wireshark/epan/dissectors/packet-zbee-security.c
Michael Mann 9b7fb8a811 Create the ability to have packet scoped "proto" data. Bug 9470 (https://bugs.wireshark.org/bugzilla/show_bug.cgi?id=9470)
I'm not sold on the name or module the proto_data functions live in, but I believe the function arguments are solid and gives us the most flexibility for the future.  And search/replace of a function name is easy enough to do.

The big driving force for getting this in sooner rather than later is the saved memory on ethernet packets (and IP packets soon), that used to have file_scope() proto data when all it needed was packet_scope() data (technically packet_info->pool scoped), strictly for Decode As.

All dissectors that use p_add_proto_data() only for Decode As functionality have been converted to using packet_scope().  All other dissectors were converted to using file_scope() which was the original scope for "proto" data.

svn path=/trunk/; revision=53520
2013-11-23 02:20:13 +00:00

1255 lines
48 KiB
C

/* packet-zbee-security.c
* Dissector helper routines for encrypted ZigBee frames.
* By Owen Kirby <osk@exegin.com>; portions by Fred Fierling <fff@exegin.com>
* Copyright 2009 Exegin Technologies Limited
*
* $Id$
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
/* Include Files */
#include "config.h"
#include <string.h>
#include <epan/packet.h>
#include <epan/exceptions.h>
#include <epan/prefs.h>
#include <epan/expert.h>
#include <epan/emem.h>
#include <epan/uat.h>
/* We require libgcrpyt in order to decrypt ZigBee packets. Without it the best
* we can do is parse the security header and give up.
*/
#ifdef HAVE_LIBGCRYPT
#include <wsutil/wsgcrypt.h>
#endif /* HAVE_LIBGCRYPT */
#include "packet-ieee802154.h"
#include "packet-zbee.h"
#include "packet-zbee-nwk.h"
#include "packet-zbee-security.h"
/* Helper Functions */
#ifdef HAVE_LIBGCRYPT
static gboolean zbee_sec_ccm_decrypt(const gchar *, const gchar *, const gchar *, const gchar *, gchar *,
guint, guint, guint);
static guint8 * zbee_sec_key_hash(guint8 *, guint8, guint8 *);
static void zbee_sec_make_nonce (zbee_security_packet *, guint8 *);
static gboolean zbee_sec_decrypt_payload(zbee_security_packet *, const gchar *, const gchar, guint8 *,
guint, guint, guint8 *);
#endif
static gboolean zbee_security_parse_key(const gchar *, guint8 *, gboolean);
static void proto_init_zbee_security(void);
/* Field pointers. */
static int hf_zbee_sec_key_id = -1;
static int hf_zbee_sec_nonce = -1;
static int hf_zbee_sec_counter = -1;
static int hf_zbee_sec_src64 = -1;
static int hf_zbee_sec_key_seqno = -1;
static int hf_zbee_sec_mic = -1;
static int hf_zbee_sec_key_origin = -1;
/* Subtree pointers. */
static gint ett_zbee_sec = -1;
static gint ett_zbee_sec_control = -1;
static expert_field ei_zbee_sec_encrypted_payload = EI_INIT;
static dissector_handle_t data_handle;
static const value_string zbee_sec_key_names[] = {
{ ZBEE_SEC_KEY_LINK, "Link Key" },
{ ZBEE_SEC_KEY_NWK, "Network Key" },
{ ZBEE_SEC_KEY_TRANSPORT, "Key-Transport Key" },
{ ZBEE_SEC_KEY_LOAD, "Key-Load Key" },
{ 0, NULL }
};
#if 0
/* These aren't really used anymore, as ZigBee no longer includes them in the
* security control field. If we were to display them all we would ever see is
* security level 0.
*/
static const value_string zbee_sec_level_names[] = {
{ ZBEE_SEC_NONE, "None" },
{ ZBEE_SEC_MIC32, "No Encryption, 32-bit MIC" },
{ ZBEE_SEC_MIC64, "No Encryption, 64-bit MIC" },
{ ZBEE_SEC_MIC128, "No Encryption, 128-bit MIC" },
{ ZBEE_SEC_ENC, "Encryption, No MIC" },
{ ZBEE_SEC_ENC_MIC32, "Encryption, 32-bit MIC" },
{ ZBEE_SEC_ENC_MIC64, "Encryption, 64-bit MIC" },
{ ZBEE_SEC_ENC_MIC128, "Encryption, 128-bit MIC" },
{ 0, NULL }
};
#endif
/* The ZigBee security level, in enum_val_t for the security preferences. */
static const enum_val_t zbee_sec_level_enums[] = {
{ "None", "No Security", ZBEE_SEC_NONE },
{ "MIC32", "No Encryption, 32-bit Integrity Protection", ZBEE_SEC_MIC32 },
{ "MIC64", "No Encryption, 64-bit Integrity Protection", ZBEE_SEC_MIC64 },
{ "MIC128", "No Encryption, 128-bit Integrity Protection", ZBEE_SEC_MIC128 },
{ "ENC", "AES-128 Encryption, No Integrity Protection", ZBEE_SEC_ENC },
{ "ENC-MIC32", "AES-128 Encryption, 32-bit Integrity Protection", ZBEE_SEC_ENC_MIC32 },
{ "ENC-MIC64", "AES-128 Encryption, 64-bit Integrity Protection", ZBEE_SEC_ENC_MIC64 },
{ "ENC-MIC128", "AES-128 Encryption, 128-bit Integrity Protection", ZBEE_SEC_ENC_MIC128 },
{ NULL, NULL, 0 }
};
static gint gPREF_zbee_sec_level = ZBEE_SEC_ENC_MIC32;
static uat_t *zbee_sec_key_table_uat;
static const value_string byte_order_vals[] = {
{ 0, "Normal"},
{ 1, "Reverse"},
{ 0, NULL }
};
/* UAT Key Entry */
typedef struct _uat_key_record_t {
gchar *string;
guint8 byte_order;
gchar *label;
guint8 key[ZBEE_SEC_CONST_KEYSIZE];
} uat_key_record_t;
/* */
static uat_key_record_t *uat_key_records = NULL;
static guint num_uat_key_records = 0;
static void* uat_key_record_copy_cb(void* n, const void* o, size_t siz _U_) {
uat_key_record_t* new_key = (uat_key_record_t *)n;
const uat_key_record_t* old_key = (uat_key_record_t *)o;
if (old_key->string) {
new_key->string = g_strdup(old_key->string);
} else {
new_key->string = NULL;
}
if (old_key->label) {
new_key->label = g_strdup(old_key->label);
} else {
new_key->label = NULL;
}
return new_key;
}
static void uat_key_record_update_cb(void* r, const char** err) {
uat_key_record_t* rec = (uat_key_record_t *)r;
if (rec->string == NULL) {
*err = g_strdup("Key can't be blank");
} else {
g_strstrip(rec->string);
if (rec->string[0] != 0) {
*err = NULL;
if ( !zbee_security_parse_key(rec->string, rec->key, rec->byte_order) ) {
*err = g_strdup_printf("Expecting %d hexadecimal bytes or\n"
"a %d character double-quoted string", ZBEE_SEC_CONST_KEYSIZE, ZBEE_SEC_CONST_KEYSIZE);
}
} else {
*err = g_strdup("Key can't be blank");
}
}
}
static void uat_key_record_free_cb(void*r) {
uat_key_record_t* key = (uat_key_record_t *)r;
if (key->string) g_free(key->string);
if (key->label) g_free(key->label);
}
UAT_CSTRING_CB_DEF(uat_key_records, string, uat_key_record_t)
UAT_VS_DEF(uat_key_records, byte_order, uat_key_record_t, guint8, 0, "Normal")
UAT_CSTRING_CB_DEF(uat_key_records, label, uat_key_record_t)
static GSList *zbee_pc_keyring = NULL;
/*
* Enable this macro to use libgcrypt's CBC_MAC mode for the authentication
* phase. Unfortunately, this is broken, and I don't know why. However, using
* the messier EBC mode (to emulate CCM*) still works fine.
