wireshark/epan/dissectors/packet-selfm.c
Michael Mann 9b7fb8a811 Create the ability to have packet scoped "proto" data. Bug 9470 (https://bugs.wireshark.org/bugzilla/show_bug.cgi?id=9470)
I'm not sold on the name or module the proto_data functions live in, but I believe the function arguments are solid and gives us the most flexibility for the future.  And search/replace of a function name is easy enough to do.

The big driving force for getting this in sooner rather than later is the saved memory on ethernet packets (and IP packets soon), that used to have file_scope() proto data when all it needed was packet_scope() data (technically packet_info->pool scoped), strictly for Decode As.

All dissectors that use p_add_proto_data() only for Decode As functionality have been converted to using packet_scope().  All other dissectors were converted to using file_scope() which was the original scope for "proto" data.

svn path=/trunk/; revision=53520
2013-11-23 02:20:13 +00:00

2942 lines
147 KiB
C

/* packet-selfm.c
* Routines for Schweitzer Engineering Laboratories Fast Message Protocol (SEL FM) Dissection
* By Chris Bontje (cbontje[AT]gmail.com
* Copyright Nov/Dec 2012,
*
* $Id$
*
************************************************************************************************
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
************************************************************************************************
* Schweitzer Engineering Labs ("SEL") manufactures and sells digital protective relay equipment
* for use in industrial high-voltage installations. SEL FM protocol evolved over time as a
* (semi)proprietary method for auto-configuration of connected SEL devices for retrieval of
* analog and digital status data. The protocol itself supports embedded binary messages
* (which are what this dissector looks for) slip-streamed in the data stream with normal
* ASCII text data. A combination of both are used for full auto-configuration of devices,
* but a wealth of information can be extracted from the binary messages alone.
*
* Documentation on Fast Meter and Fast SER messages available from www.selinc.com in
* SEL Application Guides AG95-10_20091109.pdf and AG_200214.pdf
************************************************************************************************
* Dissector Notes:
*
* 1) SEL Fast Message protocol over TCP is normally tunneled via a Telnet connection. As Telnet
* has special handling for the 0xFF character ("IAC"), normally a pair of 0xFF's are inserted
* to represent an actual payload byte of 0xFF. A function from the packet-telnet.c dissector has
* been borrowed to automatically pre-process any Ethernet-based packet and remove these 'extra'
* 0xFF bytes. Wireshark Notes on Telnet 0xFF doubling are discussed here:
* http://www.wireshark.org/lists/wireshark-bugs/201204/msg00198.html
*
* 2) The auto-configuration process itself will exchange several "configuration" messages that
* describe various data regions (METER, DEMAND, PEAK, etc) that will later have corresponding
* "data" messages. This dissector code will currently save and accurately retrieve the 3 sets
* of these exchanges:
* 0xA5C1, 0xA5D1, "METER" region
* 0xA5C2, 0xA5D2, "DEMAND" region
* 0xA5C3, 0xA5D3, "PEAK" region
* The configuration messages are stored in structs that are managed using the wmem library and
* the Wireshark conversation functionality.
*/
#include "config.h"
#include <epan/packet.h>
#include "packet-tcp.h"
#include <epan/prefs.h>
#include <epan/reassemble.h>
#include <epan/expert.h>
#include <epan/conversation.h>
#include <epan/wmem/wmem.h>
/* Initialize the protocol and registered fields */
static int proto_selfm = -1;
static int hf_selfm_msgtype = -1;
static int hf_selfm_padbyte = -1;
static int hf_selfm_checksum = -1;
static int hf_selfm_relaydef_len = -1;
static int hf_selfm_relaydef_numproto = -1;
static int hf_selfm_relaydef_numfm = -1;
static int hf_selfm_relaydef_numflags = -1;
static int hf_selfm_relaydef_fmcfg_cmd = -1;
static int hf_selfm_relaydef_fmdata_cmd = -1;
static int hf_selfm_relaydef_statbit = -1;
static int hf_selfm_relaydef_statbit_cmd = -1;
static int hf_selfm_relaydef_proto = -1;
static int hf_selfm_fmconfig_len = -1;
static int hf_selfm_fmconfig_numflags = -1;
static int hf_selfm_fmconfig_loc_sf = -1;
static int hf_selfm_fmconfig_num_sf = -1;
static int hf_selfm_fmconfig_num_ai = -1;
static int hf_selfm_fmconfig_num_samp = -1;
static int hf_selfm_fmconfig_num_dig = -1;
static int hf_selfm_fmconfig_num_calc = -1;
static int hf_selfm_fmconfig_ofs_ai = -1;
static int hf_selfm_fmconfig_ofs_ts = -1;
static int hf_selfm_fmconfig_ofs_dig = -1;
static int hf_selfm_fmconfig_ai_type = -1;
static int hf_selfm_fmconfig_ai_sf_type = -1;
static int hf_selfm_fmconfig_ai_sf_ofs = -1;
static int hf_selfm_fmconfig_cblk_rot = -1;
static int hf_selfm_fmconfig_cblk_vconn = -1;
static int hf_selfm_fmconfig_cblk_iconn = -1;
static int hf_selfm_fmconfig_cblk_ctype = -1;
static int hf_selfm_fmconfig_cblk_deskew_ofs = -1;
static int hf_selfm_fmconfig_cblk_rs_ofs = -1;
static int hf_selfm_fmconfig_cblk_xs_ofs = -1;
static int hf_selfm_fmconfig_cblk_ia_idx = -1;
static int hf_selfm_fmconfig_cblk_ib_idx = -1;
static int hf_selfm_fmconfig_cblk_ic_idx = -1;
static int hf_selfm_fmconfig_cblk_va_idx = -1;
static int hf_selfm_fmconfig_cblk_vb_idx = -1;
static int hf_selfm_fmconfig_cblk_vc_idx = -1;
static int hf_selfm_fmdata_len = -1;
static int hf_selfm_fmdata_flagbyte = -1;
static int hf_selfm_fmdata_dig_b0 = -1;
static int hf_selfm_fmdata_dig_b1 = -1;
static int hf_selfm_fmdata_dig_b2 = -1;
static int hf_selfm_fmdata_dig_b3 = -1;
static int hf_selfm_fmdata_dig_b4 = -1;
static int hf_selfm_fmdata_dig_b5 = -1;
static int hf_selfm_fmdata_dig_b6 = -1;
static int hf_selfm_fmdata_dig_b7 = -1;
static int hf_selfm_fmdata_ai_sf_fp = -1;
static int hf_selfm_foconfig_len = -1;
static int hf_selfm_foconfig_num_brkr = -1;
static int hf_selfm_foconfig_num_rb = -1;
static int hf_selfm_foconfig_prb_supp = -1;
static int hf_selfm_foconfig_reserved = -1;
static int hf_selfm_foconfig_brkr_open = -1;
static int hf_selfm_foconfig_brkr_close = -1;
static int hf_selfm_foconfig_rb_cmd = -1;
static int hf_selfm_fastop_len = -1;
static int hf_selfm_fastop_rb_code = -1;
static int hf_selfm_fastop_br_code = -1;
static int hf_selfm_fastop_valid = -1;
static int hf_selfm_alt_foconfig_len = -1;
static int hf_selfm_alt_foconfig_num_ports = -1;
static int hf_selfm_alt_foconfig_num_brkr = -1;
static int hf_selfm_alt_foconfig_num_rb = -1;
static int hf_selfm_alt_foconfig_funccode = -1;
static int hf_selfm_alt_fastop_len = -1;
static int hf_selfm_alt_fastop_code = -1;
static int hf_selfm_alt_fastop_valid = -1;
static int hf_selfm_fastser_len = -1;
static int hf_selfm_fastser_routing_addr = -1;
static int hf_selfm_fastser_status = -1;
static int hf_selfm_fastser_funccode = -1;
static int hf_selfm_fastser_seq = -1;
static int hf_selfm_fastser_seq_fir = -1;
static int hf_selfm_fastser_seq_fin = -1;
static int hf_selfm_fastser_seq_cnt = -1;
static int hf_selfm_fastser_resp_num = -1;
static int hf_selfm_fastser_crc16 = -1;
static int hf_selfm_fastser_def_route_sup = -1;
static int hf_selfm_fastser_def_rx_stat = -1;
static int hf_selfm_fastser_def_tx_stat = -1;
static int hf_selfm_fastser_def_rx_maxfr = -1;
static int hf_selfm_fastser_def_tx_maxfr = -1;
static int hf_selfm_fastser_def_rx_num_fc = -1;
static int hf_selfm_fastser_def_rx_fc = -1;
static int hf_selfm_fastser_def_tx_num_fc = -1;
static int hf_selfm_fastser_def_tx_fc = -1;
static int hf_selfm_fastser_uns_en_fc = -1;
static int hf_selfm_fastser_uns_en_fc_data = -1;
static int hf_selfm_fastser_uns_dis_fc = -1;
static int hf_selfm_fastser_uns_dis_fc_data = -1;
static int hf_selfm_fastser_baseaddr = -1;
static int hf_selfm_fastser_numwords = -1;
static int hf_selfm_fastser_flags = -1;
static int hf_selfm_fastser_datafmt_resp_numitem = -1;
static int hf_selfm_fastser_dataitem_qty = -1;
static int hf_selfm_fastser_dataitem_type = -1;
static int hf_selfm_fastser_dataitem_uint16 = -1;
static int hf_selfm_fastser_dataitem_int16 = -1;
static int hf_selfm_fastser_dataitem_uint32 = -1;
static int hf_selfm_fastser_dataitem_int32 = -1;
static int hf_selfm_fastser_dataitem_float = -1;
static int hf_selfm_fastser_devdesc_num_region = -1;
static int hf_selfm_fastser_devdesc_num_ctrl = -1;
static int hf_selfm_fastser_unsresp_orig = -1;
static int hf_selfm_fastser_unsresp_doy = -1;
static int hf_selfm_fastser_unsresp_year = -1;
static int hf_selfm_fastser_unsresp_todms = -1;
static int hf_selfm_fastser_unsresp_num_elmt = -1;
static int hf_selfm_fastser_unsresp_elmt_idx = -1;
static int hf_selfm_fastser_unsresp_elmt_ts_ofs = -1;
static int hf_selfm_fastser_unsresp_elmt_status = -1;
static int hf_selfm_fastser_unsresp_eor = -1;
static int hf_selfm_fastser_unsresp_elmt_statword = -1;
static int hf_selfm_fastser_unswrite_addr1 = -1;
static int hf_selfm_fastser_unswrite_addr2 = -1;
static int hf_selfm_fastser_unswrite_num_reg = -1;
static int hf_selfm_fastser_unswrite_reg_val = -1;
static int hf_selfm_fastser_soe_req_orig = -1;
static int hf_selfm_fastser_soe_resp_numblks = -1;
static int hf_selfm_fastser_soe_resp_orig = -1;
static int hf_selfm_fastser_soe_resp_numbits = -1;
static int hf_selfm_fastser_soe_resp_pad = -1;
static int hf_selfm_fastser_soe_resp_doy = -1;
static int hf_selfm_fastser_soe_resp_year = -1;
static int hf_selfm_fastser_soe_resp_tod = -1;
/* static int hf_selfm_fastser_soe_resp_data = -1; */
/* Initialize the subtree pointers */
static gint ett_selfm = -1;
static gint ett_selfm_relaydef = -1;
static gint ett_selfm_relaydef_fm = -1;
static gint ett_selfm_relaydef_proto = -1;
static gint ett_selfm_relaydef_flags = -1;
static gint ett_selfm_fmconfig = -1;
static gint ett_selfm_fmconfig_ai = -1;
static gint ett_selfm_fmconfig_calc = -1;
static gint ett_selfm_foconfig = -1;
static gint ett_selfm_foconfig_brkr = -1;
static gint ett_selfm_foconfig_rb = -1;
static gint ett_selfm_fastop = -1;
static gint ett_selfm_fmdata = -1;
static gint ett_selfm_fmdata_ai = -1;
static gint ett_selfm_fmdata_dig = -1;
static gint ett_selfm_fmdata_ai_ch = -1;
static gint ett_selfm_fmdata_dig_ch = -1;
static gint ett_selfm_fastser = -1;
static gint ett_selfm_fastser_seq = -1;
static gint ett_selfm_fastser_def_fc = -1;
static gint ett_selfm_fastser_datareg = -1;
static gint ett_selfm_fastser_tag = -1;
static gint ett_selfm_fastser_element_list = -1;
static gint ett_selfm_fastser_element = -1;
#define PORT_SELFM 0
#define CMD_FAST_SER 0xA546
#define CMD_CLEAR_STATBIT 0xA5B9
#define CMD_RELAY_DEF 0xA5C0
#define CMD_FM_CONFIG 0xA5C1
#define CMD_DFM_CONFIG 0xA5C2
#define CMD_PDFM_CONFIG 0xA5C3
#define CMD_FASTOP_RESETDEF 0xA5CD
#define CMD_FASTOP_CONFIG 0xA5CE
#define CMD_ALT_FASTOP_CONFIG 0xA5CF
#define CMD_FM_DATA 0xA5D1
#define CMD_DFM_DATA 0xA5D2
#define CMD_PDFM_DATA 0xA5D3
#define CMD_FASTOP_RB_CTRL 0xA5E0
#define CMD_FASTOP_BR_CTRL 0xA5E3
#define CMD_ALT_FASTOP_OPEN 0xA5E5
#define CMD_ALT_FASTOP_CLOSE 0xA5E6
#define CMD_ALT_FASTOP_SET 0xA5E7
#define CMD_ALT_FASTOP_CLEAR 0xA5E8
#define CMD_ALT_FASTOP_PULSE 0xA5E9
#define CMD_FASTOP_RESET 0xA5ED
#define FM_CONFIG_SF_LOC_FM 0
#define FM_CONFIG_SF_LOC_CFG 1
#define FM_CONFIG_ANA_CHNAME_LEN 6
#define FM_CONFIG_ANA_CHTYPE_INT16 0x00
#define FM_CONFIG_ANA_CHTYPE_FP 0x01
#define FM_CONFIG_ANA_CHTYPE_FPD 0x02
#define FM_CONFIG_ANA_CHTYPE_TS 0x03
#define FM_CONFIG_ANA_CHTYPE_TS_LEN 8
#define FM_CONFIG_ANA_SFTYPE_INT16 0x00
#define FM_CONFIG_ANA_SFTYPE_FP 0x01
#define FM_CONFIG_ANA_SFTYPE_FPD 0x02
#define FM_CONFIG_ANA_SFTYPE_TS 0x03
#define FM_CONFIG_ANA_SFTYPE_NONE 0xFF
/* Fast SER Function Codes, "response" or "ACK" messages are the same as the request, but have the MSB set */
#define FAST_SER_MESSAGE_DEF 0x00
#define FAST_SER_EN_UNS_DATA 0x01
#define FAST_SER_DIS_UNS_DATA 0x02
#define FAST_SER_PING 0x05
#define FAST_SER_READ_REQ 0x10
#define FAST_SER_GEN_UNS_DATA 0x12
#define FAST_SER_SOE_STATE_REQ 0x16
#define FAST_SER_UNS_RESP 0x18
#define FAST_SER_UNS_WRITE 0x20
#define FAST_SER_UNS_WRITE_REQ 0x21
#define FAST_SER_DEVDESC_REQ 0x30
#define FAST_SER_DATAFMT_REQ 0x31
#define FAST_SER_UNS_DATAFMT_RESP 0x32
#define FAST_SER_BITLABEL_REQ 0x33
#define FAST_SER_MGMT_REQ 0x40
#define FAST_SER_MESSAGE_DEF_ACK 0x80
#define FAST_SER_EN_UNS_DATA_ACK 0x81
#define FAST_SER_DIS_UNS_DATA_ACK 0x82
#define FAST_SER_PING_ACK 0x85
#define FAST_SER_READ_RESP 0x90
#define FAST_SER_SOE_STATE_RESP 0x96
#define FAST_SER_UNS_RESP_ACK 0x98
#define FAST_SER_DEVDESC_RESP 0xB0
#define FAST_SER_DATAFMT_RESP 0xB1
#define FAST_SER_BITLABEL_RESP 0xB3
/* Fast SER Sequence Byte Masks */
#define FAST_SER_SEQ_FIR 0x80
#define FAST_SER_SEQ_FIN 0x40
#define FAST_SER_SEQ_CNT 0x3f
/* Fast SER Tag Data Types */
#define FAST_SER_TAGTYPE_CHAR8 0x0011 /* 1 x 8-bit character per item */
#define FAST_SER_TAGTYPE_CHAR16 0x0012 /* 2 x 8-bit characters per item */
#define FAST_SER_TAGTYPE_DIGWORD8_BL 0x0021 /* 8-bit binary item, with labels */
#define FAST_SER_TAGTYPE_DIGWORD8 0x0022 /* 8-bit binary item, without labels */
#define FAST_SER_TAGTYPE_DIGWORD16_BL 0x0023 /* 16-bit binary item, with labels */
#define FAST_SER_TAGTYPE_DIGWORD16 0x0024 /* 16-bit binary item, without labels */
#define FAST_SER_TAGTYPE_INT16 0x0031 /* 16-bit signed integer */
#define FAST_SER_TAGTYPE_UINT16 0x0032 /* 16-bit unsigned integer */
