
gint len_remain, /*pad_len = 0,*/ ampdu_len = 0;
struct ieee_802_11_phdr phdr;
col_set_str(pinfo->cinfo, COL_PROTOCOL, "PPI");
col_clear(pinfo->cinfo, COL_INFO);
version = tvb_get_guint8(tvb, offset);
flags = tvb_get_guint8(tvb, offset + 1);
tot_len = tvb_get_letohs(tvb, offset+2);
dlt = tvb_get_letohl(tvb, offset+4);
col_add_fstr(pinfo->cinfo, COL_INFO, "PPI version %u, %u bytes",
version, tot_len);
/* Dissect the packet */
if (tree) {
ti = proto_tree_add_protocol_format(tree, proto_ppi,
tvb, 0, tot_len, "PPI version %u, %u bytes", version, tot_len);
ppi_tree = proto_item_add_subtree(ti, ett_ppi_pph);
proto_tree_add_item(ppi_tree, hf_ppi_head_version,
tvb, offset, 1, ENC_LITTLE_ENDIAN);
ti = proto_tree_add_item(ppi_tree, hf_ppi_head_flags,
tvb, offset + 1, 1, ENC_LITTLE_ENDIAN);
ppi_flags_tree = proto_item_add_subtree(ti, ett_ppi_flags);
proto_tree_add_item(ppi_flags_tree, hf_ppi_head_flag_alignment,
tvb, offset + 1, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(ppi_flags_tree, hf_ppi_head_flag_reserved,
tvb, offset + 1, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(ppi_tree, hf_ppi_head_len,
tvb, offset + 2, 2, ENC_LITTLE_ENDIAN);
proto_tree_add_item(ppi_tree, hf_ppi_head_dlt,
tvb, offset + 4, 4, ENC_LITTLE_ENDIAN);
}
tot_len -= PPI_V0_HEADER_LEN;
offset += 8;
/* We don't have any 802.11 metadata yet. */
memset(&phdr, 0, sizeof(phdr));
phdr.fcs_len = -1;
phdr.decrypted = FALSE;
phdr.datapad = FALSE;
phdr.phy = PHDR_802_11_PHY_UNKNOWN;
while (tot_len > 0) {
data_type = tvb_get_letohs(tvb, offset);
data_len = tvb_get_letohs(tvb, offset + 2) + 4;
tot_len -= data_len;
switch (data_type) {
case PPI_80211_COMMON:
dissect_80211_common(tvb, pinfo, ppi_tree, offset, data_len, &phdr);
break;
case PPI_80211N_MAC:
dissect_80211n_mac(tvb, pinfo, ppi_tree, offset, data_len,
TRUE, &n_ext_flags, &ampdu_id, &phdr);
break;
case PPI_80211N_MAC_PHY:
dissect_80211n_mac_phy(tvb, pinfo, ppi_tree, offset,
data_len, &n_ext_flags, &ampdu_id, &phdr);
break;
case PPI_SPECTRUM_MAP:
ADD_BASIC_TAG(hf_spectrum_map);
break;
case PPI_PROCESS_INFO:
ADD_BASIC_TAG(hf_process_info);
break;
case PPI_CAPTURE_INFO:
ADD_BASIC_TAG(hf_capture_info);
break;
case PPI_AGGREGATION_EXTENSION:
dissect_aggregation_extension(tvb, pinfo, ppi_tree, offset, data_len);
break;
case PPI_8023_EXTENSION:
dissect_8023_extension(tvb, pinfo, ppi_tree, offset, data_len);
break;
case PPI_GPS_INFO:
if (ppi_gps_handle == NULL)
{
proto_tree_add_item(ppi_tree, hf_ppi_gps, tvb, offset, data_len, ENC_NA);
}
else /* we found a suitable dissector */
{
/* skip over the ppi_fieldheader, and pass it off to the dedicated GPS dissetor */
next_tvb = tvb_new_subset_length_caplen(tvb, offset + 4, data_len - 4 , -1);
call_dissector(ppi_gps_handle, next_tvb, pinfo, ppi_tree);
}
break;
case PPI_VECTOR_INFO:
if (ppi_vector_handle == NULL)
{
proto_tree_add_item(ppi_tree, hf_ppi_vector, tvb, offset, data_len, ENC_NA);
}
else /* we found a suitable dissector */
{
/* skip over the ppi_fieldheader, and pass it off to the dedicated VECTOR dissetor */
next_tvb = tvb_new_subset_length_caplen(tvb, offset + 4, data_len - 4 , -1);
call_dissector(ppi_vector_handle, next_tvb, pinfo, ppi_tree);
}
break;
case PPI_SENSOR_INFO:
if (ppi_sensor_handle == NULL)
{
proto_tree_add_item(ppi_tree, hf_ppi_harris, tvb, offset, data_len, ENC_NA);
}
else /* we found a suitable dissector */
{
/* skip over the ppi_fieldheader, and pass it off to the dedicated SENSOR dissetor */
next_tvb = tvb_new_subset_length_caplen(tvb, offset + 4, data_len - 4 , -1);
call_dissector(ppi_sensor_handle, next_tvb, pinfo, ppi_tree);
}
break;
case PPI_ANTENNA_INFO:
if (ppi_antenna_handle == NULL)
{
proto_tree_add_item(ppi_tree, hf_ppi_antenna, tvb, offset, data_len, ENC_NA);
}
else /* we found a suitable dissector */
{
/* skip over the ppi_fieldheader, and pass it off to the dedicated ANTENNA dissetor */
next_tvb = tvb_new_subset_length_caplen(tvb, offset + 4, data_len - 4 , -1);
call_dissector(ppi_antenna_handle, next_tvb, pinfo, ppi_tree);
}
break;
case FNET_PRIVATE:
if (ppi_fnet_handle == NULL)
{
proto_tree_add_item(ppi_tree, hf_ppi_fnet, tvb, offset, data_len, ENC_NA);
}
else /* we found a suitable dissector */
{
/* skip over the ppi_fieldheader, and pass it off to the dedicated FNET dissetor */
next_tvb = tvb_new_subset_length_caplen(tvb, offset + 4, data_len - 4 , -1);
call_dissector(ppi_fnet_handle, next_tvb, pinfo, ppi_tree);
}
break;
default:
proto_tree_add_item(ppi_tree, hf_ppi_reserved, tvb, offset, data_len, ENC_NA);
}
offset += data_len;
if (IS_PPI_FLAG_ALIGN(flags)){
offset += PADDING4(offset);
}
}
/*
* The Channel-Flags field is described as "Radiotap-formatted
* channel flags". The comment in the radiotap.org page about
* the suggested xchannel field says:
*
* As used, this field conflates channel properties (which
* need not be stored per packet but are more or less fixed)
* with packet properties (like the modulation).