*/
#if 0
#define ZBEE_SEC_USE_GCRYPT_CBC_MAC
#endif
/*FUNCTION:------------------------------------------------------
* NAME
* zbee_security_register
* DESCRIPTION
* Called by proto_register_zbee_nwk() to initialize the security
* dissectors.
* PARAMETERS
* module_t zbee_prefs - Prefs module to load preferences under.
* RETURNS
* none
*---------------------------------------------------------------
*/
void zbee_security_register(module_t *zbee_prefs, int proto)
{
static hf_register_info hf[] = {
{ &hf_zbee_sec_key_id,
{ "Key Id", "zbee.sec.key", FT_UINT8, BASE_HEX, VALS(zbee_sec_key_names),
ZBEE_SEC_CONTROL_KEY, NULL, HFILL }},
{ &hf_zbee_sec_nonce,
{ "Extended Nonce", "zbee.sec.ext_nonce", FT_BOOLEAN, 8, NULL, ZBEE_SEC_CONTROL_NONCE,
NULL, HFILL }},
{ &hf_zbee_sec_counter,
{ "Frame Counter", "zbee.sec.counter", FT_UINT32, BASE_DEC, NULL, 0x0,
NULL, HFILL }},
{ &hf_zbee_sec_src64,
{ "Extended Source", "zbee.sec.src64", FT_EUI64, BASE_NONE, NULL, 0x0,
NULL, HFILL }},
{ &hf_zbee_sec_key_seqno,
{ "Key Sequence Number", "zbee.sec.key_seqno", FT_UINT8, BASE_DEC, NULL, 0x0,
NULL, HFILL }},
{ &hf_zbee_sec_mic,
{ "Message Integrity Code", "zbee.sec.mic", FT_BYTES, BASE_NONE, NULL, 0x0,
NULL, HFILL }},
{ &hf_zbee_sec_key_origin,
{ "Key Origin", "zbee.sec.key.origin", FT_FRAMENUM, BASE_NONE, NULL, 0x0,
NULL, HFILL }}
};
static gint *ett[] = {
&ett_zbee_sec,
&ett_zbee_sec_control
};
static ei_register_info ei[] = {
{ &ei_zbee_sec_encrypted_payload, { "zbee_sec.encrypted_payload", PI_UNDECODED, PI_WARN, "Encrypted Payload", EXPFILL }},
};
expert_module_t* expert_zbee_sec;
static uat_field_t key_uat_fields[] = {
UAT_FLD_CSTRING(uat_key_records, string, "Key",
"A 16-byte key in hexadecimal with optional dash-,\n"
"colon-, or space-separator characters, or a\n"
"a 16-character string in double-quotes."),
UAT_FLD_VS(uat_key_records, byte_order, "Byte Order", byte_order_vals,
"Byte order of key."),
UAT_FLD_LSTRING(uat_key_records, label, "Label", "User label for key."),
UAT_END_FIELDS
};
/* If no prefs module was supplied, register our own. */
if (zbee_prefs == NULL) {
zbee_prefs = prefs_register_protocol(proto, NULL);
}
/* Register preferences */
prefs_register_enum_preference(zbee_prefs, "seclevel", "Security Level",
"Specifies the security level to use in the\n"
"decryption process. This value is ignored\n"
"for ZigBee 2004 and unsecured networks.",
&gPREF_zbee_sec_level, zbee_sec_level_enums, FALSE);
zbee_sec_key_table_uat = uat_new("Pre-configured Keys",
sizeof(uat_key_record_t),
"zigbee_pc_keys",
TRUE,
(void**) &uat_key_records,
&num_uat_key_records,
UAT_AFFECTS_DISSECTION, /* affects dissection of packets, but not set of named fields */
NULL, /* TODO: ptr to help manual? */
uat_key_record_copy_cb,
uat_key_record_update_cb,
uat_key_record_free_cb,
NULL, /* TODO: post_update */
key_uat_fields );
prefs_register_uat_preference(zbee_prefs,
"key_table",
"Pre-configured Keys",
"Pre-configured link or network keys.",
zbee_sec_key_table_uat);
proto_register_field_array(proto, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));
expert_zbee_sec = expert_register_protocol(proto);
expert_register_field_array(expert_zbee_sec, ei, array_length(ei));
/* Register the init routine. */
register_init_routine(proto_init_zbee_security);
} /* zbee_security_register */
/*FUNCTION:------------------------------------------------------
* NAME
* zbee_security_parse_key
* DESCRIPTION
* Parses a key string from left to right into a buffer with
* increasing (normal byte order) or decreasing (reverse byte
* order) address.