#define FAST_SER_TAGTYPE_INT32 0x0033 /* 32-bit signed integer */
#define FAST_SER_TAGTYPE_UINT32 0x0034 /* 32-bit unsigned integer */
#define FAST_SER_TAGTYPE_FLOAT 0x0041 /* 32-bit floating point */
/* Globals for SEL Protocol Preferences */
static gboolean selfm_desegment = TRUE;
static gboolean selfm_telnet_clean = TRUE;
static guint global_selfm_tcp_port = PORT_SELFM; /* Port 0, by default */
/***************************************************************************************/
/* Fast Meter Message structs */
/***************************************************************************************/
/* Holds Configuration Information required to decode a Fast Meter analog value */
typedef struct {
gchar name[FM_CONFIG_ANA_CHNAME_LEN+1]; /* Name of Analog Channel, 6 char + a null */
guint8 type; /* Analog Channel Type, Int, FP, etc */
guint8 sf_type; /* Analog Scale Factor Type, none, etc */
guint16 sf_offset; /* Analog Scale Factor Offset */
} fm_analog_info;
/* Holds Information from a single "Fast Meter Configuration" frame. Required to dissect subsequent "Data" frames. */
typedef struct {
guint32 fnum; /* frame number */
guint16 cfg_cmd; /* holds ID of config command, ie: 0xa5c1 */
guint8 num_flags; /* Number of Flag Bytes */
guint8 num_ai; /* Number of Analog Inputs */
guint8 num_ai_samples; /* Number samples per Analog Input */
guint16 offset_ai; /* Start Offset of Analog Inputs */
guint8 num_dig; /* Number of Digital Input Blocks */
guint16 offset_dig; /* Start Offset of Digital Inputs */
guint16 offset_ts; /* Start Offset of Time Stamp */
guint8 num_calc; /* Number of Calculations */
fm_analog_info *analogs; /* Array of fm_analog_infos */
} fm_config_frame;
/**************************************************************************************/
/* Fast SER Message Data Item struct */
/**************************************************************************************/
/* Holds Configuration Information required to decode a Fast SER Data Item */
/* Each data region format is returned as a sequential list of tags, w/o reference to */
/* an absolute address. The format information will consist of a name, a data type */
/* and a quantity of values contained within the data item. We will retrieve this */
/* format information later while attempting to dissect Read Response frames */
typedef struct {
guint32 fnum; /* frame number */
guint32 base_address; /* Base address of Data Item Region */
guint8 index_pos; /* Index Offset Position within data format message (1-16) */
gchar name[10+1]; /* Name of Data Item, 10 chars, null-terminated */
guint16 quantity; /* Quantity of values within Data Item */
guint16 data_type; /* Data Item Type, Char, Int, FP, etc */
} fastser_dataitem;
/**************************************************************************************/
/* Fast SER Message Data Region struct */
/**************************************************************************************/
/* Holds Configuration Information required to decode a Fast SER Data Region */
/* Each data region format is returned as a sequential list of tags, w/o reference to */
typedef struct {
gchar name[10+1]; /* Name of Data Region, 10 chars, null-terminated */
} fastser_dataregion;
/**************************************************************************************/
/* Fast Message Conversation struct */
/**************************************************************************************/
typedef struct {
wmem_list_t *fm_config_frames; /* List contains a fm_config_data struct for each Fast Meter configuration frame */
wmem_list_t *fastser_dataitems; /* List contains a fastser_dataitem struct for each Fast SER Data Item */
wmem_tree_t *fastser_dataregions; /* Tree contains a fastser_dataregion struct for each Fast SER Data Region */
} fm_conversation;
static const value_string selfm_msgtype_vals[] = {
{ CMD_FAST_SER, "Fast SER Block" }, /* 0xA546 */
{ CMD_CLEAR_STATBIT, "Clear Status Bits Command" }, /* 0xA5B9 */
{ CMD_RELAY_DEF, "Relay Definition Block" }, /* 0xA5C0 */
{ CMD_FM_CONFIG, "Fast Meter Configuration Block" }, /* 0xA5C1 */
{ CMD_DFM_CONFIG, "Demand Fast Meter Configuration Block" }, /* 0xA5C2 */
{ CMD_PDFM_CONFIG, "Peak Demand Fast Meter Configuration Block" }, /* 0xA5C3 */
{ CMD_FASTOP_RESETDEF, "Fast Operate Reset Definition" }, /* 0xA5CD */
{ CMD_FASTOP_CONFIG, "Fast Operate Configuration" }, /* 0xA5CE */
{ CMD_ALT_FASTOP_CONFIG, "Alternate Fast Operate Configuration" }, /* 0xA5CF */
{ CMD_FM_DATA, "Fast Meter Data Block" }, /* 0xA5D1 */
{ CMD_DFM_DATA, "Demand Fast Meter Data Block" }, /* 0xA5D2 */
{ CMD_PDFM_DATA, "Peak Demand Fast Meter Data Block" }, /* 0xA5D3 */
{ CMD_FASTOP_RB_CTRL, "Fast Operate Remote Bit Control" }, /* 0xA5E0 */
{ CMD_FASTOP_BR_CTRL, "Fast Operate Breaker Bit Control" }, /* 0xA5E3 */
{ CMD_ALT_FASTOP_OPEN, "Alternate Fast Operate Open Breaker Control" }, /* 0xA5E5 */
{ CMD_ALT_FASTOP_CLOSE, "Alternate Fast Operate Close Breaker Control" }, /* 0xA5E6 */
{ CMD_ALT_FASTOP_SET, "Alternate Fast Operate Set Remote Bit Control" }, /* 0xA5E7 */
{ CMD_ALT_FASTOP_CLEAR, "Alternate Fast Operate Clear Remote Bit Control" }, /* 0xA5E8 */
{ CMD_ALT_FASTOP_PULSE, "Alternate Fast Operate Pulse Remote Bit Control" }, /* 0xA5E9 */
{ CMD_FASTOP_RESET, "Fast Operate Reset" }, /* 0xA5ED */
{ 0, NULL }
};
static value_string_ext selfm_msgtype_vals_ext = VALUE_STRING_EXT_INIT(selfm_msgtype_vals);
static const value_string selfm_relaydef_proto_vals[] = {
{ 0x0000, "SEL Fast Meter" },
{ 0x0001, "SEL Limited Multidrop (LMD)" },
{ 0x0002, "Modbus" },
{ 0x0003, "SY/MAX" },
{ 0x0004, "SEL Relay-to-Relay" },
{ 0x0005, "DNP 3.0" },
{ 0x0006, "SEL Mirrored Bits" },
{ 0x0007, "IEEE 37.118 Synchrophasors" },
{ 0x0008, "IEC 61850" },
{ 0x0100, "SEL Fast Meter w/ Fast Operate" },
{ 0x0101, "SEL Limited Multidrop (LMD) w/ Fast Operate" },
{ 0x0200, "SEL Fast Meter w/ Fast SER" },
{ 0x0300, "SEL Fast Meter w/ Fast Operate and Fast SER" },
{ 0x0301, "SEL Limited Multidrop (LMD) w/ Fast Operate and Fast SER" },
{ 0, NULL }
};
static value_string_ext selfm_relaydef_proto_vals_ext = VALUE_STRING_EXT_INIT(selfm_relaydef_proto_vals);
static const value_string selfm_fmconfig_ai_chtype_vals[] = {
{ FM_CONFIG_ANA_CHTYPE_INT16, "16-Bit Integer" },
{ FM_CONFIG_ANA_CHTYPE_FP, "IEEE Floating Point" },
{ FM_CONFIG_ANA_CHTYPE_FPD, "IEEE Floating Point (Double)" },
{ FM_CONFIG_ANA_CHTYPE_TS, "8-byte Time Stamp" },
{ 0, NULL }
};
static const value_string selfm_fmconfig_ai_sftype_vals[] = {
{ FM_CONFIG_ANA_SFTYPE_INT16, "16-Bit Integer" },
{ FM_CONFIG_ANA_SFTYPE_FP, "IEEE Floating Point" },
{ FM_CONFIG_ANA_SFTYPE_FPD, "IEEE Floating Point (Double)" },
{ FM_CONFIG_ANA_SFTYPE_TS, "8-byte Time Stamp" },
{ FM_CONFIG_ANA_SFTYPE_NONE, "None" },
{ 0, NULL }
};
static const value_string selfm_fmconfig_sfloc_vals[] = {
{ FM_CONFIG_SF_LOC_FM, "In Fast Meter Message" },
{ FM_CONFIG_SF_LOC_CFG, "In Configuration Message" },
{ 0, NULL }
};
/* Depending on number of analog samples present in Fast Meter Messages, identification of data will change */
static const value_string selfm_fmconfig_numsamples1_vals[] = {
{ 1, "Magnitudes Only" },
{ 0, NULL }
};
static const value_string selfm_fmconfig_numsamples2_vals[] = {
{ 1, "Imaginary Components" },
{ 2, "Real Components" },
{ 0, NULL }
};
static const value_string selfm_fmconfig_numsamples4_vals[] = {
{ 1, "1st Quarter Cycle Data" },
{ 2, "2nd Quarter Cycle Data" },
{ 3, "5th Quarter-Cycle Data" },
{ 4, "6th Quarter-Cycle Data" },
{ 0, NULL }
};
/* Calculation Block lookup values */
static const value_string selfm_fmconfig_cblk_rot_vals[] = {
{ 0x00, "ABC Rotation" },
{ 0x01, "ACB Rotation" },
{ 0, NULL }
};
static const value_string selfm_fmconfig_cblk_vconn_vals[] = {
{ 0x00, "Y-Connected" },
{ 0x01, "Delta-Connected (in seq. Vab, Vbc, Vca)" },
{ 0x02, "Delta-Connected (in seq. Vac, Vba, Vcb)" },
{ 0, NULL }
};
static const value_string selfm_fmconfig_cblk_iconn_vals[] = {
{ 0x00, "Y-Connected" },
{ 0x01, "Delta-Connected (in seq. Iab, Ibc, Ica)" },
{ 0x02, "Delta-Connected (in seq. Iac, Iba, Icb)" },
{ 0, NULL }
};
static const value_string selfm_fmconfig_cblk_ctype_vals[] = {
{ 0, "Standard Power Calculations" },
{ 1, "2-1/2 Element Delta Power Calculation" },
{ 2, "Voltages-Only" },
{ 3, "Currents-Only" },
{ 4, "Single-Phase Ia and Va Only" },
{ 5, "Standard Power Calcs with 2 sets of Currents" },
{ 6, "2-1/2 Element Delta Power Calcs with 2 sets of Currents" },
{ 0, NULL }
};
/* Fast Operate Remote Bit 'Pulse Supported' Lookup */
static const value_string selfm_foconfig_prb_supp_vals[] = {
{ 0x00, "No" },
{ 0x01, "Yes" },
{ 0, NULL }
};
/* SER Status Value Lookup */
static const value_string selfm_ser_status_vals[] = {
{ 0x00, "Deasserted" },
{ 0x01, "Asserted" },
{ 0, NULL }
};
/* Fast Operate Remote Bit Lookup */
static const value_string selfm_fo_rb_vals[] = {
{ 0x00, "RB01 Clear" },
{ 0x20, "RB01 Set" },
{ 0x40, "RB01 Pulse" },
{ 0x01, "RB02 Clear" },
{ 0x21, "RB02 Set" },
{ 0x41, "RB02 Pulse" },
{ 0x02, "RB03 Clear" },
{ 0x22, "RB03 Set" },
{ 0x42, "RB03 Pulse" },
{ 0x03, "RB04 Clear" },
{ 0x23, "RB04 Set" },
{ 0x43, "RB04 Pulse" },
{ 0x04, "RB05 Clear" },
{ 0x24, "RB05 Set" },
{ 0x44, "RB05 Pulse" },
{ 0x05, "RB06 Clear" },
{ 0x25, "RB06 Set" },
{ 0x45, "RB06 Pulse" },
{ 0x06, "RB07 Clear" },
{ 0x26, "RB07 Set" },
{ 0x46, "RB07 Pulse" },
{ 0x07, "RB08 Clear" },
{ 0x27, "RB08 Set" },
{ 0x47, "RB08 Pulse" },
{ 0x08, "RB09 Clear" },
{ 0x28, "RB09 Set" },
{ 0x48, "RB09 Pulse" },
{ 0x09, "RB10 Clear" },
{ 0x29, "RB10 Set" },
{ 0x49, "RB10 Pulse" },
{ 0x0A, "RB11 Clear" },
{ 0x2A, "RB11 Set" },
{ 0x4A, "RB11 Pulse" },
{ 0x0B, "RB12 Clear" },
{ 0x2B, "RB12 Set" },
{ 0x4B, "RB12 Pulse" },
{ 0x0C, "RB13 Clear" },
{ 0x2C, "RB13 Set" },
{ 0x4C, "RB13 Pulse" },
{ 0x0D, "RB14 Clear" },
{ 0x2D, "RB14 Set" },
{ 0x4D, "RB14 Pulse" },
{ 0x0E, "RB15 Clear" },
{ 0x2E, "RB15 Set" },
{ 0x4E, "RB15 Pulse" },
{ 0x0F, "RB16 Clear" },
{ 0x2F, "RB16 Set" },
{ 0x4F, "RB16 Pulse" },
{ 0x10, "RB17 Clear" },
{ 0x30, "RB17 Set" },
{ 0x50, "RB17 Pulse" },
{ 0x11, "RB18 Clear" },
{ 0x31, "RB18 Set" },
{ 0x51, "RB18 Pulse" },
{ 0x12, "RB19 Clear" },
{ 0x32, "RB19 Set" },
{ 0x52, "RB19 Pulse" },
{ 0x13, "RB20 Clear" },
{ 0x33, "RB20 Set" },
{ 0x53, "RB20 Pulse" },
{ 0x14, "RB21 Clear" },
{ 0x34, "RB21 Set" },
{ 0x54, "RB21 Pulse" },
{ 0x15, "RB22 Clear" },
{ 0x35, "RB22 Set" },
{ 0x55, "RB22 Pulse" },
{ 0x16, "RB23 Clear" },
{ 0x36, "RB23 Set" },
{ 0x56, "RB23 Pulse" },
{ 0x17, "RB24 Clear" },
{ 0x37, "RB24 Set" },
{ 0x57, "RB24 Pulse" },
{ 0x18, "RB25 Clear" },
{ 0x38, "RB25 Set" },
{ 0x58, "RB25 Pulse" },
{ 0x19, "RB26 Clear" },
{ 0x39, "RB26 Set" },
{ 0x59, "RB26 Pulse" },
{ 0x1A, "RB27 Clear" },
{ 0x3A, "RB27 Set" },
{ 0x5A, "RB27 Pulse" },
{ 0x1B, "RB28 Clear" },
{ 0x3B, "RB28 Set" },
{ 0x5B, "RB28 Pulse" },
{ 0x1C, "RB29 Clear" },
{ 0x3C, "RB29 Set" },
{ 0x5C, "RB29 Pulse" },
{ 0x1D, "RB30 Clear" },
{ 0x3D, "RB30 Set" },
{ 0x5D, "RB30 Pulse" },
{ 0x1E, "RB31 Clear" },
{ 0x3E, "RB31 Set" },
{ 0x5E, "RB31 Pulse" },
{ 0x1F, "RB32 Clear" },
{ 0x3F, "RB32 Set" },
{ 0x5F, "RB32 Pulse" },
{ 0, NULL }
};
/* Fast Operate Breaker Bit Lookup */
static const value_string selfm_fo_br_vals[] = {
{ 0x31, "Breaker Bit 1 Open (OC/OC1)" },
{ 0x11, "Breaker Bit 1 Close (CC/CC1)" },
{ 0x32, "Breaker Bit 2 Open (OC2)" },
{ 0x12, "Breaker Bit 2 Close (CC2)" },
{ 0x33, "Breaker Bit 3 Open (OC3)" },
{ 0x13, "Breaker Bit 3 Close (CC3)" },
{ 0x34, "Breaker Bit 4 Open (OC4)" },
{ 0x14, "Breaker Bit 4 Close (CC4)" },
{ 0x35, "Breaker Bit 5 Open (OC5)" },
{ 0x15, "Breaker Bit 5 Close (CC5)" },
{ 0x36, "Breaker Bit 6 Open (OC6)" },
{ 0x16, "Breaker Bit 6 Close (CC6)" },
{ 0x37, "Breaker Bit 7 Open (OC7)" },
{ 0x17, "Breaker Bit 7 Close (CC7)" },
{ 0x38, "Breaker Bit 8 Open (OC8)" },
{ 0x18, "Breaker Bit 8 Close (CC8)" },
{ 0x39, "Breaker Bit 9 Open (OC9)" },
{ 0x19, "Breaker Bit 9 Close (CC9)" },
{ 0x3A, "Breaker Bit 10 Open (OC10)" },
{ 0x1A, "Breaker Bit 10 Close (CC10)" },
{ 0x3B, "Breaker Bit 11 Open (OC11)" },
{ 0x1B, "Breaker Bit 11 Close (CC11)" },
{ 0x3C, "Breaker Bit 12 Open (OC12)" },
{ 0x1C, "Breaker Bit 12 Close (CC12)" },
{ 0x3D, "Breaker Bit 13 Open (OC13)" },
{ 0x1D, "Breaker Bit 13 Close (CC13)" },
{ 0x3E, "Breaker Bit 14 Open (OC14)" },
{ 0x1E, "Breaker Bit 14 Close (CC14)" },
{ 0x3F, "Breaker Bit 15 Open (OC15)" },
{ 0x1F, "Breaker Bit 15 Close (CC15)" },
{ 0x40, "Breaker Bit 16 Open (OC16)" },
{ 0x20, "Breaker Bit 16 Close (CC16)" },
{ 0x41, "Breaker Bit 17 Open (OC17)" },
{ 0x21, "Breaker Bit 17 Close (CC17)" },
{ 0x42, "Breaker Bit 18 Open (OC18)" },
{ 0x22, "Breaker Bit 18 Close (CC18)" },
{ 0, NULL }
};
/* Alternate Fast Operate Function Code Lookup */
static const value_string selfm_foconfig_alt_funccode_vals[] = {
{ 0xE5, "Open Breaker Bit" },
{ 0xE6, "Close Breaker Bit" },
{ 0xE7, "Set Remote Bit" },
{ 0xE8, "Clear Remote Bit" },
{ 0xE9, "Pulse Remote Bit" },
{ 0x00, "Unsupported" },
{ 0, NULL }
};
/* Fast SER Message Function Codes */
static const value_string selfm_fastser_func_code_vals[] = {
{ FAST_SER_MESSAGE_DEF, "Fast SER Message Definition Block" },
{ FAST_SER_MESSAGE_DEF_ACK, "Fast SER Message Definition Block ACK" },
{ FAST_SER_EN_UNS_DATA, "Enable Unsolicited Data" },
{ FAST_SER_EN_UNS_DATA_ACK, "Enable Unsolicited Data ACK" },
{ FAST_SER_DIS_UNS_DATA, "Disable Unsolicited Data" },
{ FAST_SER_DIS_UNS_DATA_ACK, "Disable Unsolicited Data ACK" },