*
* The radiotap channel field, in practice, seems to be used,
* in some cases, to indicate channel properties (from which
* the packet modulation cannot be inferred) and, in other
* cases, to indicate the packet's modulation.
*
* The same applies to the Channel-Flags field. There is a capture
* in which the Channel-Flags field indicates that the channel is
* an OFDM-only channel with a center frequency of 2422 MHz, and
* the data rate field indicates a 2 Mb/s rate, which means you can't
* rely on the CCK/OFDM/dynamic CCK/OFDM bits in the channel field
* to indicate anything.
*
* That makes the Channel-Flags field unusable either for determining
* the channel type or for determining the packet modulation,
* as it cannot be determined how it's being used.
*
* Fortunately, there are other ways to determine the packet
* modulation:
*
* if there's an FHSS flag, the packet was transmitted
* using the 802.11 legacy FHSS modulation;
*
* otherwise:
*
* if there's an 802.11n MAC Extension header or an 802.11n
* MAC+PHY Extension header, the packet was transmitted using
* one of the 11n HT PHY's specified modulations;
*
* otherwise:
*
* if the data rate is 1 Mb/s or 2 Mb/s, the packet was
* transmitted using the 802.11 legacy DSSS modulation
* (we ignore the IR PHY - was it ever implemented?);
*
* if the data rate is 5 Mb/s or 11 Mb/s, the packet
* was transmitted using the 802.11b DSSS/CCK modulation
* (or the now-obsolete DSSS/PBCC modulation; *if* we can
* rely on the channel/xchannel field's "CCK channel" and
* "Dynamic CCK-OFDM channel" flags, the absence of either
* flag would presumably indicate DSSS/PBCC);
*
* if the data rate is 22 Mb/s or 33 Mb/s, the packet was
* transmitted using the 802.11b DSSS/PBCC modulation (as
* those speeds aren't supported by DSSS/CCK);
*
* if the data rate is one of the OFDM rates for the 11a
* OFDM PHY and the OFDM part of the 11g ERP PHY, the
* packet was transmitted with the 11g/11a OFDM modulation.
*
* We've already handled the 11n headers, and may have attempted
* to use the Channel-Flags field to guess the modulation. That
* guess might get the wrong answer for 11g "Dynamic CCK-OFDM"
* channels.
*
* If we have the data rate, we use it to:
*
* fix up the 11g channels;
*
* determine the modulation if we haven't been able to
* determine it any other way.
*/
if (phdr.has_data_rate) {
if (phdr.phy == PHDR_802_11_PHY_UNKNOWN) {
/*
* We don't know they PHY, but we do have the
* data rate; try to guess it based on the
* data rate and channel/center frequency.
*/
if (RATE_IS_DSSS(phdr.data_rate)) {
/* 11b */
phdr.phy = PHDR_802_11_PHY_11B;
} else if (RATE_IS_OFDM(phdr.data_rate)) {
/* 11a or 11g, depending on the band. */
if (phdr.has_frequency) {
if (FREQ_IS_BG(phdr.frequency)) {
/* 11g */
phdr.phy = PHDR_802_11_PHY_11G;
} else {
/* 11a */
phdr.phy = PHDR_802_11_PHY_11A;
}
}
}
} else if (phdr.phy == PHDR_802_11_PHY_11G) {
if (RATE_IS_DSSS(phdr.data_rate)) {
/* DSSS, so 11b. */
phdr.phy = PHDR_802_11_PHY_11B;
}
}
}
/*
* There is no indication, for HR/DSSS (11b/11g), whether
* the packet had a long or short preamble.