* PARAMETERS
* const gchar *key_str - pointer to the string
* guint8 *key_buf - destination buffer in memory
* gboolean big_end - fill key_buf with incrementing address
* RETURNS
* gboolean
*---------------------------------------------------------------
*/
static gboolean
zbee_security_parse_key(const gchar *key_str, guint8 *key_buf, gboolean byte_order)
{
int i, j;
gchar temp;
gboolean string_mode = FALSE;
/* Clear the key. */
memset(key_buf, 0, ZBEE_SEC_CONST_KEYSIZE);
if (key_str == NULL) {
return FALSE;
}
/*
* Attempt to parse the key string. The key string must
* be at least 16 pairs of hexidecimal digits with the
* following optional separators: ':', '-', " ", or 16
* alphanumeric characters after a double-quote.
*/
if ( (temp = *key_str++) == '"') {
string_mode = TRUE;
temp = *key_str++;
}
j = byte_order?ZBEE_SEC_CONST_KEYSIZE-1:0;
for (i=ZBEE_SEC_CONST_KEYSIZE-1; i>=0; i--) {
if ( string_mode ) {
if ( g_ascii_isprint(temp) ) {
key_buf[j] = temp;
temp = *key_str++;
} else {
return FALSE;
}
}
else {
/* If this character is a separator, skip it. */
if ( (temp == ':') || (temp == '-') || (temp == ' ') ) temp = *(key_str++);
/* Process a nibble. */
if ( g_ascii_isxdigit (temp) ) key_buf[j] = g_ascii_xdigit_value(temp)<<4;
else return FALSE;
/* Get the next nibble. */
temp = *(key_str++);
/* Process another nibble. */
if ( g_ascii_isxdigit (temp) ) key_buf[j] |= g_ascii_xdigit_value(temp);
else return FALSE;
/* Get the next nibble. */
temp = *(key_str++);
}
/* Move key_buf pointer */
if ( byte_order ) {
j--;
} else {
j++;
}
} /* for */
/* If we get this far, then the key was good. */
return TRUE;
} /* zbee_security_parse_key */
/*FUNCTION:------------------------------------------------------
* NAME
* zbee_security_handoff
* DESCRIPTION
* Hands off the security dissector.
* PARAMETERS
* none
* RETURNS
* tvbuff_t *
*---------------------------------------------------------------
*/
void
zbee_security_handoff(void)
{
/* Lookup the data dissector. */
data_handle = find_dissector("data");
} /* zbee_security_handoff */
/*FUNCTION:------------------------------------------------------
* NAME
* dissect_zbee_secure
* DESCRIPTION
* Dissects and decrypts secured ZigBee frames.
*
* Will return a valid tvbuff only if security processing was
* successful. If processing fails, then this function will
* handle internally and return NULL.
* PARAMETERS
* tvbuff_t *tvb - pointer to buffer containing raw packet.
* packet_info *pinfo - pointer to packet information fields
* proto_tree *tree - pointer to data tree Wireshark uses to display packet.
* guint offset - pointer to the start of the auxilliary security header.
* guint64 src64 - extended source address, or 0 if unknown.
* RETURNS
* tvbuff_t *
*---------------------------------------------------------------
*/
tvbuff_t *
dissect_zbee_secure(tvbuff_t *tvb, packet_info *pinfo, proto_tree* tree, guint offset)
{
proto_tree *sec_tree = NULL;
proto_item *sec_root;
proto_tree *field_tree;
proto_item *ti;
zbee_security_packet packet;
guint mic_len;
gint payload_len;
tvbuff_t *payload_tvb;
#ifdef HAVE_LIBGCRYPT
guint8 *enc_buffer;
guint8 *dec_buffer;
gboolean decrypted;
GSList **nwk_keyring;
GSList *GSList_i;
key_record_t *key_rec = NULL;
#endif
zbee_nwk_hints_t *nwk_hints;
ieee802154_hints_t *ieee_hints;
ieee802154_map_rec *map_rec = NULL;
/* Init */
memset(&packet, 0, sizeof(zbee_security_packet));
/* Get pointers to any useful frame data from lower layers */
nwk_hints = (zbee_nwk_hints_t *)p_get_proto_data(wmem_file_scope(), pinfo,
proto_get_id_by_filter_name(ZBEE_PROTOABBREV_NWK), 0);
ieee_hints = (ieee802154_hints_t *)p_get_proto_data(wmem_file_scope(), pinfo,
proto_get_id_by_filter_name(IEEE802154_PROTOABBREV_WPAN), 0);
/* Create a subtree for the security information. */
if (tree) {
sec_root = proto_tree_add_text(tree, tvb, offset, tvb_length_remaining(tvb, offset), "ZigBee Security Header");
sec_tree = proto_item_add_subtree(sec_root, ett_zbee_sec);
}
/* Get and display the Security control field */
packet.control = tvb_get_guint8(tvb, offset);
/* Patch the security level. */
packet.control &= ~ZBEE_SEC_CONTROL_LEVEL;
packet.control |= (ZBEE_SEC_CONTROL_LEVEL & gPREF_zbee_sec_level);
/*
* Eww, I think I just threw up a little... ZigBee requires this field
* to be patched before computing the MIC, but we don't have write-access
* to the tvbuff. So we need to allocate a copy of the whole thing just
* so we can fix these 3 bits. Memory allocated by tvb_memdup(wmem_packet_scope(),...)
* is automatically freed before the next packet is processed.
*/
#ifdef HAVE_LIBGCRYPT
enc_buffer = (guint8 *)tvb_memdup(wmem_packet_scope(), tvb, 0, tvb_length(tvb));
/*
* Override the const qualifiers and patch the security level field, we
* know it is safe to overide the const qualifiers because we just
* allocated this memory via tvb_memdup(wmem_packet_scope(),...).