{ FAST_SER_PING, "Ping Message" },
{ FAST_SER_PING_ACK, "Ping Message ACK" },
{ FAST_SER_READ_REQ, "Read Request" },
{ FAST_SER_READ_RESP, "Read Response" },
{ FAST_SER_GEN_UNS_DATA, "Generic Unsolicited Data" },
{ FAST_SER_SOE_STATE_REQ, "SOE Present State Request" },
{ FAST_SER_SOE_STATE_RESP, "SOE Present State Response" },
{ FAST_SER_UNS_RESP, "Unsolicited Fast SER Data Response" },
{ FAST_SER_UNS_RESP_ACK, "Unsolicited Fast SER Data Response ACK" },
{ FAST_SER_UNS_WRITE, "Unsolicited Write" },
{ FAST_SER_UNS_WRITE_REQ, "Unsolicited Write Request" },
{ FAST_SER_DEVDESC_REQ, "Device Description Request" },
{ FAST_SER_DEVDESC_RESP, "Device Description Response" },
{ FAST_SER_DATAFMT_REQ, "Data Format Request" },
{ FAST_SER_DATAFMT_RESP, "Data Format Response" },
{ FAST_SER_UNS_DATAFMT_RESP, "Unsolicited Data Format Response" },
{ FAST_SER_BITLABEL_REQ, "Bit Label Request" },
{ FAST_SER_BITLABEL_RESP, "Bit Label Response" },
{ FAST_SER_MGMT_REQ, "Management Request" },
{ 0, NULL }
};
#if 0
static const value_string selfm_fastser_seq_vals[] = {
{ FAST_SER_SEQ_FIN, "FIN" },
{ FAST_SER_SEQ_FIR, "FIR" },
{ 0, NULL }
};
#endif
static const value_string selfm_fastser_tagtype_vals[] = {
{ FAST_SER_TAGTYPE_CHAR8, "1 x 8-bit character per item" },
{ FAST_SER_TAGTYPE_CHAR16, "2 x 8-bit characters per item" },
{ FAST_SER_TAGTYPE_DIGWORD8_BL, "8-bit binary item, with labels" },
{ FAST_SER_TAGTYPE_DIGWORD8, "8-bit binary item, without labels" },
{ FAST_SER_TAGTYPE_DIGWORD16_BL, "16-bit binary item, with labels" },
{ FAST_SER_TAGTYPE_DIGWORD16, "16-bit binary item, without labels" },
{ FAST_SER_TAGTYPE_INT16, "16-bit Signed Integer" },
{ FAST_SER_TAGTYPE_UINT16, "16-bit Unsigned Integer" },
{ FAST_SER_TAGTYPE_INT32, "32-bit Signed Integer" },
{ FAST_SER_TAGTYPE_UINT32, "32-bit Unsigned Integer" },
{ FAST_SER_TAGTYPE_FLOAT, "IEEE Floating Point" },
{ 0, NULL }
};
/* Fast Message Unsolicited Write COM Port Codes */
static const value_string selfm_fastser_unswrite_com_vals[] = {
{ 0x0100, "COM01" },
{ 0x0200, "COM02" },
{ 0x0300, "COM03" },
{ 0x0400, "COM04" },
{ 0x0500, "COM05" },
{ 0x0600, "COM06" },
{ 0x0700, "COM07" },
{ 0x0800, "COM08" },
{ 0x0900, "COM09" },
{ 0x0A00, "COM10" },
{ 0x0B00, "COM11" },
{ 0x0C00, "COM12" },
{ 0x0D00, "COM13" },
{ 0x0E00, "COM14" },
{ 0x0F00, "COM15" },
{ 0, NULL }
};
/* Tables for reassembly of fragments. */
static reassembly_table selfm_reassembly_table;
/* ************************************************************************* */
/* Header values for reassembly */
/* ************************************************************************* */
static int hf_selfm_fragment = -1;
static int hf_selfm_fragments = -1;
static int hf_selfm_fragment_overlap = -1;
static int hf_selfm_fragment_overlap_conflict = -1;
static int hf_selfm_fragment_multiple_tails = -1;
static int hf_selfm_fragment_too_long_fragment = -1;
static int hf_selfm_fragment_error = -1;
static int hf_selfm_fragment_count = -1;
static int hf_selfm_fragment_reassembled_in = -1;
static int hf_selfm_fragment_reassembled_length = -1;
static gint ett_selfm_fragment = -1;
static gint ett_selfm_fragments = -1;
static const fragment_items selfm_frag_items = {
&ett_selfm_fragment,
&ett_selfm_fragments,
&hf_selfm_fragments,
&hf_selfm_fragment,
&hf_selfm_fragment_overlap,
&hf_selfm_fragment_overlap_conflict,
&hf_selfm_fragment_multiple_tails,
&hf_selfm_fragment_too_long_fragment,
&hf_selfm_fragment_error,
&hf_selfm_fragment_count,
&hf_selfm_fragment_reassembled_in,
&hf_selfm_fragment_reassembled_length,
/* Reassembled data field */
NULL,
"SEL Fast Message fragments"
};
/**********************************************************************************************************/
/* Clean all instances of 0xFFFF from Telnet payload to compensate for IAC control code (replace w/ 0xFF) */
/* Function Duplicated from packet-telnet.c (unescape_and_tvbuffify_telnet_option) */
/**********************************************************************************************************/
static tvbuff_t *
clean_telnet_iac(packet_info *pinfo, tvbuff_t *tvb, int offset, int len)
{
tvbuff_t *telnet_tvb;
guint8 *buf;
const guint8 *spos;
guint8 *dpos;
int skip_byte, len_remaining;
spos=tvb_get_ptr(tvb, offset, len);
buf=(guint8 *)g_malloc(len);
dpos=buf;
skip_byte = 0;
len_remaining = len;
while(len_remaining > 0){
/* Only analyze two sequential bytes of source tvb if we have at least two bytes left */
if (len_remaining > 1) {
/* If two sequential 0xFF's exist, increment skip_byte counter, decrement */
/* len_remaining by 2 and copy a single 0xFF to dest tvb. */
if((spos[0]==0xff) && (spos[1]==0xff)){
skip_byte++;
len_remaining -= 2;
*(dpos++)=0xff;
spos+=2;
continue;
}
}
/* If we only have a single byte left, or there were no sequential 0xFF's, copy byte from src tvb to dest tvb */
*(dpos++)=*(spos++);
len_remaining--;
}
telnet_tvb = tvb_new_child_real_data(tvb, buf, len-skip_byte, len-skip_byte);
tvb_set_free_cb(telnet_tvb, g_free);
add_new_data_source(pinfo, telnet_tvb, "Processed Telnet Data");
return telnet_tvb;
}
/******************************************************************************************************/
/* Execute dissection of Fast Meter configuration frames independent of any GUI access of said frames */
/* Load configuration information into fm_config_frame struct */
/******************************************************************************************************/
static fm_config_frame* fmconfig_frame_fast(tvbuff_t *tvb)
{
/* Set up structures needed to add the protocol subtree and manage it */
guint count, offset = 0;
fm_config_frame *frame;
/* get a new frame and initialize it */
frame = wmem_new(wmem_file_scope(), fm_config_frame);
/* Get data packet setup information from config message and copy into ai_info (if required) */
frame->cfg_cmd = tvb_get_ntohs(tvb, offset);
/* skip length byte, position offset+2 */
frame->num_flags = tvb_get_guint8(tvb, offset+3);
/* skip scale factor location, position offset+4 */
/* skip number of scale factors, position offset+5 */
frame->num_ai = tvb_get_guint8(tvb, offset+6);
frame->num_ai_samples = tvb_get_guint8(tvb, offset+7);
frame->num_dig = tvb_get_guint8(tvb, offset+8);
frame->num_calc = tvb_get_guint8(tvb, offset+9);
/* Update offset pointer */
offset += 10;
/* Get data packet analog/timestamp/digital offsets and copy into ai_info */
frame->offset_ai = tvb_get_ntohs(tvb, offset);
frame->offset_ts = tvb_get_ntohs(tvb, offset+2);
frame->offset_dig = tvb_get_ntohs(tvb, offset+4);
/* Update offset pointer */
offset += 6;
frame->analogs = (fm_analog_info *)wmem_alloc(wmem_file_scope(), frame->num_ai * sizeof(fm_analog_info));
/* Get AI Channel Details and copy into ai_info */
for (count = 0; count < frame->num_ai; count++) {
fm_analog_info *analog = &(frame->analogs[count]);
tvb_memcpy(tvb, analog->name, offset, FM_CONFIG_ANA_CHNAME_LEN);
analog->name[FM_CONFIG_ANA_CHNAME_LEN] = '\0'; /* Put a terminating null onto the end of the AI Channel name */
analog->type = tvb_get_guint8(tvb, offset+6);
analog->sf_type = tvb_get_guint8(tvb, offset+7);
analog->sf_offset = tvb_get_ntohs(tvb, offset+8);
offset += 10;
}
return frame;
}
/******************************************************************************************************/
/* Execute dissection of Data Item definition info before loading GUI tree */
/* Load configuration information into fastser_dataitem struct */
/******************************************************************************************************/
static fastser_dataitem* fastser_dataitem_save(tvbuff_t *tvb, int offset)
{
fastser_dataitem *dataitem;
/* get a new dataitem and initialize it */
dataitem = wmem_new(wmem_file_scope(), fastser_dataitem);
/* retrieve data item name and terminate with a null */
tvb_memcpy(tvb, dataitem->name, offset, 10);
dataitem->name[10] = '\0'; /* Put a terminating null onto the end of the string */
/* retrieve data item quantity and type */
dataitem->quantity = tvb_get_ntohs(tvb, offset+10);
dataitem->data_type = tvb_get_ntohs(tvb, offset+12);
return dataitem;
}
/******************************************************************************************************/
/* Execute dissection of Data Region definition info before loading GUI tree */
/* Load configuration information into fastser_dataregion struct */
/******************************************************************************************************/
static fastser_dataregion* fastser_dataregion_save(tvbuff_t *tvb, int offset)
{
fastser_dataregion *dataregion;
/* get a new dataregion and initialize it */
dataregion = wmem_new(wmem_file_scope(), fastser_dataregion);
/* retrieve data region name and terminate with a null */
tvb_memcpy(tvb, dataregion->name, offset, 10);
dataregion->name[10] = '\0'; /* Put a terminating null onto the end of the string */
return dataregion;
}
/********************************************************************************************************/
/* Lookup region name using current base address & saved conversation data. Return ptr to gchar string */
/********************************************************************************************************/
const gchar*
region_lookup(packet_info *pinfo, guint32 base_addr)
{
fm_conversation *conv;
fastser_dataregion *dataregion = NULL;
conv = (fm_conversation *)p_get_proto_data(wmem_file_scope(), pinfo, proto_selfm, 0);
if (conv) {
dataregion = (fastser_dataregion*)wmem_tree_lookup32(conv->fastser_dataregions, base_addr);
}
if (dataregion) {
return dataregion->name;
}
/* If we couldn't identify the region using the current base address, return a default string */
return "Unknown Region";
}
/******************************************************************************************************/
/* Code to Dissect Relay Definition Frames */
/******************************************************************************************************/
static int
dissect_relaydef_frame(tvbuff_t *tvb, proto_tree *tree, int offset)
{
/* Set up structures needed to add the protocol subtree and manage it */
proto_item *relaydef_item, *relaydef_fm_item, *relaydef_flags_item, *relaydef_proto_item;
proto_tree *relaydef_tree, *relaydef_fm_tree, *relaydef_flags_tree, *relaydef_proto_tree;
guint8 len, num_proto, num_fm, num_flags;
int count;
len = tvb_get_guint8(tvb, offset);
num_proto = tvb_get_guint8(tvb, offset+1);
num_fm = tvb_get_guint8(tvb, offset+2);
num_flags = tvb_get_guint8(tvb, offset+3);
/* Add items to protocol tree specific to Relay Definition Block */
relaydef_item = proto_tree_add_text(tree, tvb, offset, len-2, "Relay Definition Block Details");
relaydef_tree = proto_item_add_subtree(relaydef_item, ett_selfm_relaydef);
/* Reported length */
proto_tree_add_item(relaydef_tree, hf_selfm_relaydef_len, tvb, offset, 1, ENC_BIG_ENDIAN);
/* Reported Number of Protocols Supported */
relaydef_proto_item = proto_tree_add_item(relaydef_tree, hf_selfm_relaydef_numproto, tvb, offset+1, 1, ENC_BIG_ENDIAN);
relaydef_proto_tree = proto_item_add_subtree(relaydef_proto_item, ett_selfm_relaydef_proto);
/* Reported Number of Fast Meter Commands Supported */
relaydef_fm_item = proto_tree_add_item(relaydef_tree, hf_selfm_relaydef_numfm, tvb, offset+2, 1, ENC_BIG_ENDIAN);
relaydef_fm_tree = proto_item_add_subtree(relaydef_fm_item, ett_selfm_relaydef_fm);
/* Reported Number of Status Bit Flags Supported */
relaydef_flags_item = proto_tree_add_item(relaydef_tree, hf_selfm_relaydef_numflags, tvb, offset+3, 1, ENC_BIG_ENDIAN);
relaydef_flags_tree = proto_item_add_subtree(relaydef_flags_item, ett_selfm_relaydef_flags);
/* Get our offset up-to-date */
offset += 4;
/* Add each reported Fast Meter cfg/data message */
for (count = 1; count <= num_fm; count++) {
proto_tree_add_item(relaydef_fm_tree, hf_selfm_relaydef_fmcfg_cmd, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(relaydef_fm_tree, hf_selfm_relaydef_fmdata_cmd, tvb, offset+2, 2, ENC_BIG_ENDIAN);
offset += 4;
}
/* Add each reported status bit flag, along with corresponding response command */
for (count = 1; count <= num_flags; count++) {
proto_tree_add_item(relaydef_flags_tree, hf_selfm_relaydef_statbit, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(relaydef_flags_tree, hf_selfm_relaydef_statbit_cmd, tvb, offset+2, 6, ENC_NA);
offset += 8;
}
/* Add each supported protocol */
for (count = 1; count <= num_proto; count++) {
proto_tree_add_item(relaydef_proto_tree, hf_selfm_relaydef_proto, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
}
/* Add Pad byte (if present) and checksum */
if (tvb_reported_length_remaining(tvb, offset) > 1) {
proto_tree_add_item(relaydef_tree, hf_selfm_padbyte, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
}
proto_tree_add_item(relaydef_tree, hf_selfm_checksum, tvb, offset, 1, ENC_BIG_ENDIAN);
return tvb_length(tvb);
}
/******************************************************************************************************/
/* Code to dissect Fast Meter Configuration Frames */
/******************************************************************************************************/
static int
dissect_fmconfig_frame(tvbuff_t *tvb, proto_tree *tree, int offset)
{
/* Set up structures needed to add the protocol subtree and manage it */
proto_item *fmconfig_item, *fmconfig_ai_item=NULL, *fmconfig_calc_item=NULL;
proto_tree *fmconfig_tree, *fmconfig_ai_tree=NULL, *fmconfig_calc_tree=NULL;