*/
if (phdr.phy == PHDR_802_11_PHY_11B)
phdr.phy_info.info_11b.has_short_preamble = FALSE;
if (ppi_ampdu_reassemble && DOT11N_IS_AGGREGATE(n_ext_flags)) {
len_remain = tvb_captured_length_remaining(tvb, offset);
#if 0 /* XXX: pad_len never actually used ?? */
if (DOT11N_MORE_AGGREGATES(n_ext_flags)) {
pad_len = PADDING4(len_remain);
}
#endif
pinfo->fragmented = TRUE;
/* Make sure we aren't going to go past AGGREGATE_MAX
* and caclulate our full A-MPDU length */
fd_head = fragment_get(&ampdu_reassembly_table, pinfo, ampdu_id, NULL);
if (fd_head) {
for (ft_fdh = fd_head->next; ft_fdh; ft_fdh = ft_fdh->next) {
ampdu_len += ft_fdh->len + PADDING4(ft_fdh->len) + 4;
}
}
if (ampdu_len > AGGREGATE_MAX) {
proto_tree_add_expert_format(ppi_tree, pinfo, &ei_ppi_invalid_length, tvb, offset, -1, "Aggregate length greater than maximum (%u)", AGGREGATE_MAX);
return offset;
}
/*
* Note that we never actually reassemble our A-MPDUs. Doing
* so would require prepending each MPDU with an A-MPDU delimiter
* and appending it with padding, only to hand it off to some
* routine which would un-do the work we just did. We're using
* the reassembly code to track MPDU sizes and frame numbers.
*/
/*??fd_head = */fragment_add_seq_next(&ampdu_reassembly_table,
tvb, offset, pinfo, ampdu_id, NULL, len_remain, TRUE);
pinfo->fragmented = TRUE;
/* Do reassembly? */
fd_head = fragment_get(&ampdu_reassembly_table, pinfo, ampdu_id, NULL);
/* Show our fragments */
if (fd_head && tree) {
ft_fdh = fd_head->next;
/* List our fragments */
seg_tree = proto_tree_add_subtree_format(ppi_tree, tvb, offset, -1,
ett_ampdu_segments, &ti, "A-MPDU (%u bytes w/hdrs):", ampdu_len);
proto_item_set_generated(ti);
while (ft_fdh) {
if (ft_fdh->tvb_data && ft_fdh->len) {
last_frame = ft_fdh->frame;
if (!first_mpdu)
proto_item_append_text(ti, ",");
first_mpdu = FALSE;
proto_item_append_text(ti, " #%u(%u)",
ft_fdh->frame, ft_fdh->len);
proto_tree_add_uint_format(seg_tree, hf_ampdu_segment,
tvb, 0, 0, last_frame,
"Frame: %u (%u byte%s)",
last_frame,
ft_fdh->len,
plurality(ft_fdh->len, "", "s"));
}
ft_fdh = ft_fdh->next;
}
if (last_frame && last_frame != pinfo->num)
proto_tree_add_uint(seg_tree, hf_ampdu_reassembled_in,
tvb, 0, 0, last_frame);
}
if (fd_head && !DOT11N_MORE_AGGREGATES(n_ext_flags)) {
if (tree) {
ti = proto_tree_add_protocol_format(tree,
proto_get_id_by_filter_name("wlan_aggregate"),
tvb, 0, tot_len, "IEEE 802.11 Aggregate MPDU");
agg_tree = proto_item_add_subtree(ti, ett_ampdu);
}
for (ft_fdh = fd_head->next; ft_fdh; ft_fdh = ft_fdh->next) {
if (ft_fdh->tvb_data && ft_fdh->len) {
mpdu_count++;
mpdu_str = wmem_strdup_printf(pinfo->pool, "MPDU #%d", mpdu_count);
next_tvb = tvb_new_chain(tvb, ft_fdh->tvb_data);
add_new_data_source(pinfo, next_tvb, mpdu_str);
ampdu_tree = proto_tree_add_subtree(agg_tree, next_tvb, 0, -1, ett_ampdu_segment, NULL, mpdu_str);
call_dissector_with_data(ieee80211_radio_handle, next_tvb, pinfo, ampdu_tree, &phdr);
}
}
proto_tree_add_uint(seg_tree, hf_ampdu_count, tvb, 0, 0, mpdu_count);
pinfo->fragmented=FALSE;
} else {
next_tvb = tvb_new_subset_remaining(tvb, offset);
col_set_str(pinfo->cinfo, COL_PROTOCOL, "IEEE 802.11n");
col_set_str(pinfo->cinfo, COL_INFO, "Unreassembled A-MPDU data");
call_data_dissector(next_tvb, pinfo, tree);
}
return tvb_captured_length(tvb);
}
next_tvb = tvb_new_subset_remaining(tvb, offset);
/*
* Handle LINKTYPE_IEEE802_11, which is 105, specially; call the
* "802.11 with radio information" dissector, and pass it a pointer
* to the struct ieee_802_11_phdr we've constructed from the PPI data,
* so that it can display that information.
*
* Handle everything else with the pcap_pktdata dissector, letting
* it do whatever needs to be done about pseudo-headers.