*/
enc_buffer[offset] = packet.control;
#endif /* HAVE_LIBGCRYPT */
packet.level = zbee_get_bit_field(packet.control, ZBEE_SEC_CONTROL_LEVEL);
packet.key_id = zbee_get_bit_field(packet.control, ZBEE_SEC_CONTROL_KEY);
packet.nonce = zbee_get_bit_field(packet.control, ZBEE_SEC_CONTROL_NONCE);
if (tree) {
ti = proto_tree_add_text(sec_tree, tvb, offset, 1, "Security Control Field");
field_tree = proto_item_add_subtree(ti, ett_zbee_sec_control);
proto_tree_add_uint(field_tree, hf_zbee_sec_key_id, tvb, offset, 1,
packet.control & ZBEE_SEC_CONTROL_KEY);
proto_tree_add_boolean(field_tree, hf_zbee_sec_nonce, tvb, offset, 1,
packet.control & ZBEE_SEC_CONTROL_NONCE);
}
offset += 1;
/* Get and display the frame counter field. */
packet.counter = tvb_get_letohl(tvb, offset);
if (tree) {
proto_tree_add_uint(sec_tree, hf_zbee_sec_counter, tvb, offset, 4, packet.counter);
}
offset += 4;
if (packet.nonce) {
/* Get and display the source address of the device that secured this payload. */
packet.src64 = tvb_get_letoh64(tvb, offset);
if (tree) {
proto_tree_add_item(sec_tree, hf_zbee_sec_src64, tvb, offset, 8, ENC_LITTLE_ENDIAN);
}
#if 1
if (!pinfo->fd->flags.visited) {
switch ( packet.key_id ) {
case ZBEE_SEC_KEY_LINK:
if (nwk_hints && ieee_hints) {
/* Map this long address with the nwk layer short address. */
nwk_hints->map_rec = ieee802154_addr_update(&zbee_nwk_map, nwk_hints->src,
ieee_hints->src_pan, packet.src64, pinfo->current_proto, pinfo->fd->num);
}
break;
case ZBEE_SEC_KEY_NWK:
if (ieee_hints) {
/* Map this long address with the ieee short address. */
ieee_hints->map_rec = ieee802154_addr_update(&zbee_nwk_map, ieee_hints->src16,
ieee_hints->src_pan, packet.src64, pinfo->current_proto, pinfo->fd->num);
}
break;
/* We ignore the extended source addresses used to encrypt payloads with these
* types of keys, because they can emerge from APS tunnels created by nodes whose
* short address is not recorded in the packet. */
case ZBEE_SEC_KEY_TRANSPORT:
case ZBEE_SEC_KEY_LOAD:
break;
}
}
#endif
offset += 8;
}
else {
/* Look for a source address in hints */
switch ( packet.key_id ) {
case ZBEE_SEC_KEY_NWK:
/* use the ieee extended source address for NWK decryption */
if ( ieee_hints && (map_rec = ieee_hints->map_rec) )
packet.src64 = map_rec->addr64;
else if (tree)
proto_tree_add_text(sec_tree, tvb, 0, 0, "[Extended Source: Unknown]");
break;
default:
/* use the nwk extended source address for APS decryption */
if ( nwk_hints && (map_rec = nwk_hints->map_rec) )
packet.src64 = map_rec->addr64;
else if (tree)
proto_tree_add_text(sec_tree, tvb, 0, 0, "[Extended Source: Unknown]");
break;
}
}
if (packet.key_id == ZBEE_SEC_KEY_NWK) {
/* Get and display the key sequence number. */
packet.key_seqno = tvb_get_guint8(tvb, offset);
if (tree) {
proto_tree_add_uint(sec_tree, hf_zbee_sec_key_seqno, tvb, offset, 1, packet.key_seqno);
}
offset += 1;
}
/* Determine the length of the MIC. */
switch (packet.level) {
case ZBEE_SEC_ENC:
case ZBEE_SEC_NONE:
default:
mic_len=0;
break;
case ZBEE_SEC_ENC_MIC32:
case ZBEE_SEC_MIC32:
mic_len=4;
break;
case ZBEE_SEC_ENC_MIC64:
case ZBEE_SEC_MIC64:
mic_len=8;
break;
case ZBEE_SEC_ENC_MIC128:
case ZBEE_SEC_MIC128:
mic_len=16;
break;
} /* switch */
/* Get and display the MIC. */
if (mic_len) {
/* Display the MIC. */
if (tree) {
proto_tree_add_item(sec_tree, hf_zbee_sec_mic, tvb, (gint)(tvb_length(tvb)-mic_len),
mic_len, ENC_NA);
}
}
/* Check for null payload. */
if ( !(payload_len = tvb_reported_length_remaining(tvb, offset+mic_len)) ) {
return NULL;
} else if ( payload_len < 0 ) {
THROW(ReportedBoundsError);
}
/**********************************************
* Perform Security Operations on the Frame *
**********************************************
*/
if ((packet.level == ZBEE_SEC_NONE) ||
(packet.level == ZBEE_SEC_MIC32) ||
(packet.level == ZBEE_SEC_MIC64) ||
(packet.level == ZBEE_SEC_MIC128)) {
/* Payload is only integrity protected. Just return the sub-tvbuff. */
return tvb_new_subset(tvb, offset, payload_len, payload_len);
}
#ifdef HAVE_LIBGCRYPT
/* Allocate memory to decrypt the payload into. */
dec_buffer = (guint8 *)g_malloc(payload_len);
decrypted = FALSE;
if ( packet.src64 ) {
if (pinfo->fd->flags.visited) {
if ( nwk_hints ) {
/* Use previously found key */
switch ( packet.key_id ) {
case ZBEE_SEC_KEY_NWK:
if ( (key_rec = nwk_hints->nwk) ) {
decrypted = zbee_sec_decrypt_payload( &packet, enc_buffer, offset, dec_buffer,
payload_len, mic_len, nwk_hints->nwk->key);
}
break;
default:
if ( (key_rec = nwk_hints->link) ) {
decrypted = zbee_sec_decrypt_payload( &packet, enc_buffer, offset, dec_buffer,
payload_len, mic_len, nwk_hints->link->key);
}
break;
}
}
} /* ( !pinfo->fd->flags.visited ) */
else {
/* We only search for sniffed keys in the first pass,
* to save time, and because decrypting with keys
* transported in future packets is cheating */
/* Lookup NWK and link key in hash for this pan. */
/* This overkill approach is a placeholder for a hash that looks up
* a key ring for a link key associated with a pair of devices.