guint count;
guint8 len, num_ai, num_calc;
gchar ai_name[FM_CONFIG_ANA_CHNAME_LEN+1]; /* 6 Characters + a Null */
len = tvb_get_guint8(tvb, offset);
/* skip num_flags, position offset+1 */
/* skip sf_loc, position offset+2 */
/* skip num_sf, position offset+3 */
num_ai = tvb_get_guint8(tvb, offset+4);
/* skip num_samp, position offset+5 */
/* skip num_dig, position offset+6 */
num_calc = tvb_get_guint8(tvb, offset+7);
fmconfig_item = proto_tree_add_text(tree, tvb, offset, len, "Fast Meter Configuration Details");
fmconfig_tree = proto_item_add_subtree(fmconfig_item, ett_selfm_fmconfig);
/* Add items to protocol tree specific to Fast Meter Configuration Block */
/* Get Setup Information for FM Config Block */
proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_len, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_numflags, tvb, offset+1, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_loc_sf, tvb, offset+2, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_num_sf, tvb, offset+3, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_num_ai, tvb, offset+4, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_num_samp, tvb, offset+5, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_num_dig, tvb, offset+6, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_num_calc, tvb, offset+7, 1, ENC_BIG_ENDIAN);
/* Update offset pointer */
offset += 8;
/* Add data packet offsets to tree and update offset pointer */
proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_ofs_ai, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_ofs_ts, tvb, offset+2, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_ofs_dig, tvb, offset+4, 2, ENC_BIG_ENDIAN);
offset += 6;
/* Get AI Channel Details */
for (count = 0; count < num_ai; count++) {
tvb_memcpy(tvb, &ai_name, offset, 6);
ai_name[FM_CONFIG_ANA_CHNAME_LEN] = '\0'; /* Put a terminating null onto the end of the AI name, in case none exists */
fmconfig_ai_item = proto_tree_add_text(fmconfig_tree, tvb, offset, 10, "Analog Channel: %s", ai_name);
fmconfig_ai_tree = proto_item_add_subtree(fmconfig_ai_item, ett_selfm_fmconfig_ai);
/* Add Channel Name, Channel Data Type, Scale Factor Type and Scale Factor Offset to tree */
proto_tree_add_text(fmconfig_ai_tree, tvb, offset, 6, "Analog Channel Name: %s", ai_name);
proto_tree_add_item(fmconfig_ai_tree, hf_selfm_fmconfig_ai_type, tvb, offset+6, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_ai_tree, hf_selfm_fmconfig_ai_sf_type, tvb, offset+7, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_ai_tree, hf_selfm_fmconfig_ai_sf_ofs, tvb, offset+8, 2, ENC_BIG_ENDIAN);
/* Update Offset Pointer */
offset += 10;
}
/* 14-byte Calculation block instances based on num_calc */
for (count = 0; count < num_calc; count++) {
fmconfig_calc_item = proto_tree_add_text(fmconfig_tree, tvb, offset, 14, "Calculation Block: %d", count+1);
fmconfig_calc_tree = proto_item_add_subtree(fmconfig_calc_item, ett_selfm_fmconfig_calc);
/* Rotation, Voltage Connection and Current Connection are all bit-masked on the same byte */
proto_tree_add_item(fmconfig_calc_tree, hf_selfm_fmconfig_cblk_rot, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_calc_tree, hf_selfm_fmconfig_cblk_vconn, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_calc_tree, hf_selfm_fmconfig_cblk_iconn, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_calc_tree, hf_selfm_fmconfig_cblk_ctype, tvb, offset+1, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_calc_tree, hf_selfm_fmconfig_cblk_deskew_ofs, tvb, offset+2, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_calc_tree, hf_selfm_fmconfig_cblk_rs_ofs, tvb, offset+4, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_calc_tree, hf_selfm_fmconfig_cblk_xs_ofs, tvb, offset+6, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_calc_tree, hf_selfm_fmconfig_cblk_ia_idx, tvb, offset+8, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_calc_tree, hf_selfm_fmconfig_cblk_ib_idx, tvb, offset+9, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_calc_tree, hf_selfm_fmconfig_cblk_ic_idx, tvb, offset+10, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_calc_tree, hf_selfm_fmconfig_cblk_va_idx, tvb, offset+11, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_calc_tree, hf_selfm_fmconfig_cblk_vb_idx, tvb, offset+12, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_calc_tree, hf_selfm_fmconfig_cblk_vc_idx, tvb, offset+13, 1, ENC_BIG_ENDIAN);
offset += 14;
}
/* Add Pad byte (if present) and checksum */
if (tvb_reported_length_remaining(tvb, offset) > 1) {
proto_tree_add_item(fmconfig_tree, hf_selfm_padbyte, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
}
proto_tree_add_item(fmconfig_tree, hf_selfm_checksum, tvb, offset, 1, ENC_BIG_ENDIAN);
return tvb_length(tvb);
}
/******************************************************************************************************/
/* Code to dissect Fast Meter Data Frames */
/* Formatting depends heavily on previously-encountered Configuration Frames so search array instances for them */
/******************************************************************************************************/
static int
dissect_fmdata_frame(tvbuff_t *tvb, proto_tree *tree, packet_info *pinfo, int offset, guint16 config_cmd_match)
{
/* Set up structures needed to add the protocol subtree and manage it */
proto_item *fmdata_item, *fmdata_ai_item=NULL, *fmdata_dig_item=NULL, *fmdata_ai_ch_item=NULL, *fmdata_dig_ch_item=NULL;
proto_tree *fmdata_tree, *fmdata_ai_tree=NULL, *fmdata_dig_tree=NULL, *fmdata_ai_ch_tree=NULL, *fmdata_dig_ch_tree=NULL;
guint8 len, i=0, j=0, ts_mon, ts_day, ts_year, ts_hour, ts_min, ts_sec;
guint16 config_cmd, ts_msec;
gint16 ai_int16val;
gfloat ai_fpval, ai_sf_fp;
gdouble ai_fpd_val;
gboolean config_found = FALSE;
fm_conversation *conv;
fm_config_frame *cfg_data;
gint cnt = 0, ch_size=0;
len = tvb_get_guint8(tvb, offset);
fmdata_item = proto_tree_add_text(tree, tvb, offset, len-2, "Fast Meter Data Details");
fmdata_tree = proto_item_add_subtree(fmdata_item, ett_selfm_fmdata);
/* Reported length */
proto_tree_add_item(fmdata_tree, hf_selfm_fmdata_len, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
/* Search for previously-encountered Configuration information to dissect the frame */
{
conv = (fm_conversation *)p_get_proto_data(wmem_file_scope(), pinfo, proto_selfm, 0);
if (conv) {
wmem_list_frame_t *frame = wmem_list_head(conv->fm_config_frames);
/* Cycle through possible instances of multiple fm_config_data_blocks, looking for match */
while (frame && !config_found) {
cfg_data = (fm_config_frame *)wmem_list_frame_data(frame);
config_cmd = cfg_data->cfg_cmd;
/* If the stored config_cmd matches the expected one we are looking for, mark that the config data was found */
if (config_cmd == config_cmd_match) {
proto_item_append_text(fmdata_item, ", using frame number %"G_GUINT32_FORMAT" as Configuration Frame",
cfg_data->fnum);
config_found = TRUE;
}
frame = wmem_list_frame_next(frame);
}
if (config_found) {
/* Retrieve number of Status Flag bytes and setup tree */
if (cfg_data->num_flags == 1){
proto_tree_add_item(fmdata_tree, hf_selfm_fmdata_flagbyte, tvb, offset, 1, ENC_BIG_ENDIAN);
/*offset += 1;*/
}
cnt = cfg_data->num_ai; /* actual number of analog values to available to dissect */
/* Update our current tvb offset to the actual AI offset saved from the Configuration message */
offset = cfg_data->offset_ai;
/* Check that we actually have analog data to dissect */
if (cnt > 0) {
/* Include decoding for each Sample provided for the Analog Channels */
for (j=0; j < cfg_data->num_ai_samples; j++) {
/* Use different lookup strings, depending on how many samples are available per Analog Channel */
if (cfg_data->num_ai_samples == 1) {
fmdata_ai_item = proto_tree_add_text(fmdata_tree, tvb, offset, ((cfg_data->offset_ts - cfg_data->offset_ai)/cfg_data->num_ai_samples),
"Analog Channels (%d), Sample: %d (%s)",
cfg_data->num_ai, j+1, val_to_str_const(j+1, selfm_fmconfig_numsamples1_vals, "Unknown"));
fmdata_ai_tree = proto_item_add_subtree(fmdata_ai_item, ett_selfm_fmdata_ai);
}
else if (cfg_data->num_ai_samples == 2) {
fmdata_ai_item = proto_tree_add_text(fmdata_tree, tvb, offset, ((cfg_data->offset_ts - cfg_data->offset_ai)/cfg_data->num_ai_samples),
"Analog Channels (%d), Sample: %d (%s)",
cfg_data->num_ai, j+1, val_to_str_const(j+1, selfm_fmconfig_numsamples2_vals, "Unknown"));
fmdata_ai_tree = proto_item_add_subtree(fmdata_ai_item, ett_selfm_fmdata_ai);
}
else if (cfg_data->num_ai_samples == 4) {
fmdata_ai_item = proto_tree_add_text(fmdata_tree, tvb, offset, ((cfg_data->offset_ts - cfg_data->offset_ai)/cfg_data->num_ai_samples),
"Analog Channels (%d), Sample: %d (%s)",
cfg_data->num_ai, j+1, val_to_str_const(j+1, selfm_fmconfig_numsamples4_vals, "Unknown"));
fmdata_ai_tree = proto_item_add_subtree(fmdata_ai_item, ett_selfm_fmdata_ai);
}
/* For each analog channel we encounter... */
for (i = 0; i < cnt; i++) {
fm_analog_info *ai = &(cfg_data->analogs[i]);
/* Channel size (in bytes) determined by data type */
switch (ai->type) {
case FM_CONFIG_ANA_CHTYPE_INT16:
ch_size = 2; /* 2 bytes */
break;
case FM_CONFIG_ANA_CHTYPE_FP:
ch_size = 4; /* 4 bytes */
break;
case FM_CONFIG_ANA_CHTYPE_FPD:
ch_size = 8; /* 8 bytes */
break;
default:
break;
}
/* Build sub-tree for each Analog Channel */
fmdata_ai_ch_item = proto_tree_add_text(fmdata_ai_tree, tvb, offset, ch_size, "Analog Channel %d: %s", i+1, ai->name);
fmdata_ai_ch_tree = proto_item_add_subtree(fmdata_ai_ch_item, ett_selfm_fmdata_ai_ch);
/* XXX - Need more decoding options here for different data types, but I need packet capture examples first */
/* Decode analog value appropriately, according to data type */
switch (ai->type) {
/* Channel type is 16-bit Integer */
case FM_CONFIG_ANA_CHTYPE_INT16:
ai_int16val = tvb_get_ntohs(tvb, offset);
/* If we've got a scale factor offset, apply it before printing the analog */
if ((ai->sf_offset != 0) && (ai->sf_type == FM_CONFIG_ANA_SFTYPE_FP)){
ai_sf_fp = tvb_get_ntohieee_float(tvb, ai->sf_offset);
proto_tree_add_float(fmdata_ai_ch_tree, hf_selfm_fmdata_ai_sf_fp, tvb, ai->sf_offset, 4, ai_sf_fp);
}
else {
ai_sf_fp = 1;
}
proto_tree_add_text(fmdata_ai_ch_tree, tvb, offset, ch_size, "Value (Raw): %d", ai_int16val);
proto_tree_add_text(fmdata_ai_ch_tree, tvb, offset, ch_size, "Value (w/ Scale Factor): %f", ((gfloat)ai_int16val*ai_sf_fp));
offset += ch_size;
break;
/* Channel type is IEEE Floating point */
case FM_CONFIG_ANA_CHTYPE_FP:
ai_fpval = tvb_get_ntohieee_float(tvb, offset);
proto_tree_add_text(fmdata_ai_ch_tree, tvb, offset, ch_size, "Value: %f", ai_fpval);
offset += ch_size;
break;
/* Channel type is Double IEEE Floating point */
case FM_CONFIG_ANA_CHTYPE_FPD:
ai_fpd_val = tvb_get_ntohieee_double(tvb, offset);
proto_tree_add_text(fmdata_ai_ch_tree, tvb, offset, ch_size, "Value: %f", ai_fpd_val);
offset += ch_size;
break;
} /* channel type */
} /* number of analog channels */
} /* number of samples */
} /* there were analogs */
/* Check if we have a time-stamp in this message */
if (cfg_data->offset_ts != 0xFFFF) {
/* Retrieve timestamp from 8-byte format */
/* Stored as: month, day, year (xx), hr, min, sec, msec (16-bit) */
ts_mon = tvb_get_guint8(tvb, offset);
ts_day = tvb_get_guint8(tvb, offset+1);
ts_year = tvb_get_guint8(tvb, offset+2);
ts_hour = tvb_get_guint8(tvb, offset+3);
ts_min = tvb_get_guint8(tvb, offset+4);
ts_sec = tvb_get_guint8(tvb, offset+5);
ts_msec = tvb_get_ntohs(tvb, offset+6);
proto_tree_add_text(fmdata_tree, tvb, offset, 8, "Timestamp: %.2d/%.2d/%.2d %.2d:%.2d:%.2d.%.3d", ts_mon, ts_day, ts_year, ts_hour, ts_min, ts_sec, ts_msec);
offset += 8;
}
/* Check that we actually have digital data */
if (cfg_data->num_dig > 0) {
fmdata_dig_item = proto_tree_add_text(fmdata_tree, tvb, offset, cfg_data->num_dig, "Digital Channels (%d)", cfg_data->num_dig);
fmdata_dig_tree = proto_item_add_subtree(fmdata_dig_item, ett_selfm_fmdata_dig);
for (i=0; i < cfg_data->num_dig; i++) {
fmdata_dig_ch_item = proto_tree_add_text(fmdata_dig_tree, tvb, offset, 1, "Digital Word Bit Row: %2d", i+1);
fmdata_dig_ch_tree = proto_item_add_subtree(fmdata_dig_ch_item, ett_selfm_fmdata_dig_ch);
/* Display the bit pattern on the digital channel proto_item */
proto_item_append_text(fmdata_dig_ch_item, " [ %d %d %d %d %d %d %d %d ]",
((tvb_get_guint8(tvb, offset) & 0x80) >> 7), ((tvb_get_guint8(tvb, offset) & 0x40) >> 6),
((tvb_get_guint8(tvb, offset) & 0x20) >> 5), ((tvb_get_guint8(tvb, offset) & 0x10) >> 4),
((tvb_get_guint8(tvb, offset) & 0x08) >> 3), ((tvb_get_guint8(tvb, offset) & 0x04) >> 2),
((tvb_get_guint8(tvb, offset) & 0x02) >> 1), (tvb_get_guint8(tvb, offset) & 0x01));
proto_tree_add_item(fmdata_dig_ch_tree, hf_selfm_fmdata_dig_b0, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmdata_dig_ch_tree, hf_selfm_fmdata_dig_b1, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmdata_dig_ch_tree, hf_selfm_fmdata_dig_b2, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmdata_dig_ch_tree, hf_selfm_fmdata_dig_b3, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmdata_dig_ch_tree, hf_selfm_fmdata_dig_b4, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmdata_dig_ch_tree, hf_selfm_fmdata_dig_b5, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmdata_dig_ch_tree, hf_selfm_fmdata_dig_b6, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmdata_dig_ch_tree, hf_selfm_fmdata_dig_b7, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