*/
if (dlt == 105) {
/* LINKTYPE_IEEE802_11 */
call_dissector_with_data(ieee80211_radio_handle, next_tvb, pinfo, tree, &phdr);
} else {
/* Everything else. */
call_dissector_with_data(pcap_pktdata_handle, next_tvb, pinfo, tree, &dlt);
}
return tvb_captured_length(tvb);
}
/* Establish our beachead */
void
proto_register_ppi(void)
{
static hf_register_info hf[] = {
{ &hf_ppi_head_version,
{ "Version", "ppi.version",
FT_UINT8, BASE_DEC, NULL, 0x0,
"PPI header format version", HFILL } },
{ &hf_ppi_head_flags,
{ "Flags", "ppi.flags",
FT_UINT8, BASE_HEX, NULL, 0x0,
"PPI header flags", HFILL } },
{ &hf_ppi_head_flag_alignment,
{ "Alignment", "ppi.flags.alignment",
FT_BOOLEAN, 8, TFS(&tfs_ppi_head_flag_alignment), 0x01,
"PPI header flags - 32bit Alignment", HFILL } },
{ &hf_ppi_head_flag_reserved,
{ "Reserved", "ppi.flags.reserved",
FT_UINT8, BASE_HEX, NULL, 0xFE,
"PPI header flags - Reserved Flags", HFILL } },
{ &hf_ppi_head_len,
{ "Header length", "ppi.length",
FT_UINT16, BASE_DEC, NULL, 0x0,
"Length of header including payload", HFILL } },
{ &hf_ppi_head_dlt,
{ "DLT", "ppi.dlt",
FT_UINT32, BASE_DEC, NULL, 0x0, "libpcap Data Link Type (DLT) of the payload", HFILL } },
{ &hf_ppi_field_type,
{ "Field type", "ppi.field_type",
FT_UINT16, BASE_DEC, VALS(vs_ppi_field_type), 0x0, "PPI data field type", HFILL } },
{ &hf_ppi_field_len,
{ "Field length", "ppi.field_len",
FT_UINT16, BASE_DEC, NULL, 0x0, "PPI data field length", HFILL } },
{ &hf_80211_common_tsft,
{ "TSFT", "ppi.80211-common.tsft",
FT_UINT64, BASE_DEC, NULL, 0x0, "PPI 802.11-Common Timing Synchronization Function Timer (TSFT)", HFILL } },
{ &hf_80211_common_flags,
{ "Flags", "ppi.80211-common.flags",
FT_UINT16, BASE_HEX, NULL, 0x0, "PPI 802.11-Common Flags", HFILL } },
{ &hf_80211_common_flags_fcs,
{ "FCS present flag", "ppi.80211-common.flags.fcs",
FT_BOOLEAN, 16, TFS(&tfs_present_absent), DOT11_FLAG_HAVE_FCS, "PPI 802.11-Common Frame Check Sequence (FCS) Present Flag", HFILL } },
{ &hf_80211_common_flags_tsft,
{ "TSFT flag", "ppi.80211-common.flags.tsft",
FT_BOOLEAN, 16, TFS(&tfs_tsft_ms), DOT11_FLAG_TSF_TIMER_MS, "PPI 802.11-Common Timing Synchronization Function Timer (TSFT) msec/usec flag", HFILL } },
{ &hf_80211_common_flags_fcs_valid,
{ "FCS validity", "ppi.80211-common.flags.fcs-invalid",
FT_BOOLEAN, 16, TFS(&tfs_invalid_valid), DOT11_FLAG_FCS_INVALID, "PPI 802.11-Common Frame Check Sequence (FCS) Validity flag", HFILL } },
{ &hf_80211_common_flags_phy_err,
{ "PHY error flag", "ppi.80211-common.flags.phy-err",
FT_BOOLEAN, 16, TFS(&tfs_phy_error), DOT11_FLAG_PHY_ERROR, "PPI 802.11-Common Physical level (PHY) Error", HFILL } },
{ &hf_80211_common_rate,
{ "Data rate", "ppi.80211-common.rate",
FT_UINT16, BASE_DEC, NULL, 0x0, "PPI 802.11-Common Data Rate (x 500 Kbps)", HFILL } },
{ &hf_80211_common_chan_freq,
{ "Channel frequency", "ppi.80211-common.chan.freq",
FT_UINT16, BASE_DEC, NULL, 0x0,
"PPI 802.11-Common Channel Frequency", HFILL } },
{ &hf_80211_common_chan_flags,
{ "Channel flags", "ppi.80211-common.chan.flags",
FT_UINT16, BASE_HEX, NULL, 0x0, "PPI 802.11-Common Channel Flags", HFILL } },
{ &hf_80211_common_chan_flags_turbo,
{ "Turbo", "ppi.80211-common.chan.flags.turbo",
FT_BOOLEAN, 16, NULL, IEEE80211_CHAN_TURBO, "PPI 802.11-Common Channel Flags Turbo", HFILL } },
{ &hf_80211_common_chan_flags_cck,
{ "Complementary Code Keying (CCK)", "ppi.80211-common.chan.flags.cck",
FT_BOOLEAN, 16, NULL, IEEE80211_CHAN_CCK, "PPI 802.11-Common Channel Flags Complementary Code Keying (CCK) Modulation", HFILL } },
{ &hf_80211_common_chan_flags_ofdm,
{ "Orthogonal Frequency-Division Multiplexing (OFDM)", "ppi.80211-common.chan.flags.ofdm",
FT_BOOLEAN, 16, NULL, IEEE80211_CHAN_OFDM, "PPI 802.11-Common Channel Flags Orthogonal Frequency-Division Multiplexing (OFDM)", HFILL } },
{ &hf_80211_common_chan_flags_2ghz,
{ "2 GHz spectrum", "ppi.80211-common.chan.flags.2ghz",
FT_BOOLEAN, 16, NULL, IEEE80211_CHAN_2GHZ, "PPI 802.11-Common Channel Flags 2 GHz spectrum", HFILL } },
{ &hf_80211_common_chan_flags_5ghz,
{ "5 GHz spectrum", "ppi.80211-common.chan.flags.5ghz",