*/
if ( nwk_hints ) {
nwk_keyring = (GSList **)g_hash_table_lookup(zbee_table_nwk_keyring, &nwk_hints->src_pan);
if ( nwk_keyring ) {
GSList_i = *nwk_keyring;
while ( GSList_i && !decrypted ) {
decrypted = zbee_sec_decrypt_payload( &packet, enc_buffer, offset, dec_buffer,
payload_len, mic_len, ((key_record_t *)(GSList_i->data))->key);
if (decrypted) {
/* save pointer to the successful key record */
switch (packet.key_id) {
case ZBEE_SEC_KEY_NWK:
key_rec = nwk_hints->nwk = (key_record_t *)(GSList_i->data);
break;
default:
key_rec = nwk_hints->link = (key_record_t *)(GSList_i->data);
break;
}
} else {
GSList_i = g_slist_next(GSList_i);
}
}
}
/* Loop through user's password table for preconfigured keys, our last resort */
GSList_i = zbee_pc_keyring;
while ( GSList_i && !decrypted ) {
decrypted = zbee_sec_decrypt_payload( &packet, enc_buffer, offset, dec_buffer,
payload_len, mic_len, ((key_record_t *)(GSList_i->data))->key);
if (decrypted) {
/* save pointer to the successful key record */
switch (packet.key_id) {
case ZBEE_SEC_KEY_NWK:
key_rec = nwk_hints->nwk = (key_record_t *)(GSList_i->data);
break;
default:
key_rec = nwk_hints->link = (key_record_t *)(GSList_i->data);
break;
}
} else {
GSList_i = g_slist_next(GSList_i);
}
}
}
} /* ( ! pinfo->fd->flags.visited ) */
} /* ( packet.src64 ) */
if ( decrypted ) {
if ( tree && key_rec ) {
if ( key_rec->frame_num == ZBEE_SEC_PC_KEY ) {
ti = proto_tree_add_text(sec_tree, tvb, 0, 0, "Decryption Key: %s", key_rec->label);
} else {
ti = proto_tree_add_uint(sec_tree, hf_zbee_sec_key_origin, tvb, 0, 0,
key_rec->frame_num);
}
PROTO_ITEM_SET_GENERATED(ti);
}
/* Found a key that worked, setup the new tvbuff_t and return */
payload_tvb = tvb_new_child_real_data(tvb, dec_buffer, payload_len, payload_len);
tvb_set_free_cb(payload_tvb, g_free); /* set up callback to free dec_buffer */
add_new_data_source(pinfo, payload_tvb, "Decrypted ZigBee Payload");
/* Done! */
return payload_tvb;
}
g_free(dec_buffer);
#endif /* HAVE_LIBGCRYPT */
/* Add expert info. */
expert_add_info(pinfo, sec_tree, &ei_zbee_sec_encrypted_payload);
/* Create a buffer for the undecrypted payload. */
payload_tvb = tvb_new_subset(tvb, offset, payload_len, -1);
/* Dump the payload to the data dissector. */
call_dissector(data_handle, payload_tvb, pinfo, tree);
/* Couldn't decrypt, so return NULL. */
return NULL;
} /* dissect_zbee_secure */
#ifdef HAVE_LIBGCRYPT
/*FUNCTION:------------------------------------------------------
* NAME
* zbee_sec_decrypt_payload
* DESCRIPTION
* Creates a nonce and decrypts a secured payload.
* PARAMETERS
* gchar *nonce - Nonce Buffer.
* zbee_security_packet *packet - Security information.
* RETURNS
* void
*---------------------------------------------------------------
*/
static gboolean
zbee_sec_decrypt_payload(zbee_security_packet *packet, const gchar *enc_buffer, const gchar offset, guint8 *dec_buffer,
guint payload_len, guint mic_len, guint8 *key)
{
guint8 nonce[ZBEE_SEC_CONST_NONCE_LEN];
guint8 buffer[ZBEE_SEC_CONST_BLOCKSIZE+1];
guint8 *key_buffer = buffer;
switch (packet->key_id) {
case ZBEE_SEC_KEY_NWK:
/* Decrypt with the PAN's current network key */
case ZBEE_SEC_KEY_LINK:
/* Decrypt with the unhashed link key assigned by the trust center to this
* source/destination pair */
key_buffer = key;
break;
case ZBEE_SEC_KEY_TRANSPORT:
/* Decrypt with a Key-Transport key, a hashed link key that protects network
* keys sent from the trust center */
zbee_sec_key_hash(key, 0x00, buffer);
key_buffer = buffer;
break;
case ZBEE_SEC_KEY_LOAD:
/* Decrypt with a Key-Load key, a hashed link key that protects link keys
* sent from the trust center. */
zbee_sec_key_hash(key, 0x02, buffer);
key_buffer = buffer;
break;
default:
break;
} /* switch */
/* Perform Decryption. */
zbee_sec_make_nonce(packet, nonce);
if ( zbee_sec_ccm_decrypt(key_buffer, /* key */
nonce, /* Nonce */
enc_buffer, /* a, length l(a) */
enc_buffer+offset, /* c, length l(c) = l(m) + M */
dec_buffer, /* m, length l(m) */
offset, /* l(a) */
payload_len, /* l(m) */
mic_len) ) { /* M */
return TRUE;
}
else return FALSE;
}
/*FUNCTION:------------------------------------------------------
* NAME
* zbee_sec_make_nonce
* DESCRIPTION
* Fills in the ZigBee security nonce from the provided security
* packet structure.
* PARAMETERS
* zbee_security_packet *packet - Security information.
* gchar *nonce - Nonce Buffer.
* RETURNS
* void
*---------------------------------------------------------------
*/
static void
zbee_sec_make_nonce(zbee_security_packet *packet, guint8 *nonce)
{
/* First 8 bytes are the extended source address (little endian). */
*(nonce++) = (guint8)((packet->src64)>>0 & 0xff);
*(nonce++) = (guint8)((packet->src64)>>8 & 0xff);
*(nonce++) = (guint8)((packet->src64)>>16 & 0xff);
*(nonce++) = (guint8)((packet->src64)>>24 & 0xff);
*(nonce++) = (guint8)((packet->src64)>>32 & 0xff);
*(nonce++) = (guint8)((packet->src64)>>40 & 0xff);
*(nonce++) = (guint8)((packet->src64)>>48 & 0xff);
*(nonce++) = (guint8)((packet->src64)>>56 & 0xff);
/* Next 4 bytes are the frame counter (little endian). */
*(nonce++) = (guint8)((packet->counter)>>0 & 0xff);
*(nonce++) = (guint8)((packet->counter)>>8 & 0xff);
*(nonce++) = (guint8)((packet->counter)>>16 & 0xff);
*(nonce++) = (guint8)((packet->counter)>>24 & 0xff);
/* Next byte is the security control field. */
*(nonce) = packet->control;
} /* zbee_sec_make_nonce */
#endif
#ifdef HAVE_LIBGCRYPT
/*FUNCTION:------------------------------------------------------
* NAME
* zbee_sec_ccm_decrypt
* DESCRIPTION
* Performs the Reverse CCM* Transformation (specified in
* section A.3 of ZigBee Specification (053474r17).