}
} /* digital data was available */
/* Add Pad byte (if present) and checksum */
if (tvb_reported_length_remaining(tvb, offset) > 1) {
proto_tree_add_item(fmdata_tree, hf_selfm_padbyte, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
}
proto_tree_add_item(fmdata_tree, hf_selfm_checksum, tvb, offset, 1, ENC_BIG_ENDIAN);
} /* matching config frame message was found */
} /* config data found */
if (!config_found) {
proto_item_append_text(fmdata_item, ", No Fast Meter Configuration frame found");
return 0;
}
}
return tvb_length(tvb);
}
/******************************************************************************************************/
/* Code to Dissect Fast Operate Configuration Frames */
/******************************************************************************************************/
static int
dissect_foconfig_frame(tvbuff_t *tvb, proto_tree *tree, int offset)
{
/* Set up structures needed to add the protocol subtree and manage it */
proto_item *foconfig_item, *foconfig_brkr_item, *foconfig_rb_item;
proto_tree *foconfig_tree, *foconfig_brkr_tree=NULL, *foconfig_rb_tree=NULL;
guint count;
guint8 len, num_brkr, prb_supp;
guint16 num_rb;
len = tvb_get_guint8(tvb, offset);
num_brkr = tvb_get_guint8(tvb, offset+1);
num_rb = tvb_get_ntohs(tvb, offset+2);
prb_supp = tvb_get_guint8(tvb, offset+4);
foconfig_item = proto_tree_add_text(tree, tvb, offset, len-2, "Fast Operate Configuration Details");
foconfig_tree = proto_item_add_subtree(foconfig_item, ett_selfm_foconfig);
/* Add items to protocol tree specific to Fast Operate Configuration Block */
/* Reported length */
proto_tree_add_item(foconfig_tree, hf_selfm_foconfig_len, tvb, offset, 1, ENC_BIG_ENDIAN);
/* Supported Breaker Bits */
foconfig_brkr_item = proto_tree_add_item(foconfig_tree, hf_selfm_foconfig_num_brkr, tvb, offset+1, 1, ENC_BIG_ENDIAN);
/* Supported Remote Bits */
foconfig_rb_item = proto_tree_add_item(foconfig_tree, hf_selfm_foconfig_num_rb, tvb, offset+2, 2, ENC_BIG_ENDIAN);
/* Add "Remote Bit Pulse Supported?" and "Reserved Bit" to Tree */
proto_tree_add_item(foconfig_tree, hf_selfm_foconfig_prb_supp, tvb, offset+4, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(foconfig_tree, hf_selfm_foconfig_reserved, tvb, offset+5, 1, ENC_BIG_ENDIAN);
/* Update offset pointer */
offset += 6;
/* Get Breaker Bit Command Details */
for (count = 1; count <= num_brkr; count++) {
foconfig_brkr_tree = proto_item_add_subtree(foconfig_brkr_item, ett_selfm_foconfig_brkr);
/* Add Breaker Open/Close commands to tree */
proto_tree_add_item(foconfig_brkr_tree, hf_selfm_foconfig_brkr_open, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(foconfig_brkr_tree, hf_selfm_foconfig_brkr_close, tvb, offset+1, 1, ENC_BIG_ENDIAN);
offset += 2;
}
/* Get Remote Bit Command Details */
for (count = 1; count <= num_rb; count++) {
foconfig_rb_tree = proto_item_add_subtree(foconfig_rb_item, ett_selfm_foconfig_rb);
/* Add "Remote Bit Set" command to tree */
proto_tree_add_item(foconfig_rb_tree, hf_selfm_foconfig_rb_cmd, tvb, offset, 1, ENC_BIG_ENDIAN);
/* Print "Remote Bit Clear" command to tree */
proto_tree_add_item(foconfig_rb_tree, hf_selfm_foconfig_rb_cmd, tvb, offset+1, 1, ENC_BIG_ENDIAN);
/* If Remote Bit "pulse" is supported, retrieve that command as well */
if (prb_supp) {
proto_tree_add_item(foconfig_rb_tree, hf_selfm_foconfig_rb_cmd, tvb, offset+2, 1, ENC_BIG_ENDIAN);
offset += 3;
}
else{
offset += 2;
}
}
/* Add Pad byte (if present) and checksum */
if (tvb_reported_length_remaining(tvb, offset) > 1) {
proto_tree_add_item(foconfig_tree, hf_selfm_padbyte, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
}
proto_tree_add_item(foconfig_tree, hf_selfm_checksum, tvb, offset, 1, ENC_BIG_ENDIAN);
return tvb_length(tvb);
}
/******************************************************************************************************/
/* Code to Dissect Alternate Fast Operate (AFO) Configuration Frames */
/******************************************************************************************************/
static int
dissect_alt_fastop_config_frame(tvbuff_t *tvb, proto_tree *tree, int offset)
{
/* Set up structures needed to add the protocol subtree and manage it */
proto_item *foconfig_item=NULL;
proto_tree *foconfig_tree=NULL;
guint8 len;
len = tvb_get_guint8(tvb, offset);
foconfig_item = proto_tree_add_text(tree, tvb, offset, len-2, "Alternate Fast Operate Configuration Details");
foconfig_tree = proto_item_add_subtree(foconfig_item, ett_selfm_foconfig);
/* Add items to protocol tree specific to Fast Operate Configuration Block */
/* Reported length */
proto_tree_add_item(foconfig_tree, hf_selfm_alt_foconfig_len, tvb, offset, 1, ENC_BIG_ENDIAN);
/* Number of Ports */
proto_tree_add_item(foconfig_tree, hf_selfm_alt_foconfig_num_ports, tvb, offset+1, 1, ENC_BIG_ENDIAN);
/* Number of Breaker Bits */
proto_tree_add_item(foconfig_tree, hf_selfm_alt_foconfig_num_brkr, tvb, offset+2, 1, ENC_BIG_ENDIAN);
/* Number of Remote Bits */
proto_tree_add_item(foconfig_tree, hf_selfm_alt_foconfig_num_rb, tvb, offset+3, 1, ENC_BIG_ENDIAN);
/* Function Code(s) Supported */
proto_tree_add_item(foconfig_tree, hf_selfm_alt_foconfig_funccode, tvb, offset+4, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(foconfig_tree, hf_selfm_alt_foconfig_funccode, tvb, offset+5, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(foconfig_tree, hf_selfm_alt_foconfig_funccode, tvb, offset+6, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(foconfig_tree, hf_selfm_alt_foconfig_funccode, tvb, offset+7, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(foconfig_tree, hf_selfm_alt_foconfig_funccode, tvb, offset+8, 1, ENC_BIG_ENDIAN);
return tvb_length(tvb);
}
/******************************************************************************************************/
/* Code to Dissect Fast Operate (Remote Bit or Breaker Bit) Frames */
/******************************************************************************************************/
static int
dissect_fastop_frame(tvbuff_t *tvb, proto_tree *tree, packet_info *pinfo, int offset)
{
/* Set up structures needed to add the protocol subtree and manage it */
proto_item *fastop_item;
proto_tree *fastop_tree;
guint8 len, opcode;
guint16 msg_type;
msg_type = tvb_get_ntohs(tvb, offset-2);
len = tvb_get_guint8(tvb, offset);
fastop_item = proto_tree_add_text(tree, tvb, offset, len-2, "Fast Operate Details");
fastop_tree = proto_item_add_subtree(fastop_item, ett_selfm_fastop);
/* Add Reported length to tree*/
proto_tree_add_item(fastop_tree, hf_selfm_fastop_len, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
/* Operate Code */
opcode = tvb_get_guint8(tvb, offset);
/* Use different lookup table for different msg_type */
if (msg_type == CMD_FASTOP_RB_CTRL) {
proto_tree_add_item(fastop_tree, hf_selfm_fastop_rb_code, tvb, offset, 1, ENC_BIG_ENDIAN);
/* Append Column Info w/ Control Code Code */
col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "%s", val_to_str_const(opcode, selfm_fo_rb_vals, "Unknown Control Code"));
}
else if (msg_type == CMD_FASTOP_BR_CTRL) {
proto_tree_add_item(fastop_tree, hf_selfm_fastop_br_code, tvb, offset, 1, ENC_BIG_ENDIAN);
/* Append Column Info w/ Control Code Code */
col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "%s", val_to_str_const(opcode, selfm_fo_br_vals, "Unknown Control Code"));
}
offset += 1;
/* Operate Code Validation */
proto_tree_add_item(fastop_tree, hf_selfm_fastop_valid, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
/* Add checksum */
proto_tree_add_item(fastop_tree, hf_selfm_checksum, tvb, offset, 1, ENC_BIG_ENDIAN);
return tvb_length(tvb);
}
/******************************************************************************************************/
/* Code to Dissect Alternate Fast Operate (AFO) Command Frames */
/******************************************************************************************************/
static int
dissect_alt_fastop_frame(tvbuff_t *tvb, proto_tree *tree, packet_info *pinfo, int offset)
{
/* Set up structures needed to add the protocol subtree and manage it */
proto_item *fastop_item;
proto_tree *fastop_tree;
guint8 len;
guint16 opcode;
len = tvb_get_guint8(tvb, offset);
fastop_item = proto_tree_add_text(tree, tvb, offset, len-2, "Alternate Fast Operate Details");
fastop_tree = proto_item_add_subtree(fastop_item, ett_selfm_fastop);
/* Add Reported length to tree */
proto_tree_add_item(fastop_tree, hf_selfm_alt_fastop_len, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
/* Operate Code */
opcode = tvb_get_ntohs(tvb, offset);
/* Append Column Info w/ Control Code Code */
col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "%#x", opcode);
proto_tree_add_item(fastop_tree, hf_selfm_alt_fastop_code, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* Operate Code Validation */
proto_tree_add_item(fastop_tree, hf_selfm_alt_fastop_valid, tvb, offset, 2, ENC_BIG_ENDIAN);
return tvb_length(tvb);
}
/**************************************************************************************************************************/
/* Code to dissect Fast SER Read Response Messages */
/**************************************************************************************************************************/
/* Each Read Response frame can have a maximum data size of 117 x 16-bit words (or 234 bytes) - this is due to the 20 */
/* the 20 bytes of overhead and 254 max frame size. In the event of a larger data payload than 234 bytes, the FIR and FIN */
/* bits will be used to indicate either the first frame, last frame, or a neither/middle frame. */
/* We can use the FIN bit to attempt a reassembly of the data payload since all messages will arrive sequentially. */
/**************************************************************************************************************************/
static int
dissect_fastser_readresp_frame(tvbuff_t *tvb, proto_tree *fastser_tree, packet_info *pinfo, int offset, guint8 seq_byte)
{
proto_item *fastser_tag_item=NULL, *fastser_tag_value_item=NULL, *fmdata_dig_item=NULL;
proto_item *pi_baseaddr=NULL, *pi_fnum=NULL, *pi_type=NULL, *pi_qty=NULL;
proto_tree *fastser_tag_tree=NULL, *fmdata_dig_tree=NULL;
guint32 base_addr;
guint16 data_size, num_addr, cnt;
guint8 *item_val_str_ptr;
guint8 seq_cnt;
gboolean seq_fir, seq_fin, save_fragmented;
int payload_offset=0;
fm_conversation *conv;
fastser_dataitem *dataitem;
tvbuff_t *data_tvb, *payload_tvb;
/* Decode sequence byte components */
seq_cnt = seq_byte & FAST_SER_SEQ_CNT;
seq_fir = ((seq_byte & FAST_SER_SEQ_FIR) >> 7);
seq_fin = ((seq_byte & FAST_SER_SEQ_FIN) >> 6);
base_addr = tvb_get_ntohl(tvb, offset); /* 32-bit field with base address to read */
num_addr = tvb_get_ntohs(tvb, offset+4); /* 16-bit field with number of 16-bit addresses to read */
/* Append Column Info w/ Base Address */
col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "%#x [%s]", base_addr, region_lookup(pinfo, base_addr));
pi_baseaddr = proto_tree_add_item(fastser_tree, hf_selfm_fastser_baseaddr, tvb, offset, 4, ENC_BIG_ENDIAN);
proto_item_append_text(pi_baseaddr, " [%s]", region_lookup(pinfo, base_addr));
proto_tree_add_item(fastser_tree, hf_selfm_fastser_numwords, tvb, offset+4, 2, ENC_BIG_ENDIAN);
offset += 6;
/* Setup a new tvb representing just the data payload of this particular message */
data_tvb = tvb_new_subset( tvb, offset, (tvb_reported_length_remaining(tvb, offset)-2), (tvb_reported_length_remaining(tvb, offset)-2));
save_fragmented = pinfo->fragmented;
/* Check for fragmented packet by looking at the FIR and FIN bits */
if (! (seq_fir && seq_fin)) {
fragment_head *frag_msg;
/* This is a fragmented packet, mark it as such */
pinfo->fragmented = TRUE;
frag_msg = fragment_add_seq_next(&selfm_reassembly_table,
data_tvb, 0, pinfo, 0, NULL,
tvb_reported_length(data_tvb),
!seq_fin);
payload_tvb = process_reassembled_data(data_tvb, 0, pinfo,
"Reassembled Data Response Payload", frag_msg, &selfm_frag_items,
NULL, fastser_tree);
if (payload_tvb) { /* Reassembled */
/* We have the complete payload */
col_append_sep_str(pinfo->cinfo, COL_INFO, NULL, "Reassembled Data Response");
}
else
{
/* We don't have the complete reassembled payload. */
col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "Response Data Fragment %u" , seq_cnt);
}
}
/* No re-assembly required, setup the payload_tvb based on the single-frame data payload tvb */
else {
payload_tvb = data_tvb;
add_new_data_source(pinfo, payload_tvb, "Data Response Payload");
}
pinfo->fragmented = save_fragmented;
/* If we had no need to re-assemble or this is the final packet of a reassembly, let's attempt to dissect the */
/* data payload using any previously-captured data format information */
if (payload_tvb) {
/* Search for previously-encountered data format reference information to dissect the frame */
conv = (fm_conversation *)p_get_proto_data(wmem_file_scope(), pinfo, proto_selfm, 0);
if (conv) {
/* Start at front of list and cycle through possible instances of multiple fastser_dataitem frames, looking for match */
wmem_list_frame_t *frame = wmem_list_head(conv->fastser_dataitems);
while (frame) {
dataitem = (fastser_dataitem *)wmem_list_frame_data(frame);
/* If the stored base address of the current data item matches the current base address of this response frame */