FT_BOOLEAN, 16, NULL, IEEE80211_CHAN_5GHZ, "PPI 802.11-Common Channel Flags 5 GHz spectrum", HFILL } },
{ &hf_80211_common_chan_flags_passive,
{ "Passive", "ppi.80211-common.chan.flags.passive",
FT_BOOLEAN, 16, NULL, IEEE80211_CHAN_PASSIVE, "PPI 802.11-Common Channel Flags Passive", HFILL } },
{ &hf_80211_common_chan_flags_dynamic,
{ "Dynamic CCK-OFDM", "ppi.80211-common.chan.flags.dynamic",
FT_BOOLEAN, 16, NULL, IEEE80211_CHAN_DYN, "PPI 802.11-Common Channel Flags Dynamic CCK-OFDM Channel", HFILL } },
{ &hf_80211_common_chan_flags_gfsk,
{ "Gaussian Frequency Shift Keying (GFSK)", "ppi.80211-common.chan.flags.gfsk",
FT_BOOLEAN, 16, NULL, IEEE80211_CHAN_GFSK, "PPI 802.11-Common Channel Flags Gaussian Frequency Shift Keying (GFSK) Modulation", HFILL } },
{ &hf_80211_common_fhss_hopset,
{ "FHSS hopset", "ppi.80211-common.fhss.hopset",
FT_UINT8, BASE_HEX, NULL, 0x0, "PPI 802.11-Common Frequency-Hopping Spread Spectrum (FHSS) Hopset", HFILL } },
{ &hf_80211_common_fhss_pattern,
{ "FHSS pattern", "ppi.80211-common.fhss.pattern",
FT_UINT8, BASE_HEX, NULL, 0x0, "PPI 802.11-Common Frequency-Hopping Spread Spectrum (FHSS) Pattern", HFILL } },
{ &hf_80211_common_dbm_antsignal,
{ "dBm antenna signal", "ppi.80211-common.dbm.antsignal",
FT_INT8, BASE_DEC, NULL, 0x0, "PPI 802.11-Common dBm Antenna Signal", HFILL } },
{ &hf_80211_common_dbm_antnoise,
{ "dBm antenna noise", "ppi.80211-common.dbm.antnoise",
FT_INT8, BASE_DEC, NULL, 0x0, "PPI 802.11-Common dBm Antenna Noise", HFILL } },
/* 802.11n MAC */
{ &hf_80211n_mac_flags,
{ "MAC flags", "ppi.80211n-mac.flags",
FT_UINT32, BASE_HEX, NULL, 0x0, "PPI 802.11n MAC flags", HFILL } },
{ &hf_80211n_mac_flags_greenfield,
{ "Greenfield flag", "ppi.80211n-mac.flags.greenfield",
FT_BOOLEAN, 32, TFS(&tfs_true_false), DOT11N_FLAG_GREENFIELD, "PPI 802.11n MAC Greenfield Flag", HFILL } },
{ &hf_80211n_mac_flags_ht20_40,
{ "HT20/HT40 flag", "ppi.80211n-mac.flags.ht20_40",
FT_BOOLEAN, 32, TFS(&tfs_ht20_40), DOT11N_FLAG_HT40, "PPI 802.11n MAC HT20/HT40 Flag", HFILL } },
{ &hf_80211n_mac_flags_rx_guard_interval,
{ "RX Short Guard Interval (SGI) flag", "ppi.80211n-mac.flags.rx.short_guard_interval",
FT_BOOLEAN, 32, TFS(&tfs_true_false), DOT11N_FLAG_SHORT_GI, "PPI 802.11n MAC RX Short Guard Interval (SGI) Flag", HFILL } },
{ &hf_80211n_mac_flags_duplicate_rx,
{ "Duplicate RX flag", "ppi.80211n-mac.flags.rx.duplicate",
FT_BOOLEAN, 32, TFS(&tfs_true_false), DOT11N_FLAG_DUPLICATE_RX, "PPI 802.11n MAC Duplicate RX Flag", HFILL } },
{ &hf_80211n_mac_flags_aggregate,
{ "Aggregate flag", "ppi.80211n-mac.flags.agg",
FT_BOOLEAN, 32, TFS(&tfs_true_false), DOT11N_FLAG_IS_AGGREGATE, "PPI 802.11 MAC Aggregate Flag", HFILL } },
{ &hf_80211n_mac_flags_more_aggregates,
{ "More aggregates flag", "ppi.80211n-mac.flags.more_agg",
FT_BOOLEAN, 32, TFS(&tfs_true_false), DOT11N_FLAG_MORE_AGGREGATES, "PPI 802.11n MAC More Aggregates Flag", HFILL } },
{ &hf_80211n_mac_flags_delimiter_crc_after,
{ "A-MPDU Delimiter CRC error after this frame flag", "ppi.80211n-mac.flags.delim_crc_error_after",
FT_BOOLEAN, 32, TFS(&tfs_true_false), DOT11N_FLAG_AGG_CRC_ERROR, "PPI 802.11n MAC A-MPDU Delimiter CRC Error After This Frame Flag", HFILL } },
{ &hf_80211n_mac_ampdu_id,
{ "AMPDU-ID", "ppi.80211n-mac.ampdu_id",
FT_UINT32, BASE_HEX, NULL, 0x0, "PPI 802.11n MAC AMPDU-ID", HFILL } },
{ &hf_80211n_mac_num_delimiters,
{ "Num-Delimiters", "ppi.80211n-mac.num_delimiters",
FT_UINT8, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC number of zero-length pad delimiters", HFILL } },
{ &hf_80211n_mac_reserved,
{ "Reserved", "ppi.80211n-mac.reserved",
FT_UINT24, BASE_HEX, NULL, 0x0, "PPI 802.11n MAC Reserved", HFILL } },
/* 802.11n MAC+PHY */
{ &hf_80211n_mac_phy_mcs,
{ "MCS", "ppi.80211n-mac-phy.mcs",
FT_UINT8, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY Modulation Coding Scheme (MCS)", HFILL } },
{ &hf_80211n_mac_phy_num_streams,
{ "Number of spatial streams", "ppi.80211n-mac-phy.num_streams",
FT_UINT8, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY number of spatial streams", HFILL } },
{ &hf_80211n_mac_phy_rssi_combined,