*
* The length of parameter c (l(c)) is derived from the length
* of the payload and length of the MIC tag. Input buffer a
* will NOT be modified.
*
* When l_m is 0, then there is no payload to encrypt (ie: the
* payload is in plaintext), and this function will perform
* MIC verification only. When l_m is 0, m may be NULL.
* PARAMETERS
* gchar *key - ZigBee Security Key (must be ZBEE_SEC_CONST_KEYSIZE) in length.
* gchar *nonce - ZigBee CCM* Nonce (must be ZBEE_SEC_CONST_NONCE_LEN) in length.
* gchar *a - CCM* Parameter a (must be l(a) in length). Additional data covered
* by the authentication process.
* gchar *c - CCM* Parameter c (must be l(c) = l(m) + M in length). Encrypted
* payload + encrypted authentication tag U.
* gchar *m - CCM* Output (must be l(m) in length). Decrypted Payload.
* guint l_a - l(a), length of CCM* parameter a.
* guint l_m - l(m), length of expected payload.
* guint M - M, length of CCM* authentication tag.
* RETURNS
* gboolean - TRUE if successful.
*---------------------------------------------------------------
*/
static gboolean
zbee_sec_ccm_decrypt(const gchar *key, /* Input */
const gchar *nonce, /* Input */
const gchar *a, /* Input */
const gchar *c, /* Input */
gchar *m, /* Output */
guint l_a, /* sizeof(a) */
guint l_m, /* sizeof(m) */
guint M) /* sizeof(c) - sizeof(m) = sizeof(MIC) */
{
guint8 cipher_in[ZBEE_SEC_CONST_BLOCKSIZE];
guint8 cipher_out[ZBEE_SEC_CONST_BLOCKSIZE];
guint8 decrypted_mic[ZBEE_SEC_CONST_BLOCKSIZE];
guint i, j;
/* Cipher Instance. */
gcry_cipher_hd_t cipher_hd;
/* Sanity-Check. */
if (M > ZBEE_SEC_CONST_BLOCKSIZE) return FALSE;
/*
* The CCM* counter is L bytes in length, ensure that the payload
* isn't long enough to overflow it.
*/
if ((1 + (l_a/ZBEE_SEC_CONST_BLOCKSIZE)) > (1<<(ZBEE_SEC_CONST_L*8))) return FALSE;
/******************************************************
* Step 1: Encryption/Decryption Transformation
******************************************************
*/
/* Create the CCM* counter block A0 */
memset(cipher_in, 0, ZBEE_SEC_CONST_BLOCKSIZE);
cipher_in[0] = ZBEE_SEC_CCM_FLAG_L;
memcpy(cipher_in + 1, nonce, ZBEE_SEC_CONST_NONCE_LEN);
/*
* The encryption/decryption process of CCM* works in CTR mode. Open a CTR
* mode cipher for this phase. NOTE: The 'counter' part of the CCM* counter
* block is the last two bytes, and is big-endian.
*/
if (gcry_cipher_open(&cipher_hd, GCRY_CIPHER_AES128, GCRY_CIPHER_MODE_CTR, 0)) {
return FALSE;
}
/* Set the Key. */
if (gcry_cipher_setkey(cipher_hd, key, ZBEE_SEC_CONST_KEYSIZE)) {
gcry_cipher_close(cipher_hd);
return FALSE;
}
/* Set the counter. */
if (gcry_cipher_setctr(cipher_hd, cipher_in, ZBEE_SEC_CONST_BLOCKSIZE)) {
gcry_cipher_close(cipher_hd);
return FALSE;
}
/*
* Copy the MIC into the stack buffer. We need to feed the cipher a full
* block when decrypting the MIC (so that the payload starts on the second
* block). However, the MIC may be less than a full block so use a fixed
* size buffer to store the MIC, letting the CTR cipher overstep the MIC
* if need be.
*/
memset(decrypted_mic, 0, ZBEE_SEC_CONST_BLOCKSIZE);
memcpy(decrypted_mic, c + l_m, M);
/* Encrypt/Decrypt the MIC in-place. */
if (gcry_cipher_encrypt(cipher_hd, decrypted_mic, ZBEE_SEC_CONST_BLOCKSIZE, decrypted_mic, ZBEE_SEC_CONST_BLOCKSIZE)) {
gcry_cipher_close(cipher_hd);
return FALSE;
}
/* Encrypt/Decrypt the payload. */
if (gcry_cipher_encrypt(cipher_hd, m, l_m, c, l_m)) {
gcry_cipher_close(cipher_hd);
return FALSE;
}
/* Done with the CTR Cipher. */
gcry_cipher_close(cipher_hd);
/******************************************************
* Step 3: Authentication Transformation
******************************************************
*/
if (M == 0) {
/* There is no authentication tag. We're done! */
return TRUE;
}
/*
* The authentication process in CCM* operates in CBC-MAC mode, but
* unfortunately, the input to the CBC-MAC process needs some substantial
* transformation and padding before we can feed it into the CBC-MAC
* algorithm. Instead we will operate in ECB mode and perform the
* transformation and padding on the fly.
*
* I also think that libgcrypt requires the input to be memory-aligned
* when using CBC-MAC mode, in which case can't just feed it with data
* from the packet buffer. All things considered it's just a lot easier
* to use ECB mode and do CBC-MAC manually.
*/
/* Re-open the cipher in ECB mode. */
if (gcry_cipher_open(&cipher_hd, GCRY_CIPHER_AES128, GCRY_CIPHER_MODE_ECB, 0)) {
return FALSE;
}
/* Re-load the key. */
if (gcry_cipher_setkey(cipher_hd, key, ZBEE_SEC_CONST_KEYSIZE)) {
gcry_cipher_close(cipher_hd);
return FALSE;
}
/* Generate the first cipher block B0. */
cipher_in[0] = ZBEE_SEC_CCM_FLAG_M(M) |
ZBEE_SEC_CCM_FLAG_ADATA(l_a) |
ZBEE_SEC_CCM_FLAG_L;
memcpy(cipher_in+sizeof(gchar), nonce, ZBEE_SEC_CONST_NONCE_LEN);
for (i=0;i<ZBEE_SEC_CONST_L; i++) {
cipher_in[(ZBEE_SEC_CONST_BLOCKSIZE-1)-i] = (l_m >> (8*i)) & 0xff;
} /* for */
/* Generate the first cipher block, X1 = E(Key, 0^128 XOR B0). */
if (gcry_cipher_encrypt(cipher_hd, cipher_out, ZBEE_SEC_CONST_BLOCKSIZE, cipher_in, ZBEE_SEC_CONST_BLOCKSIZE)) {
gcry_cipher_close(cipher_hd);
return FALSE;
}
/*
* We avoid mallocing() big chunks of memory by recycling small stack
* buffers for the encryption process. Throughout this process, j is always
* pointed to the position within the current buffer.