/* mark that the config data was found and attempt further dissection */
if (dataitem->base_address == base_addr) {
/* Data Item size (in bytes) determined by data type and quantity within item */
switch (dataitem->data_type) {
case FAST_SER_TAGTYPE_CHAR8:
case FAST_SER_TAGTYPE_DIGWORD8_BL:
case FAST_SER_TAGTYPE_DIGWORD8:
data_size = 1 * dataitem->quantity; /* 1 byte per qty */
break;
case FAST_SER_TAGTYPE_CHAR16:
case FAST_SER_TAGTYPE_DIGWORD16_BL:
case FAST_SER_TAGTYPE_DIGWORD16:
case FAST_SER_TAGTYPE_INT16:
case FAST_SER_TAGTYPE_UINT16:
data_size = 2 * dataitem->quantity; /* 2 bytes per qty */
break;
case FAST_SER_TAGTYPE_INT32:
case FAST_SER_TAGTYPE_UINT32:
case FAST_SER_TAGTYPE_FLOAT:
data_size = 4 * dataitem->quantity; /* 4 bytes per qty */
break;
default:
data_size = 0;
break;
}
fastser_tag_item = proto_tree_add_text(fastser_tree, payload_tvb, payload_offset, data_size, "Data Item Name: %s", dataitem->name);
fastser_tag_tree = proto_item_add_subtree(fastser_tag_item, ett_selfm_fastser_tag);
/* Load some information from the stored Data Format Response message into the tree for reference */
pi_fnum = proto_tree_add_text(fastser_tag_tree, payload_tvb, payload_offset, data_size, "Using frame number %d (Index Pos: %d) as Data Format Reference",dataitem->fnum, dataitem->index_pos );
pi_type = proto_tree_add_text(fastser_tag_tree, payload_tvb, payload_offset, data_size, "Data_Type: %s (%#x)",
val_to_str_const(dataitem->data_type, selfm_fastser_tagtype_vals, "Unknown Data Type"), dataitem->data_type);
pi_qty = proto_tree_add_text(fastser_tag_tree, payload_tvb, payload_offset, data_size, "Quantity: %d",dataitem->quantity );
PROTO_ITEM_SET_GENERATED(pi_fnum);
PROTO_ITEM_SET_GENERATED(pi_type);
PROTO_ITEM_SET_GENERATED(pi_qty);
/* Data Item Type determines how to decode */
switch (dataitem->data_type) {
case FAST_SER_TAGTYPE_DIGWORD8_BL:
case FAST_SER_TAGTYPE_DIGWORD8:
for (cnt=1; cnt <= dataitem->quantity; cnt++) {
fmdata_dig_item = proto_tree_add_text(fastser_tag_tree, payload_tvb, payload_offset, 1, "8-bit Binary Items (Row: %2d)", cnt);
fmdata_dig_tree = proto_item_add_subtree(fmdata_dig_item, ett_selfm_fmdata_dig);
/* Display the bit pattern on the digital channel proto_item */
proto_item_append_text(fmdata_dig_item, " [ %d %d %d %d %d %d %d %d ]",
((tvb_get_guint8(payload_tvb, payload_offset) & 0x80) >> 7), ((tvb_get_guint8(payload_tvb, payload_offset) & 0x40) >> 6),
((tvb_get_guint8(payload_tvb, payload_offset) & 0x20) >> 5), ((tvb_get_guint8(payload_tvb, payload_offset) & 0x10) >> 4),
((tvb_get_guint8(payload_tvb, payload_offset) & 0x08) >> 3), ((tvb_get_guint8(payload_tvb, payload_offset) & 0x04) >> 2),
((tvb_get_guint8(payload_tvb, payload_offset) & 0x02) >> 1), (tvb_get_guint8(payload_tvb, payload_offset) & 0x01));
proto_tree_add_item(fmdata_dig_tree, hf_selfm_fmdata_dig_b0, payload_tvb, payload_offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmdata_dig_tree, hf_selfm_fmdata_dig_b1, payload_tvb, payload_offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmdata_dig_tree, hf_selfm_fmdata_dig_b2, payload_tvb, payload_offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmdata_dig_tree, hf_selfm_fmdata_dig_b3, payload_tvb, payload_offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmdata_dig_tree, hf_selfm_fmdata_dig_b4, payload_tvb, payload_offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmdata_dig_tree, hf_selfm_fmdata_dig_b5, payload_tvb, payload_offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmdata_dig_tree, hf_selfm_fmdata_dig_b6, payload_tvb, payload_offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmdata_dig_tree, hf_selfm_fmdata_dig_b7, payload_tvb, payload_offset, 1, ENC_BIG_ENDIAN);
payload_offset += 1;
}
break;
case FAST_SER_TAGTYPE_CHAR8:
case FAST_SER_TAGTYPE_CHAR16:
item_val_str_ptr = tvb_get_string(wmem_packet_scope(), payload_tvb, payload_offset, data_size);
proto_tree_add_text(fastser_tag_tree, payload_tvb, payload_offset, data_size, "Value: %s", item_val_str_ptr);
payload_offset += data_size;
break;
case FAST_SER_TAGTYPE_INT16:
for (cnt=1; cnt <= dataitem->quantity; cnt++) {
fastser_tag_value_item = proto_tree_add_item(fastser_tag_tree, hf_selfm_fastser_dataitem_int16, payload_tvb, payload_offset, data_size/dataitem->quantity, ENC_BIG_ENDIAN);
proto_item_prepend_text(fastser_tag_value_item, "Value %d ", cnt);
payload_offset += data_size/dataitem->quantity;
}
break;
case FAST_SER_TAGTYPE_UINT16:
for (cnt=1; cnt <= dataitem->quantity; cnt++) {
fastser_tag_value_item = proto_tree_add_item(fastser_tag_tree, hf_selfm_fastser_dataitem_uint16, payload_tvb, payload_offset, data_size/dataitem->quantity, ENC_BIG_ENDIAN);
proto_item_prepend_text(fastser_tag_value_item, "Value %d ", cnt);
payload_offset += data_size/dataitem->quantity;
}
break;
case FAST_SER_TAGTYPE_INT32:
for (cnt=1; cnt <= dataitem->quantity; cnt++) {
fastser_tag_value_item = proto_tree_add_item(fastser_tag_tree, hf_selfm_fastser_dataitem_int32, payload_tvb, payload_offset, data_size/dataitem->quantity, ENC_BIG_ENDIAN);
proto_item_prepend_text(fastser_tag_value_item, "Value %d ", cnt);
payload_offset += data_size/dataitem->quantity;
}
break;
case FAST_SER_TAGTYPE_UINT32:
for (cnt=1; cnt <= dataitem->quantity; cnt++) {
fastser_tag_value_item = proto_tree_add_item(fastser_tag_tree, hf_selfm_fastser_dataitem_uint32, payload_tvb, payload_offset, data_size/dataitem->quantity, ENC_BIG_ENDIAN);
proto_item_prepend_text(fastser_tag_value_item, "Value %d ", cnt);
payload_offset += data_size/dataitem->quantity;
}
break;
case FAST_SER_TAGTYPE_FLOAT:
for (cnt=1; cnt <= dataitem->quantity; cnt++) {
fastser_tag_value_item = proto_tree_add_item(fastser_tag_tree, hf_selfm_fastser_dataitem_float, payload_tvb, payload_offset, data_size/dataitem->quantity, ENC_BIG_ENDIAN);
proto_item_prepend_text(fastser_tag_value_item, "Value %d ", cnt);
payload_offset += data_size/dataitem->quantity;
}
break;
default:
break;
} /* data item type switch */
} /* base address is correct */
/* After processing this frame/data item, proceed to the next */
frame = wmem_list_frame_next(frame);
} /* while (frame) */
} /* if (conv) found */
} /* if payload_tvb */
/* Update the offset field before we leave this frame */
offset += num_addr*2;
return offset;
}
/******************************************************************************************************/
/* Code to dissect Fast SER Frames */
/******************************************************************************************************/
static int
dissect_fastser_frame(tvbuff_t *tvb, proto_tree *tree, packet_info *pinfo, int offset)
{
/* Set up structures needed to add the protocol subtree and manage it */
proto_item *fastser_item, *fastser_def_fc_item=NULL, *fastser_seq_item=NULL, *fastser_elementlist_item=NULL;
proto_item *fastser_element_item=NULL, *fastser_datareg_item=NULL, *fastser_tag_item=NULL;
proto_item *pi_baseaddr=NULL;
proto_tree *fastser_tree, *fastser_def_fc_tree=NULL, *fastser_seq_tree=NULL, *fastser_elementlist_tree=NULL;
proto_tree *fastser_element_tree=NULL, *fastser_datareg_tree=NULL, *fastser_tag_tree=NULL;
gint cnt, num_elements, elmt_status32_ofs=0, elmt_status, null_offset;
guint8 len, funccode, seq, rx_num_fc, tx_num_fc;
guint8 seq_cnt, seq_fir, seq_fin, elmt_idx, fc_enable;
guint8 *fid_str_ptr, *rid_str_ptr, *region_name_ptr, *tag_name_ptr;
guint16 base_addr, num_addr, num_reg, addr1, addr2;
guint32 tod_ms, elmt_status32, elmt_ts_offset;
len = tvb_get_guint8(tvb, offset);
fastser_item = proto_tree_add_text(tree, tvb, offset, len-2, "Fast SER Message Details");
fastser_tree = proto_item_add_subtree(fastser_item, ett_selfm_fastser);
/* Reported length */
proto_tree_add_item(fastser_tree, hf_selfm_fastser_len, tvb, offset, 1, ENC_BIG_ENDIAN);
/* 5-byte Future Routing Address */
proto_tree_add_item(fastser_tree, hf_selfm_fastser_routing_addr, tvb, offset+1, 5, ENC_NA);
offset += 6;
/* Add Status Byte to tree */
proto_tree_add_item(fastser_tree, hf_selfm_fastser_status, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
/* Get Function Code, add to tree */
funccode = tvb_get_guint8(tvb, offset);
proto_tree_add_item(fastser_tree, hf_selfm_fastser_funccode, tvb, offset, 1, ENC_BIG_ENDIAN);
/* Append Column Info w/ Function Code */
col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "%s", val_to_str_const(funccode, selfm_fastser_func_code_vals, "Unknown Function Code"));
offset += 1;
/* Get Sequence Byte, add to Tree */
seq = tvb_get_guint8(tvb, offset);
seq_cnt = seq & FAST_SER_SEQ_CNT;
seq_fir = seq & FAST_SER_SEQ_FIR;
seq_fin = seq & FAST_SER_SEQ_FIN;
fastser_seq_item = proto_tree_add_uint_format_value(fastser_tree, hf_selfm_fastser_seq, tvb, offset, 1, seq, "0x%02x (", seq);
if (seq_fir) proto_item_append_text(fastser_seq_item, "FIR, ");
if (seq_fin) proto_item_append_text(fastser_seq_item, "FIN, ");
proto_item_append_text(fastser_seq_item, "Count %u)", seq_cnt);
fastser_seq_tree = proto_item_add_subtree(fastser_seq_item, ett_selfm_fastser_seq);
proto_tree_add_boolean(fastser_seq_tree, hf_selfm_fastser_seq_fir, tvb, offset, 1, seq);
proto_tree_add_boolean(fastser_seq_tree, hf_selfm_fastser_seq_fin, tvb, offset, 1, seq);
proto_tree_add_item(fastser_seq_tree, hf_selfm_fastser_seq_cnt, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
/* Add Response Number to tree */
proto_tree_add_item(fastser_tree, hf_selfm_fastser_resp_num, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
/* Depending on Function Code used, remaining section of packet will be handled differently. */
switch (funccode) {
case FAST_SER_EN_UNS_DATA: /* 0x01 - Enabled Unsolicited Data Transfers */
/* Function code to enable */
fc_enable = tvb_get_guint8(tvb, offset);
proto_tree_add_item(fastser_tree, hf_selfm_fastser_uns_en_fc, tvb, offset, 1, ENC_BIG_ENDIAN);
/* Append Column Info w/ "Enable" Function Code */
col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "Function to Enable (%#x)", fc_enable);
/* 3-byte Function Code data */
proto_tree_add_item(fastser_tree, hf_selfm_fastser_uns_en_fc_data, tvb, offset+1, 3, ENC_NA);
offset += 4;
break;
case FAST_SER_DIS_UNS_DATA: /* 0x02 - Disable Unsolicited Data Transfers */
/* Function code to disable */
fc_enable = tvb_get_guint8(tvb, offset);
proto_tree_add_item(fastser_tree, hf_selfm_fastser_uns_dis_fc, tvb, offset, 1, ENC_BIG_ENDIAN);
/* Append Column Info w/ "Disable" Function Code */
col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "Function to Disable (%#x)", fc_enable);
/* 1-byte Function Code data */
proto_tree_add_item(fastser_tree, hf_selfm_fastser_uns_dis_fc_data, tvb, offset+1, 1, ENC_NA);
offset += 2;
break;
case FAST_SER_READ_REQ: /* 0x10 - Read Request */
base_addr = tvb_get_ntohl(tvb, offset); /* 32-bit field with base address to read */
/* Append Column Info w/ Base Address */
col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "%#x [%s]", base_addr, region_lookup(pinfo, base_addr));
pi_baseaddr = proto_tree_add_item(fastser_tree, hf_selfm_fastser_baseaddr, tvb, offset, 4, ENC_BIG_ENDIAN);
proto_item_append_text(pi_baseaddr, " [%s]", region_lookup(pinfo, base_addr));
proto_tree_add_item(fastser_tree, hf_selfm_fastser_numwords, tvb, offset+4, 2, ENC_BIG_ENDIAN);
offset += 6;
break;
case FAST_SER_GEN_UNS_DATA: /* 0x12 - Generic Unsolicited Data */
num_addr = len - 14; /* 12 header bytes + 2-byte CRC, whatever is left is the data portion of this message */
num_reg = num_addr / 2;
/* For the number of registers, step through and retrieve/print each 16-bit component */
for (cnt=0; cnt < num_reg; cnt++) {
proto_tree_add_item(fastser_tree, hf_selfm_fastser_unswrite_reg_val, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
}
break;
case FAST_SER_SOE_STATE_REQ: /* 0x16 - SOE Present State Request */
/* 4 bytes - "Origination Path" */
proto_tree_add_item(fastser_tree, hf_selfm_fastser_soe_req_orig, tvb, offset, 4, ENC_NA);
offset += 4;
break;
case FAST_SER_UNS_RESP: /* 0x18 - Unsolicited Fast SER Data Response */
/* 4 bytes - "Origination Path" */
proto_tree_add_item(fastser_tree, hf_selfm_fastser_unsresp_orig, tvb, offset, 4, ENC_NA);
offset += 4;
/* Timestamp: 2-byte day-of-year, 2-byte year, 4-byte time-of-day in milliseconds */
/* XXX - We can use a built-in function to convert the tod_ms to a readable time format, is there anything for day_of_year? */
tod_ms = tvb_get_ntohl(tvb, offset+4);
proto_tree_add_item(fastser_tree, hf_selfm_fastser_unsresp_doy, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(fastser_tree, hf_selfm_fastser_unsresp_year, tvb, offset+2, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(fastser_tree, hf_selfm_fastser_unsresp_todms, tvb, offset+4, 4, ENC_BIG_ENDIAN);
proto_tree_add_text(fastser_tree, tvb, offset+4, 4, "Time of Day (decoded): %s", time_msecs_to_str(tod_ms));
offset += 8;
/* Build element tree */
/* Determine the number of elements returned in this unsolicited message */
/* The general formula is: (Length - 34) / 4 */
num_elements = (len-34) / 4;
fastser_elementlist_item = proto_tree_add_uint(fastser_tree, hf_selfm_fastser_unsresp_num_elmt, tvb, offset, (4*num_elements), num_elements);
fastser_elementlist_tree = proto_item_add_subtree(fastser_elementlist_item, ett_selfm_fastser_element_list);
/* "Reported New Status" word for up to 32 index elements is following the upcoming 0xFFFFFFFE End-of-record indicator
Search for that indicator and use the detected tvb offset+4 to retrieve the proper 32-bit status word.