{ "RSSI combined", "ppi.80211n-mac-phy.rssi.combined",
FT_UINT8, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY Received Signal Strength Indication (RSSI) Combined", HFILL } },
{ &hf_80211n_mac_phy_rssi_ant0_ctl,
{ "Antenna 0 control RSSI", "ppi.80211n-mac-phy.rssi.ant0ctl",
FT_UINT8, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY Antenna 0 Control Channel Received Signal Strength Indication (RSSI)", HFILL } },
{ &hf_80211n_mac_phy_rssi_ant1_ctl,
{ "Antenna 1 control RSSI", "ppi.80211n-mac-phy.rssi.ant1ctl",
FT_UINT8, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY Antenna 1 Control Channel Received Signal Strength Indication (RSSI)", HFILL } },
{ &hf_80211n_mac_phy_rssi_ant2_ctl,
{ "Antenna 2 control RSSI", "ppi.80211n-mac-phy.rssi.ant2ctl",
FT_UINT8, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY Antenna 2 Control Channel Received Signal Strength Indication (RSSI)", HFILL } },
{ &hf_80211n_mac_phy_rssi_ant3_ctl,
{ "Antenna 3 control RSSI", "ppi.80211n-mac-phy.rssi.ant3ctl",
FT_UINT8, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY Antenna 3 Control Channel Received Signal Strength Indication (RSSI)", HFILL } },
{ &hf_80211n_mac_phy_rssi_ant0_ext,
{ "Antenna 0 extension RSSI", "ppi.80211n-mac-phy.rssi.ant0ext",
FT_UINT8, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY Antenna 0 Extension Channel Received Signal Strength Indication (RSSI)", HFILL } },
{ &hf_80211n_mac_phy_rssi_ant1_ext,
{ "Antenna 1 extension RSSI", "ppi.80211n-mac-phy.rssi.ant1ext",
FT_UINT8, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY Antenna 1 Extension Channel Received Signal Strength Indication (RSSI)", HFILL } },
{ &hf_80211n_mac_phy_rssi_ant2_ext,
{ "Antenna 2 extension RSSI", "ppi.80211n-mac-phy.rssi.ant2ext",
FT_UINT8, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY Antenna 2 Extension Channel Received Signal Strength Indication (RSSI)", HFILL } },
{ &hf_80211n_mac_phy_rssi_ant3_ext,
{ "Antenna 3 extension RSSI", "ppi.80211n-mac-phy.rssi.ant3ext",
FT_UINT8, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY Antenna 3 Extension Channel Received Signal Strength Indication (RSSI)", HFILL } },
{ &hf_80211n_mac_phy_ext_chan_freq,
{ "Extended channel frequency", "ppi.80211-mac-phy.ext-chan.freq",
FT_UINT16, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY Extended Channel Frequency", HFILL } },
{ &hf_80211n_mac_phy_ext_chan_flags,
{ "Channel flags", "ppi.80211-mac-phy.ext-chan.flags",
FT_UINT16, BASE_HEX, NULL, 0x0, "PPI 802.11n MAC+PHY Channel Flags", HFILL } },
{ &hf_80211n_mac_phy_ext_chan_flags_turbo,
{ "Turbo", "ppi.80211-mac-phy.ext-chan.flags.turbo",
FT_BOOLEAN, 16, NULL, 0x0010, "PPI 802.11n MAC+PHY Channel Flags Turbo", HFILL } },
{ &hf_80211n_mac_phy_ext_chan_flags_cck,
{ "Complementary Code Keying (CCK)", "ppi.80211-mac-phy.ext-chan.flags.cck",
FT_BOOLEAN, 16, NULL, 0x0020, "PPI 802.11n MAC+PHY Channel Flags Complementary Code Keying (CCK) Modulation", HFILL } },
{ &hf_80211n_mac_phy_ext_chan_flags_ofdm,
{ "Orthogonal Frequency-Division Multiplexing (OFDM)", "ppi.80211-mac-phy.ext-chan.flags.ofdm",
FT_BOOLEAN, 16, NULL, 0x0040, "PPI 802.11n MAC+PHY Channel Flags Orthogonal Frequency-Division Multiplexing (OFDM)", HFILL } },
{ &hf_80211n_mac_phy_ext_chan_flags_2ghz,
{ "2 GHz spectrum", "ppi.80211-mac-phy.ext-chan.flags.2ghz",
FT_BOOLEAN, 16, NULL, 0x0080, "PPI 802.11n MAC+PHY Channel Flags 2 GHz spectrum", HFILL } },
{ &hf_80211n_mac_phy_ext_chan_flags_5ghz,
{ "5 GHz spectrum", "ppi.80211-mac-phy.ext-chan.flags.5ghz",
FT_BOOLEAN, 16, NULL, 0x0100, "PPI 802.11n MAC+PHY Channel Flags 5 GHz spectrum", HFILL } },
{ &hf_80211n_mac_phy_ext_chan_flags_passive,
{ "Passive", "ppi.80211-mac-phy.ext-chan.flags.passive",
FT_BOOLEAN, 16, NULL, 0x0200, "PPI 802.11n MAC+PHY Channel Flags Passive", HFILL } },
{ &hf_80211n_mac_phy_ext_chan_flags_dynamic,
{ "Dynamic CCK-OFDM", "ppi.80211-mac-phy.ext-chan.flags.dynamic",
FT_BOOLEAN, 16, NULL, 0x0400, "PPI 802.11n MAC+PHY Channel Flags Dynamic CCK-OFDM Channel", HFILL } },
{ &hf_80211n_mac_phy_ext_chan_flags_gfsk,