*/
j = 0;
/* AuthData = L(a) || a || Padding || m || Padding
* Where L(a) =
* - an empty string if l(a) == 0.
* - 2-octet encoding of l(a) if 0 < l(a) < (2^16 - 2^8)
* - 0xff || 0xfe || 4-octet encoding of l(a) if (2^16 - 2^8) <= l(a) < 2^32
* - 0xff || 0xff || 8-octet encoding of l(a)
* But for ZigBee, the largest packet size we should ever see is 2^7, so we
* are only really concerned with the first two cases.
*
* To generate the MIC tag CCM* operates similar to CBC-MAC mode. Each block
* of AuthData is XOR'd with the last block of cipher output to produce the
* next block of cipher output. Padding sections have the minimum non-negative
* length such that the padding ends on a block boundary. Padded bytes are 0.
*/
if (l_a > 0) {
/* Process L(a) into the cipher block. */
cipher_in[j] = cipher_out[j] ^ ((l_a >> 8) & 0xff);
j++;
cipher_in[j] = cipher_out[j] ^ ((l_a >> 0) & 0xff);
j++;
/* Process a into the cipher block. */
for (i=0;i<l_a;i++,j++) {
if (j>=ZBEE_SEC_CONST_BLOCKSIZE) {
/* Generate the next cipher block. */
if (gcry_cipher_encrypt(cipher_hd, cipher_out, ZBEE_SEC_CONST_BLOCKSIZE, cipher_in,
ZBEE_SEC_CONST_BLOCKSIZE)) {
gcry_cipher_close(cipher_hd);
return FALSE;
}
/* Reset j to point back to the start of the new cipher block. */
j = 0;
}
/* Cipher in = cipher_out ^ a */
cipher_in[j] = cipher_out[j] ^ a[i];
} /* for */
/* Process padding into the cipher block. */
for (;j<ZBEE_SEC_CONST_BLOCKSIZE;j++)
cipher_in[j] = cipher_out[j];
}
/* Process m into the cipher block. */
for (i=0; i<l_m; i++, j++) {
if (j>=ZBEE_SEC_CONST_BLOCKSIZE) {
/* Generate the next cipher block. */
if (gcry_cipher_encrypt(cipher_hd, cipher_out, ZBEE_SEC_CONST_BLOCKSIZE, cipher_in,
ZBEE_SEC_CONST_BLOCKSIZE)) {
gcry_cipher_close(cipher_hd);
return FALSE;
}
/* Reset j to point back to the start of the new cipher block. */
j = 0;
}
/* Cipher in = cipher out ^ m */
cipher_in[j] = cipher_out[j] ^ m[i];
} /* for */
/* Padding. */
for (;j<ZBEE_SEC_CONST_BLOCKSIZE;j++)
cipher_in[j] = cipher_out[j];
/* Generate the last cipher block, which will be the MIC tag. */
if (gcry_cipher_encrypt(cipher_hd, cipher_out, ZBEE_SEC_CONST_BLOCKSIZE, cipher_in, ZBEE_SEC_CONST_BLOCKSIZE)) {
gcry_cipher_close(cipher_hd);
return FALSE;
}
/* Done with the Cipher. */
gcry_cipher_close(cipher_hd);
/* Compare the MIC's */
return (memcmp(cipher_out, decrypted_mic, M) == 0);
} /* zbee_ccm_decrypt */
/*FUNCTION:------------------------------------------------------
* NAME
* zbee_sec_hash
* DESCRIPTION
* ZigBee Cryptographic Hash Function, described in ZigBee
* specification sections B.1.3 and B.6.
*
* This is a Matyas-Meyer-Oseas hash function using the AES-128
* cipher. We use the ECB mode of libgcrypt to get a raw block
* cipher.
*
* Input may be any length, and the output must be exactly 1-block in length.
*
* Implements the function:
* Hash(text) = Hash[t];
* Hash[0] = 0^(blocksize).
* Hash[i] = E(Hash[i-1], M[i]) XOR M[j];
* M[i] = i'th block of text, with some padding and flags concatenated.
* PARAMETERS
* guint8 * input - Hash Input (any length).
* guint8 input_len - Hash Input Length.
* guint8 * output - Hash Output (exactly one block in length).
* RETURNS
* void
*---------------------------------------------------------------
*/
static void
zbee_sec_hash(guint8 *input, guint input_len, guint8 *output)
{
guint8 cipher_in[ZBEE_SEC_CONST_BLOCKSIZE];
guint i, j;
/* Cipher Instance. */
gcry_cipher_hd_t cipher_hd;
/* Clear the first hash block (Hash0). */
memset(output, 0, ZBEE_SEC_CONST_BLOCKSIZE);
/* Create the cipher instance in ECB mode. */
if (gcry_cipher_open(&cipher_hd, GCRY_CIPHER_AES128, GCRY_CIPHER_MODE_ECB, 0)) {
return; /* Failed. */
}
/* Create the subsequent hash blocks using the formula: Hash[i] = E(Hash[i-1], M[i]) XOR M[i]
*
* because we can't garauntee that M will be exactly a multiple of the
* block size, we will need to copy it into local buffers and pad it.
*
* Note that we check for the next cipher block at the end of the loop
* rather than the start. This is so that if the input happens to end
* on a block boundary, the next cipher block will be generated for the
* start of the padding to be placed into.
*/
i = 0;
j = 0;
while (i<input_len) {
/* Copy data into the cipher input. */
cipher_in[j++] = input[i++];
/* Check if this cipher block is done. */
if (j >= ZBEE_SEC_CONST_BLOCKSIZE) {
/* We have reached the end of this block. Process it with the
* cipher, note that the Key input to the cipher is actually
* the previous hash block, which we are keeping in output.