Save this word for use in the element index printing but don't print the word itself until the end of the tree dissection */
for (cnt = offset; cnt < len; cnt++) {
if (tvb_memeql(tvb, cnt, "\xFF\xFF\xFF\xFE", 4) == 0) {
elmt_status32_ofs = cnt+4;
}
}
elmt_status32 = tvb_get_ntohl(tvb, elmt_status32_ofs );
/* Cycle through each element we have detected that exists in the SER record */
for (cnt=0; cnt<num_elements; cnt++) {
/* Get Element Index and Timestamp Offset (in uSec) */
elmt_idx = tvb_get_guint8(tvb, offset);
elmt_ts_offset = (guint32)((tvb_get_guint8(tvb, offset+1) << 16) | (tvb_get_guint8(tvb, offset+2) << 8) | (tvb_get_guint8(tvb, offset+3)));
/* Bit shift the appropriate element from the 32-bit elmt_status word to position 0 and get the bit state for use in the tree */
elmt_status = ((elmt_status32 >> cnt) & 0x01);
/* Build the tree */
fastser_element_item = proto_tree_add_text(fastser_elementlist_tree, tvb, offset, 4,
"Reported Event %d (Index: %d, New State: %s)", cnt+1, elmt_idx, val_to_str_const(elmt_status, selfm_ser_status_vals, "Unknown"));
fastser_element_tree = proto_item_add_subtree(fastser_element_item, ett_selfm_fastser_element);
/* Add Index Number and Timestamp offset to tree */
proto_tree_add_item(fastser_element_tree, hf_selfm_fastser_unsresp_elmt_idx, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fastser_element_tree, hf_selfm_fastser_unsresp_elmt_ts_ofs, tvb, offset+1, 3, ENC_NA);
proto_tree_add_text(fastser_element_tree, tvb, offset+1, 3,
"SER Element Timestamp Offset (decoded): %s", time_msecs_to_str(tod_ms + (elmt_ts_offset/1000)));
proto_tree_add_uint(fastser_element_tree, hf_selfm_fastser_unsresp_elmt_status, tvb, elmt_status32_ofs, 4, elmt_status);
offset += 4;
}
/* 4-byte End-of-Record Terminator 0xFFFFFFFE */
proto_tree_add_item(fastser_tree, hf_selfm_fastser_unsresp_eor, tvb, offset, 4, ENC_NA);
offset += 4;
/* 4-byte Element Status word */
proto_tree_add_item(fastser_tree, hf_selfm_fastser_unsresp_elmt_statword, tvb, offset, 4, ENC_BIG_ENDIAN);
offset += 4;
break;
case FAST_SER_UNS_WRITE: /* 0x20 - Unsolicited Write */
/* Write Address Region #1 and #2, along with number of 16-bit registers */
addr1 = tvb_get_ntohs(tvb, offset);
addr2 = tvb_get_ntohs(tvb, offset+2);
num_reg = tvb_get_ntohs(tvb, offset+4);
/* Append Column Info w/ Address Information */
col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "%#x, %#x", addr1, addr2);
proto_tree_add_item(fastser_tree, hf_selfm_fastser_unswrite_addr1, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(fastser_tree, hf_selfm_fastser_unswrite_addr2, tvb, offset+2, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(fastser_tree, hf_selfm_fastser_unswrite_num_reg, tvb, offset+4, 2, ENC_BIG_ENDIAN);
offset += 6;
/* For the number of registers, step through and retrieve/print each 16-bit component */
for (cnt=0; cnt < num_reg; cnt++) {
proto_tree_add_item(fastser_tree, hf_selfm_fastser_unswrite_reg_val, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
}
break;
case FAST_SER_DATAFMT_REQ: /* 0x31 - Data Format Request */
base_addr = tvb_get_ntohl(tvb, offset); /* 32-bit field with base address to read */
/* Append Column Info w/ Base Address */
col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "%#x [%s]", base_addr, region_lookup(pinfo, base_addr));
/* Add Base Address to Tree */
pi_baseaddr = proto_tree_add_item(fastser_tree, hf_selfm_fastser_baseaddr, tvb, offset, 4, ENC_BIG_ENDIAN);
proto_item_append_text(pi_baseaddr, " [%s]", region_lookup(pinfo, base_addr));
offset += 4;
break;
case FAST_SER_BITLABEL_REQ: /* 0x33 - Bit Label Request */
base_addr = tvb_get_ntohl(tvb, offset); /* 32-bit field with base address to read */
proto_tree_add_item(fastser_tree, hf_selfm_fastser_baseaddr, tvb, offset, 4, ENC_BIG_ENDIAN);
offset += 4;
/* Append Column Info w/ Base Address */
col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "%#x", base_addr);
break;
case FAST_SER_MESSAGE_DEF_ACK: /* 0x80 (resp to 0x00) - Fast SER Message Definition Acknowledge */
/* Routing Support */
proto_tree_add_item(fastser_tree, hf_selfm_fastser_def_route_sup, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
/* RX / TX Status */
proto_tree_add_item(fastser_tree, hf_selfm_fastser_def_rx_stat, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fastser_tree, hf_selfm_fastser_def_tx_stat, tvb, offset+1, 1, ENC_BIG_ENDIAN);
offset += 2;
/* Max Frames RX/TX */
proto_tree_add_item(fastser_tree, hf_selfm_fastser_def_rx_maxfr, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fastser_tree, hf_selfm_fastser_def_tx_maxfr, tvb, offset+1, 1, ENC_BIG_ENDIAN);
offset += 2;
/* 6 bytes of reserved space */
offset += 6;
/* Number of Supported RX Function Codes */
rx_num_fc = tvb_get_guint8(tvb, offset);
fastser_def_fc_item = proto_tree_add_item(fastser_tree, hf_selfm_fastser_def_rx_num_fc, tvb, offset, 1, ENC_BIG_ENDIAN);
fastser_def_fc_tree = proto_item_add_subtree(fastser_def_fc_item, ett_selfm_fastser_def_fc);
offset += 1;
/* Add Supported RX Function Codes to tree */
for (cnt=0; cnt<rx_num_fc; cnt++) {
proto_tree_add_item(fastser_def_fc_tree, hf_selfm_fastser_def_rx_fc, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 2;
}
/* Number of Supported TX Function Codes */
tx_num_fc = tvb_get_guint8(tvb, offset);
fastser_def_fc_item = proto_tree_add_item(fastser_tree, hf_selfm_fastser_def_tx_num_fc, tvb, offset, 1, ENC_BIG_ENDIAN);
fastser_def_fc_tree = proto_item_add_subtree(fastser_def_fc_item, ett_selfm_fastser_def_fc);
offset += 1;
/* Add Supported TX Function Codes to tree */
for (cnt=0; cnt<tx_num_fc; cnt++) {
proto_tree_add_item(fastser_def_fc_tree, hf_selfm_fastser_def_tx_fc, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 2;
}
break;
case FAST_SER_READ_RESP: /* 0x90 (resp to 0x10) - Read Response */
offset = dissect_fastser_readresp_frame( tvb, fastser_tree, pinfo, offset, seq);
break;
case FAST_SER_SOE_STATE_RESP: /* 0x96 - (resp to 0x16) SOE Present State Response */
/* 16-bit field with number of blocks of present state data */
proto_tree_add_item(fastser_tree, hf_selfm_fastser_soe_resp_numblks, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* XXX - With examples, need to loop through each one of these items based on the num_blocks */
proto_tree_add_item(fastser_tree, hf_selfm_fastser_soe_resp_orig, tvb, offset, 4, ENC_BIG_ENDIAN);
proto_tree_add_item(fastser_tree, hf_selfm_fastser_soe_resp_numbits, tvb, offset+4, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fastser_tree, hf_selfm_fastser_soe_resp_pad, tvb, offset+5, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fastser_tree, hf_selfm_fastser_soe_resp_doy, tvb, offset+6, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(fastser_tree, hf_selfm_fastser_soe_resp_year, tvb, offset+8, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(fastser_tree, hf_selfm_fastser_soe_resp_tod, tvb, offset+10, 4, ENC_BIG_ENDIAN);
/* proto_tree_add_item(fastser_tree, hf_selfm_fastser_soe_resp_data, tvb, offset+14, 2, ENC_BIG_ENDIAN); */
offset += 14;
break;
case FAST_SER_DEVDESC_RESP: /* 0xB0 (resp to 0x30) - Device Description Response */
fid_str_ptr = tvb_get_string(wmem_packet_scope(), tvb, offset, 50); /* Add FID / RID ASCII data to tree */
rid_str_ptr = tvb_get_string(wmem_packet_scope(), tvb, offset+50, 40);
proto_tree_add_text(fastser_tree, tvb, offset, 50, "FID: %s", fid_str_ptr);
proto_tree_add_text(fastser_tree, tvb, offset+50, 40, "RID: %s", rid_str_ptr);
offset += 90;
/* 16-bit field with number of data areas */
num_reg = tvb_get_ntohs(tvb, offset);
proto_tree_add_item(fastser_tree, hf_selfm_fastser_devdesc_num_region, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* Maximum size of 7 regions per message, check the seq_cnt to determine if we have stepped into
the next sequential message where the remaining regions would be described */
if ((num_reg >= 8) && (seq_cnt == 0)) {
num_reg = 7;
}
else{
num_reg = num_reg - (seq_cnt * 7);
}
/* 16-bit field with number of control areas */
proto_tree_add_item(fastser_tree, hf_selfm_fastser_devdesc_num_ctrl, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* Each 18-byte data area description has a 10 byte region name, followed by 32-bit base, */
/* 16-bit message word count and 16-bit flag field */
for (cnt=0; cnt<num_reg; cnt++) {
fastser_datareg_item = proto_tree_add_text(fastser_tree, tvb, offset, 18, "Fast SER Data Region #%d", cnt+1);
fastser_datareg_tree = proto_item_add_subtree(fastser_datareg_item, ett_selfm_fastser_datareg);
/* 10-Byte Region description */
region_name_ptr = tvb_get_string(wmem_packet_scope(), tvb, offset, 10);
proto_tree_add_text(fastser_datareg_tree, tvb, offset, 10, "Data Region Name: %s", region_name_ptr);
offset += 10;
/* 32-bit field with base address of data region */
proto_tree_add_item(fastser_datareg_tree, hf_selfm_fastser_baseaddr, tvb, offset, 4, ENC_BIG_ENDIAN);
offset += 4;
/* 16-bit field with number of 16-bit words in region */
proto_tree_add_item(fastser_datareg_tree, hf_selfm_fastser_numwords, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* 16-bit flag field */
proto_tree_add_item(fastser_datareg_tree, hf_selfm_fastser_flags, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
}
/* Some relays (4xx) don't follow the standard here and include an 8-byte sequence of all 0x00's to represent */
/* 'reserved' space for the control regions. Detect these and skip if they are present */
for (cnt = offset; cnt < len; cnt++) {
if (tvb_memeql(tvb, cnt, "\x00\x00\x00\x00\x00\x00\x00\x00", 8) == 0) {
offset = cnt+8;
}
}
break;
case FAST_SER_DATAFMT_RESP: /* 0xB1 (resp to 0x31) - Data Format Response */
base_addr = tvb_get_ntohl(tvb, offset); /* 32-bit field with base address to read */
/* Add Base Address to Tree */
pi_baseaddr = proto_tree_add_item(fastser_tree, hf_selfm_fastser_baseaddr, tvb, offset, 4, ENC_BIG_ENDIAN);
proto_item_append_text(pi_baseaddr, " [%s]", region_lookup(pinfo, base_addr));
offset += 4;
/* Append Column Info w/ Base Address */
col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "%#x [%s]", base_addr, region_lookup(pinfo, base_addr));
/* 16-bit field with number of data items to follow */
proto_tree_add_item(fastser_tree, hf_selfm_fastser_datafmt_resp_numitem, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
while ((tvb_reported_length_remaining(tvb, offset)) > 2) {
tag_name_ptr = tvb_get_string(wmem_packet_scope(), tvb, offset, 10); /* Data Item record name 10 bytes */
fastser_tag_item = proto_tree_add_text(fastser_tree, tvb, offset, 14, "Data Item Record Name: %s", tag_name_ptr);
fastser_tag_tree = proto_item_add_subtree(fastser_tag_item, ett_selfm_fastser_tag);
/* Data item qty and type */
proto_tree_add_item(fastser_tag_tree, hf_selfm_fastser_dataitem_qty, tvb, offset+10, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(fastser_tag_tree, hf_selfm_fastser_dataitem_type, tvb, offset+12, 2, ENC_BIG_ENDIAN);
offset += 14;
}
break;
case FAST_SER_BITLABEL_RESP: /* 0xB3 (resp to 0x33) - Bit Label Response */
/* The data in this response is a variable length string containing the names of 8 digital bits. */
/* Each name is max 8 chars and each is null-seperated */
cnt=1;
/* find the null separators and add the bit label text strings to the tree */
for (null_offset = offset; null_offset < len; null_offset++) {
if ((tvb_memeql(tvb, null_offset, "\x00", 1) == 0) && (tvb_reported_length_remaining(tvb, offset) > 2)) {
proto_tree_add_text(fastser_tree, tvb, offset, (null_offset-offset), "Bit Label #%d Name: %s", cnt,
tvb_format_text(tvb, offset, (null_offset-offset)));
offset = null_offset+1; /* skip the null */
cnt++;
}
}
break;
default:
break;
} /* func_code */
/* XXX - Should eventually get a function here to validate this CRC16 */
proto_tree_add_item(fastser_tree, hf_selfm_fastser_crc16, tvb, offset, 2, ENC_BIG_ENDIAN);
return tvb_length(tvb);
}
/******************************************************************************************************/
/* Code to dissect SEL Fast Message Protocol packets */
/* Will call other sub-dissectors, as needed */
/******************************************************************************************************/
static int
dissect_selfm(tvbuff_t *selfm_tvb, packet_info *pinfo, proto_tree *tree, void* data _U_)
{
/* Set up structures needed to add the protocol subtree and manage it */
proto_item *selfm_item=NULL;
proto_tree *selfm_tree=NULL;
int offset=0, cnt=0;
guint32 base_addr;
guint16 msg_type, len, num_items;
guint8 seq, seq_cnt;
/* Make entries in Protocol column on summary display */
col_set_str(pinfo->cinfo, COL_PROTOCOL, "SEL Fast Msg");
col_clear(pinfo->cinfo, COL_INFO);
len = tvb_length(selfm_tvb);
msg_type = tvb_get_ntohs(selfm_tvb, offset);
/* On first pass through the packets we have 4 tasks to complete - they are each noted below */
if (!pinfo->fd->flags.visited) {
conversation_t *conversation;
fm_conversation *fm_conv_data;
/* Find a conversation, create a new if no one exists */
conversation = find_or_create_conversation(pinfo);
fm_conv_data = (fm_conversation *)conversation_get_proto_data(conversation, proto_selfm);
if (fm_conv_data == NULL) {
fm_conv_data = wmem_new(wmem_file_scope(), fm_conversation);
fm_conv_data->fm_config_frames = wmem_list_new(wmem_file_scope());
fm_conv_data->fastser_dataitems = wmem_list_new(wmem_file_scope());
fm_conv_data->fastser_dataregions = wmem_tree_new(wmem_file_scope());
conversation_add_proto_data(conversation, proto_selfm, (void *)fm_conv_data);
}
p_add_proto_data(wmem_file_scope(), pinfo, proto_selfm, 0, fm_conv_data);