{ "Gaussian Frequency Shift Keying (GFSK)", "ppi.80211-mac-phy.ext-chan.flags.gfsk",
FT_BOOLEAN, 16, NULL, 0x0800, "PPI 802.11n MAC+PHY Channel Flags Gaussian Frequency Shift Keying (GFSK) Modulation", HFILL } },
{ &hf_80211n_mac_phy_dbm_ant0signal,
{ "dBm antenna 0 signal", "ppi.80211n-mac-phy.dbmant0.signal",
FT_INT8, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY dBm Antenna 0 Signal", HFILL } },
{ &hf_80211n_mac_phy_dbm_ant0noise,
{ "dBm antenna 0 noise", "ppi.80211n-mac-phy.dbmant0.noise",
FT_INT8, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY dBm Antenna 0 Noise", HFILL } },
{ &hf_80211n_mac_phy_dbm_ant1signal,
{ "dBm antenna 1 signal", "ppi.80211n-mac-phy.dbmant1.signal",
FT_INT8, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY dBm Antenna 1 Signal", HFILL } },
{ &hf_80211n_mac_phy_dbm_ant1noise,
{ "dBm antenna 1 noise", "ppi.80211n-mac-phy.dbmant1.noise",
FT_INT8, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY dBm Antenna 1 Noise", HFILL } },
{ &hf_80211n_mac_phy_dbm_ant2signal,
{ "dBm antenna 2 signal", "ppi.80211n-mac-phy.dbmant2.signal",
FT_INT8, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY dBm Antenna 2 Signal", HFILL } },
{ &hf_80211n_mac_phy_dbm_ant2noise,
{ "dBm antenna 2 noise", "ppi.80211n-mac-phy.dbmant2.noise",
FT_INT8, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY dBm Antenna 2 Noise", HFILL } },
{ &hf_80211n_mac_phy_dbm_ant3signal,
{ "dBm antenna 3 signal", "ppi.80211n-mac-phy.dbmant3.signal",
FT_INT8, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY dBm Antenna 3 Signal", HFILL } },
{ &hf_80211n_mac_phy_dbm_ant3noise,
{ "dBm antenna 3 noise", "ppi.80211n-mac-phy.dbmant3.noise",
FT_INT8, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY dBm Antenna 3 Noise", HFILL } },
{ &hf_80211n_mac_phy_evm0,
{ "EVM-0", "ppi.80211n-mac-phy.evm0",
FT_UINT32, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY Error Vector Magnitude (EVM) for chain 0", HFILL } },
{ &hf_80211n_mac_phy_evm1,
{ "EVM-1", "ppi.80211n-mac-phy.evm1",
FT_UINT32, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY Error Vector Magnitude (EVM) for chain 1", HFILL } },
{ &hf_80211n_mac_phy_evm2,
{ "EVM-2", "ppi.80211n-mac-phy.evm2",
FT_UINT32, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY Error Vector Magnitude (EVM) for chain 2", HFILL } },
{ &hf_80211n_mac_phy_evm3,
{ "EVM-3", "ppi.80211n-mac-phy.evm3",
FT_UINT32, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY Error Vector Magnitude (EVM) for chain 3", HFILL } },
{ &hf_ampdu_segment,
{ "A-MPDU", "ppi.80211n-mac.ampdu",
FT_FRAMENUM, BASE_NONE, NULL, 0x0, "802.11n Aggregated MAC Protocol Data Unit (A-MPDU)", HFILL }},
#if 0
{ &hf_ampdu_segments,
{ "Reassembled A-MPDU", "ppi.80211n-mac.ampdu.reassembled",
FT_NONE, BASE_NONE, NULL, 0x0, "Reassembled Aggregated MAC Protocol Data Unit (A-MPDU)", HFILL }},
#endif
{ &hf_ampdu_reassembled_in,
{ "Reassembled A-MPDU in frame", "ppi.80211n-mac.ampdu.reassembled_in",
FT_FRAMENUM, BASE_NONE, NULL, 0x0,
"The A-MPDU that doesn't end in this segment is reassembled in this frame",
HFILL }},
{ &hf_ampdu_count,
{ "MPDU count", "ppi.80211n-mac.ampdu.count",
FT_UINT16, BASE_DEC, NULL, 0x0, "The number of aggregated MAC Protocol Data Units (MPDUs)", HFILL }},
{ &hf_spectrum_map,
{ "Radio spectrum map", "ppi.spectrum-map",
FT_BYTES, BASE_NONE, NULL, 0x0, "PPI Radio spectrum map", HFILL } },
{ &hf_process_info,
{ "Process information", "ppi.proc-info",
FT_BYTES, BASE_NONE, NULL, 0x0, "PPI Process information", HFILL } },
{ &hf_capture_info,
{ "Capture information", "ppi.cap-info",
FT_BYTES, BASE_NONE, NULL, 0x0, "PPI Capture information", HFILL } },
/* Aggregtion Extension */
{ &hf_aggregation_extension_interface_id,
{ "Interface ID", "ppi.aggregation_extension.interface_id",
FT_UINT32, BASE_DEC, NULL, 0x0, "Zero-based index of the physical interface the packet was captured from", HFILL } },
/* 802.3 Extension */
{ &hf_8023_extension_flags,
{ "Flags", "ppi.8023_extension.flags",
FT_UINT32, BASE_HEX, NULL, 0x0, "PPI 802.3 Extension Flags", HFILL } },
{ &hf_8023_extension_flags_fcs_present,