*/
(void)gcry_cipher_setkey(cipher_hd, output, ZBEE_SEC_CONST_BLOCKSIZE);
(void)gcry_cipher_encrypt(cipher_hd, output, ZBEE_SEC_CONST_BLOCKSIZE, cipher_in, ZBEE_SEC_CONST_BLOCKSIZE);
/* Now we have to XOR the input into the hash block. */
for (j=0;j<ZBEE_SEC_CONST_BLOCKSIZE;j++) output[j] ^= cipher_in[j];
/* Reset j to start again at the beginning at the next block. */
j = 0;
}
} /* for */
/* Need to append the bit '1', followed by '0' padding long enough to end
* the hash input on a block boundary. However, because 'n' is 16, and 'l'
* will be a multiple of 8, the padding will be >= 7-bits, and we can just
* append the byte 0x80.
*/
cipher_in[j++] = 0x80;
/* Pad with '0' until the the current block is exactly 'n' bits from the
* end.
*/
while (j!=(ZBEE_SEC_CONST_BLOCKSIZE-2)) {
if (j >= ZBEE_SEC_CONST_BLOCKSIZE) {
/* We have reached the end of this block. Process it with the
* cipher, note that the Key input to the cipher is actually
* the previous hash block, which we are keeping in output.
*/
(void)gcry_cipher_setkey(cipher_hd, output, ZBEE_SEC_CONST_BLOCKSIZE);
(void)gcry_cipher_encrypt(cipher_hd, output, ZBEE_SEC_CONST_BLOCKSIZE, cipher_in, ZBEE_SEC_CONST_BLOCKSIZE);
/* Now we have to XOR the input into the hash block. */
for (j=0;j<ZBEE_SEC_CONST_BLOCKSIZE;j++) output[j] ^= cipher_in[j];
/* Reset j to start again at the beginning at the next block. */
j = 0;
}
/* Pad the input with 0. */
cipher_in[j++] = 0x00;
} /* while */
/* Add the 'n'-bit representation of 'l' to the end of the block. */
cipher_in[j++] = ((input_len * 8) >> 8) & 0xff;
cipher_in[j] = ((input_len * 8) >> 0) & 0xff;
/* Process the last cipher block. */
(void)gcry_cipher_setkey(cipher_hd, output, ZBEE_SEC_CONST_BLOCKSIZE);
(void)gcry_cipher_encrypt(cipher_hd, output, ZBEE_SEC_CONST_BLOCKSIZE, cipher_in, ZBEE_SEC_CONST_BLOCKSIZE);
/* XOR the last input block back into the cipher output to get the hash. */
for (j=0;j<ZBEE_SEC_CONST_BLOCKSIZE;j++) output[j] ^= cipher_in[j];
/* Cleanup the cipher. */
gcry_cipher_close(cipher_hd);
/* Done */
} /* zbee_sec_hash */
/*FUNCTION:------------------------------------------------------
* NAME
* zbee_sec_key_hash
* DESCRIPTION
* ZigBee Keyed Hash Function. Described in ZigBee specification
* section B.1.4, and in FIPS Publication 198. Strictly speaking
* there is nothing about the Keyed Hash Function which restricts
* it to only a single byte input, but that's all ZigBee ever uses.
*
* This function implements the hash function:
* Hash(Key, text) = H((Key XOR opad) || H((Key XOR ipad) || text));
* ipad = 0x36 repeated.
* opad = 0x5c repeated.
* H() = ZigBee Cryptographic Hash (B.1.3 and B.6).
*
* The output of this function is an ep_alloced buffer containing
* the key-hashed output, and is garaunteed never to return NULL.
* PARAMETERS
* guint8 *key - ZigBee Security Key (must be ZBEE_SEC_CONST_KEYSIZE) in length.
* guint8 input - ZigBee CCM* Nonce (must be ZBEE_SEC_CONST_NONCE_LEN) in length.
* packet_info *pinfo - pointer to packet information fields
* RETURNS
* guint8*
*---------------------------------------------------------------
*/
static guint8 *
zbee_sec_key_hash(guint8 *key, guint8 input, guint8 *hash_out)
{
guint8 hash_in[2*ZBEE_SEC_CONST_BLOCKSIZE];
int i;
static const guint8 ipad = 0x36;
static const guint8 opad = 0x5c;
/* Copy the key into hash_in and XOR with opad to form: (Key XOR opad) */
for (i=0; i<ZBEE_SEC_CONST_KEYSIZE; i++) hash_in[i] = key[i] ^ opad;
/* Copy the Key into hash_out and XOR with ipad to form: (Key XOR ipad) */
for (i=0; i<ZBEE_SEC_CONST_KEYSIZE; i++) hash_out[i] = key[i] ^ ipad;
/* Append the input byte to form: (Key XOR ipad) || text. */
hash_out[ZBEE_SEC_CONST_BLOCKSIZE] = input;
/* Hash the contents of hash_out and append the contents to hash_in to
* form: (Key XOR opad) || H((Key XOR ipad) || text).
*/
zbee_sec_hash(hash_out, ZBEE_SEC_CONST_BLOCKSIZE+1, hash_in+ZBEE_SEC_CONST_BLOCKSIZE);
/* Hash the contents of hash_in to get the final result. */
zbee_sec_hash(hash_in, 2*ZBEE_SEC_CONST_BLOCKSIZE, hash_out);
return hash_out;
} /* zbee_sec_key_hash */
#endif /* HAVE_LIBGCRYPT */
/*FUNCTION:------------------------------------------------------
* NAME
* proto_init_zbee_security
* DESCRIPTION
* Init routine for the
* PARAMETERS
* none
* RETURNS
* void
*---------------------------------------------------------------
*/
static void
proto_init_zbee_security(void)
{
guint i;
key_record_t key_record;
/* empty the key ring */
if (zbee_pc_keyring) {
g_slist_free(zbee_pc_keyring);
zbee_pc_keyring = NULL;
}
/* Load the pre-configured slist from the UAT. */
for (i=0; (uat_key_records) && (i<num_uat_key_records) ; i++) {
key_record.frame_num = ZBEE_SEC_PC_KEY; /* means it's a user PC key */
key_record.label = se_strdup(uat_key_records[i].label);
memcpy(&key_record.key, &uat_key_records[i].key, ZBEE_SEC_CONST_KEYSIZE);
zbee_pc_keyring = g_slist_prepend(zbee_pc_keyring, se_memdup(&key_record, sizeof(key_record_t)));
} /* for */
} /* proto_init_zbee_security */