{ "FCS Present Flag", "ppi.8023_extension.flags.fcs_present",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000001, "FCS (4 bytes) is present at the end of the packet", HFILL } },
{ &hf_8023_extension_errors,
{ "Errors", "ppi.8023_extension.errors",
FT_UINT32, BASE_HEX, NULL, 0x0, "PPI 802.3 Extension Errors", HFILL } },
{ &hf_8023_extension_errors_fcs,
{ "FCS Error", "ppi.8023_extension.errors.fcs",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000001,
"PPI 802.3 Extension FCS Error", HFILL } },
{ &hf_8023_extension_errors_sequence,
{ "Sequence Error", "ppi.8023_extension.errors.sequence",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000002,
"PPI 802.3 Extension Sequence Error", HFILL } },
{ &hf_8023_extension_errors_symbol,
{ "Symbol Error", "ppi.8023_extension.errors.symbol",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000004,
"PPI 802.3 Extension Symbol Error", HFILL } },
{ &hf_8023_extension_errors_data,
{ "Data Error", "ppi.8023_extension.errors.data",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000008,
"PPI 802.3 Extension Data Error", HFILL } },
/* Generated from convert_proto_tree_add_text.pl */
{ &hf_ppi_gps, { "GPS", "ppi.gps", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_ppi_vector, { "VECTOR", "ppi.vector", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_ppi_harris, { "HARRIS", "ppi.harris", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_ppi_antenna, { "ANTENNA", "ppi.antenna", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_ppi_fnet, { "FNET", "ppi.fnet", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_ppi_reserved, { "Reserved", "ppi.reserved", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
};
static gint *ett[] = {
&ett_ppi_pph,
&ett_ppi_flags,
&ett_dot11_common,
&ett_dot11_common_flags,
&ett_dot11_common_channel_flags,
&ett_dot11n_mac,
&ett_dot11n_mac_flags,
&ett_dot11n_mac_phy,
&ett_dot11n_mac_phy_ext_channel_flags,
&ett_ampdu_segments,
&ett_ampdu,
&ett_ampdu_segment,
&ett_aggregation_extension,
&ett_8023_extension,
&ett_8023_extension_flags,
&ett_8023_extension_errors
};
static ei_register_info ei[] = {
{ &ei_ppi_invalid_length, { "ppi.invalid_length", PI_MALFORMED, PI_ERROR, "Invalid length", EXPFILL }},
};
module_t *ppi_module;
expert_module_t* expert_ppi;
proto_ppi = proto_register_protocol("PPI Packet Header", "PPI", "ppi");
proto_register_field_array(proto_ppi, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));
expert_ppi = expert_register_protocol(proto_ppi);
expert_register_field_array(expert_ppi, ei, array_length(ei));
ppi_handle = register_dissector("ppi", dissect_ppi, proto_ppi);
register_capture_dissector_table("ppi", "PPI");
reassembly_table_register(&ampdu_reassembly_table,
&addresses_reassembly_table_functions);
/* Configuration options */
ppi_module = prefs_register_protocol(proto_ppi, NULL);
prefs_register_bool_preference(ppi_module, "reassemble",
"Reassemble fragmented 802.11 A-MPDUs",
"Whether fragmented 802.11 aggregated MPDUs should be reassembled",
&ppi_ampdu_reassemble);
}
void
proto_reg_handoff_ppi(void)
{
capture_dissector_handle_t ppi_cap_handle;
ieee80211_radio_handle = find_dissector_add_dependency("wlan_radio", proto_ppi);
pcap_pktdata_handle = find_dissector_add_dependency("pcap_pktdata", proto_ppi);
ppi_gps_handle = find_dissector_add_dependency("ppi_gps", proto_ppi);
ppi_vector_handle = find_dissector_add_dependency("ppi_vector", proto_ppi);
ppi_sensor_handle = find_dissector_add_dependency("ppi_sensor", proto_ppi);
ppi_antenna_handle = find_dissector_add_dependency("ppi_antenna", proto_ppi);
ppi_fnet_handle = find_dissector_add_dependency("ppi_fnet", proto_ppi);
dissector_add_uint("wtap_encap", WTAP_ENCAP_PPI, ppi_handle);
ppi_cap_handle = create_capture_dissector_handle(capture_ppi, proto_ppi);
capture_dissector_add_uint("wtap_encap", WTAP_ENCAP_PPI, ppi_cap_handle);
}
/*
* Editor modelines
*
* Local Variables:
* c-basic-offset: 4
* tab-width: 8
* indent-tabs-mode: nil
* End:
*
* ex: set shiftwidth=4 tabstop=8 expandtab:
* :indentSize=4:tabSize=8:noTabs=true:
*/