/* 1. Configuration frames (0xA5C1, 0xA5C2, 0xA5C3) need special treatment during the first run */
/* For each Fast Meter Configuration frame (0xA5Cx), a 'fm_config_frame' struct is created to hold the */
/* information necessary to decode subsequent matching Fast Meter Data frames (0xA5Dx). A pointer to */
/* this struct is saved in the conversation and is copied to the per-packet information if a */
/* Fast Meter Data frame is dissected. */
if ((CMD_FM_CONFIG == msg_type) || (CMD_DFM_CONFIG == msg_type) || (CMD_PDFM_CONFIG == msg_type)) {
/* Fill the fm_config_frame */
fm_config_frame *frame_ptr = fmconfig_frame_fast(selfm_tvb);
frame_ptr->fnum = pinfo->fd->num;
wmem_list_prepend(fm_conv_data->fm_config_frames, frame_ptr);
}
/* 2. Fill conversation data array with Fast SER Data Item info from Data Format Response Messages. */
/* These format definitions will later be retrieved to decode Read Response messages. */
if ((CMD_FAST_SER == msg_type) && (tvb_get_guint8(selfm_tvb, offset+9) == FAST_SER_DATAFMT_RESP)) {
seq = tvb_get_guint8(selfm_tvb, offset+10);
seq_cnt = seq & FAST_SER_SEQ_CNT;
base_addr = tvb_get_ntohl(selfm_tvb, offset+12); /* 32-bit field with base address to read */
num_items = tvb_get_ntohs(selfm_tvb, offset+16);
/* When dealing with Data Format Response messages, there are a maximum of 16 items per frame */
/* Use the sequence count if we have more 16 items to determine how many to expect in each frame */
if ((num_items > 16) && (seq_cnt == 0)) {
num_items = 16;
}
else {
num_items = num_items - (seq_cnt * 16);
}
/* Set offset to start of data items */
offset = 18;
/* Enter the single frame multiple times, retrieving a single dataitem per entry */
for (cnt = 1; (cnt <= num_items); cnt++) {
fastser_dataitem *dataitem_ptr = fastser_dataitem_save(selfm_tvb, offset);
dataitem_ptr->fnum = pinfo->fd->num;
dataitem_ptr->base_address = base_addr;
dataitem_ptr->index_pos = cnt;
/* Store the data item configuration info in the fastser_dataitems list */
wmem_list_append(fm_conv_data->fastser_dataitems, dataitem_ptr);
offset += 14;
}
}
/* 3. Attempt re-assembly during first pass with Read Response Messages data payloads that span multiple */
/* packets. The final data payload will be assembled on the packet with the seq_fin bit set. */
if ((CMD_FAST_SER == msg_type) && (tvb_get_guint8(selfm_tvb, offset+9) == FAST_SER_READ_RESP)) {
seq = tvb_get_guint8(selfm_tvb, offset+10);
/* Set offset to where the dissect_fastser_readresp_frame function would normally be called, */
/* right before base address & num_items */
offset = 12;
/* Call the same read response function that will be called during GUI dissection */
offset = dissect_fastser_readresp_frame( selfm_tvb, tree, pinfo, offset, seq);
}
/* 4. Fill conversation data array with Fast SER Data Region info from Device Desc Response Messages. This */
/* will retrieve a data region name (associated to an address) that can later be displayed in the tree. */
if ((CMD_FAST_SER == msg_type) && (tvb_get_guint8(selfm_tvb, offset+9) == FAST_SER_DEVDESC_RESP)) {
seq = tvb_get_guint8(selfm_tvb, offset+10);
seq_cnt = seq & FAST_SER_SEQ_CNT;
num_items = tvb_get_ntohs(selfm_tvb, offset+102);
/* When dealing with Device Description Response messages, there are a maximum of 7 regions per frame */
/* Use the sequence count if we have more 7 items to determine how many to expect in each frame */
if ((num_items >= 8) && (seq_cnt == 0)) {
num_items = 7;
}
else{
num_items = num_items - (seq_cnt * 7);
}
/* Set offset to start of data regions */
offset = 106;
/* Enter the single frame multiple times, retrieving a single data region per entry */
for (cnt = 1; (cnt <= num_items); cnt++) {
guint32 base_address = tvb_get_ntohl(selfm_tvb, offset+10);
fastser_dataregion *dataregion_ptr = fastser_dataregion_save(selfm_tvb, offset);
/* Store the data region info in the fastser_dataregions tree */
wmem_tree_insert32(fm_conv_data->fastser_dataregions, base_address, dataregion_ptr);
offset += 18;
}
}
} /* if (!visited) */
if (tree) {
selfm_item = proto_tree_add_protocol_format(tree, proto_selfm, selfm_tvb, 0, len, "SEL Fast Message");
selfm_tree = proto_item_add_subtree(selfm_item, ett_selfm);
/* Set INFO column with SEL Protocol Message Type */
col_add_fstr(pinfo->cinfo, COL_INFO, "%s", val_to_str_const(msg_type, selfm_msgtype_vals, "Unknown Message Type"));
/* Add Message Type to Protocol Tree */
proto_tree_add_item(selfm_tree, hf_selfm_msgtype, selfm_tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* Determine correct message type and call appropriate dissector */
if (tvb_reported_length_remaining(selfm_tvb, offset) > 0) {
switch (msg_type) {
case CMD_RELAY_DEF:
dissect_relaydef_frame(selfm_tvb, selfm_tree, offset);
break;
case CMD_FM_CONFIG:
case CMD_DFM_CONFIG:
case CMD_PDFM_CONFIG:
dissect_fmconfig_frame(selfm_tvb, selfm_tree, offset);
break;
case CMD_FM_DATA:
dissect_fmdata_frame(selfm_tvb, selfm_tree, pinfo, offset, CMD_FM_CONFIG);
break;
case CMD_DFM_DATA:
dissect_fmdata_frame(selfm_tvb, selfm_tree, pinfo, offset, CMD_DFM_CONFIG);
break;
case CMD_PDFM_DATA:
dissect_fmdata_frame(selfm_tvb, selfm_tree, pinfo, offset, CMD_PDFM_CONFIG);
break;
case CMD_FASTOP_CONFIG:
dissect_foconfig_frame(selfm_tvb, selfm_tree, offset);
break;
case CMD_FAST_SER:
dissect_fastser_frame(selfm_tvb, selfm_tree, pinfo, offset);
break;
case CMD_FASTOP_RB_CTRL:
case CMD_FASTOP_BR_CTRL:
dissect_fastop_frame(selfm_tvb, selfm_tree, pinfo, offset);
break;
case CMD_ALT_FASTOP_CONFIG:
dissect_alt_fastop_config_frame(selfm_tvb, selfm_tree, offset);
break;
case CMD_ALT_FASTOP_OPEN:
case CMD_ALT_FASTOP_CLOSE:
case CMD_ALT_FASTOP_SET:
case CMD_ALT_FASTOP_CLEAR:
case CMD_ALT_FASTOP_PULSE:
dissect_alt_fastop_frame(selfm_tvb, selfm_tree, pinfo, offset);
break;
default:
break;
} /* msg_type */
} /* remaining length > 0 */
} /* tree */
return tvb_length(selfm_tvb);
}
/******************************************************************************************************/
/* Return length of SEL Protocol over TCP message (used for re-assembly) */
/* SEL Protocol "Scan" messages are generally 2-bytes in length and only include a 16-bit message type */
/* SEL Protocol "Response" messages include a "length" byte in offset 2 of each response message */
/******************************************************************************************************/
static guint
get_selfm_len(packet_info *pinfo _U_, tvbuff_t *tvb, int offset _U_)
{
guint message_len=0; /* message length, inclusive of header, data, crc */
/* Get length byte from message */
if (tvb_length(tvb) > 2) {
message_len = tvb_get_guint8(tvb, 2);
}
/* for 2-byte poll messages, set the length to 2 */
else if (tvb_length(tvb) == 2) {
message_len = 2;
}
return message_len;
}
/******************************************************************************************************/
/* Dissect (and possibly Re-assemble) SEL protocol payload data */
/******************************************************************************************************/
static gboolean
dissect_selfm_tcp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data)
{
tvbuff_t *selfm_tvb;
gint length = tvb_length(tvb);
/* Check for a SEL FM packet. It should begin with 0xA5 */
if(length < 2 || tvb_get_guint8(tvb, 0) != 0xA5) {
/* Not a SEL Protocol packet, just happened to use the same port */
return FALSE;
}
/* If this is a Telnet-encapsulated Ethernet, let's clean out the IAC 0xFF instances */
/* before we attempt any kind of re-assembly of the message */
if ((pinfo->srcport) && selfm_telnet_clean) {
selfm_tvb = clean_telnet_iac(pinfo, tvb, 0, length);
}
else {
selfm_tvb = tvb_new_subset( tvb, 0, length, length);
}
tcp_dissect_pdus(selfm_tvb, pinfo, tree, selfm_desegment, 2,
get_selfm_len, dissect_selfm, data);
return TRUE;
}
/******************************************************************************************************/
/* Dissect "simple" SEL protocol payload (no TCP re-assembly) */
/******************************************************************************************************/
static gboolean
dissect_selfm_simple(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data)
{
gint length = tvb_length(tvb);
/* Check for a SEL FM packet. It should begin with 0xA5 */
if(length < 2 || tvb_get_guint8(tvb, 0) != 0xA5) {
/* Not a SEL Protocol packet, just happened to use the same port */
return FALSE;
}
dissect_selfm(tvb, pinfo, tree, data);
return TRUE;
}
/******************************************************************************************************/
/* SEL Fast Message Dissector initialization */
/******************************************************************************************************/
static void
selfm_init(void)
{
reassembly_table_init(&selfm_reassembly_table,
&addresses_reassembly_table_functions);
}
/******************************************************************************************************/
/* Register the protocol with Wireshark */
/******************************************************************************************************/
void proto_reg_handoff_selfm(void);
void
proto_register_selfm(void)
{
/* SEL Protocol header fields */
static hf_register_info selfm_hf[] = {
{ &hf_selfm_msgtype,
{ "Message Type", "selfm.msgtype", FT_UINT16, BASE_HEX|BASE_EXT_STRING, &selfm_msgtype_vals_ext, 0x0, NULL, HFILL }},
{ &hf_selfm_padbyte,
{ "Pad Byte", "selfm.padbyte", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_checksum,
{ "Checksum", "selfm.checksum", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
/* "Relay Definition" specific fields */
{ &hf_selfm_relaydef_len,
{ "Length", "selfm.relaydef.len", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_relaydef_numproto,
{ "Number of Protocols", "selfm.relaydef.numproto", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_relaydef_numfm,
{ "Number of Fast Meter Messages", "selfm.relaydef.numfm", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_relaydef_numflags,
{ "Number of Status Flags", "selfm.relaydef.numflags", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_relaydef_fmcfg_cmd,
{ "Fast Meter Config Command", "selfm.relaydef.fmcfg_cmd", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_relaydef_fmdata_cmd,
{ "Fast Meter Data Command", "selfm.relaydef.fmdata_cmd", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_relaydef_statbit,
{ "Status Flag Bit", "selfm.relaydef.status_bit", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_relaydef_statbit_cmd,
{ "Status Flag Bit Response Command", "selfm.relaydef.status_bit_cmd", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_relaydef_proto,
{ "Supported Protocol", "selfm.relaydef.proto", FT_UINT16, BASE_HEX|BASE_EXT_STRING, &selfm_relaydef_proto_vals_ext, 0x0, NULL, HFILL }},
/* "Fast Meter Configuration" specific fields */
{ &hf_selfm_fmconfig_len,
{ "Length", "selfm.fmconfig.len", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_numflags,
{ "Number of Status Flags", "selfm.fmconfig.numflags", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_loc_sf,
{ "Location of Scale Factor", "selfm.fmconfig.loc_sf", FT_UINT8, BASE_DEC, VALS(selfm_fmconfig_sfloc_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_num_sf,
{ "Number of Scale Factors", "selfm.fmconfig.num_sf", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_num_ai,
{ "Number of Analog Input Channels", "selfm.fmconfig.num_ai", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_num_samp,
{ "Number of Samples per AI Channel", "selfm.fmconfig.num_samp", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_num_dig,
{ "Number of Digital Banks", "selfm.fmconfig.num_dig", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_num_calc,
{ "Number of Calculation Blocks", "selfm.fmconfig.num_calc", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_ofs_ai,
{ "First Analog Channel Offset", "selfm.fmconfig.ofs_ai", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_ofs_ts,
{ "Timestamp Offset", "selfm.fmconfig.ofs_ts", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_ofs_dig,
{ "First Digital Bank Offset", "selfm.fmconfig.ofs_dig", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_ai_type,
{ "Analog Channel Type", "selfm.fmconfig.ai_type", FT_UINT8, BASE_DEC, VALS(selfm_fmconfig_ai_chtype_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_ai_sf_type,
{ "Analog Channel Scale Factor Type", "selfm.fmconfig.ai_sf_type", FT_UINT8, BASE_DEC, VALS(selfm_fmconfig_ai_sftype_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_ai_sf_ofs,
{ "Analog Channel Scale Factor Offset", "selfm.fmconfig.ai_sf_ofs", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_cblk_rot,
{ "Rotation", "selfm.fmconfig.cblk_rot", FT_UINT8, BASE_HEX, VALS(selfm_fmconfig_cblk_rot_vals), 0x01, NULL, HFILL }},
{ &hf_selfm_fmconfig_cblk_vconn,
{ "Voltage Connection", "selfm.fmconfig.cblk_vconn", FT_UINT8, BASE_HEX, VALS(selfm_fmconfig_cblk_vconn_vals), 0x06, NULL, HFILL }},
{ &hf_selfm_fmconfig_cblk_iconn,
{ "Current Connection", "selfm.fmconfig.cblk_iconn", FT_UINT8, BASE_HEX, VALS(selfm_fmconfig_cblk_iconn_vals), 0x18, NULL, HFILL }},
{ &hf_selfm_fmconfig_cblk_ctype,
{ "Calculation Type", "selfm.fmconfig.cblk_ctype", FT_UINT8, BASE_DEC, VALS(selfm_fmconfig_cblk_ctype_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_cblk_deskew_ofs,
{ "Skew Correction Offset", "selfm.fmconfig.cblk_deskew_ofs", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_cblk_rs_ofs,
{ "Rs Offset", "selfm.fmconfig.cblk_rs_ofs", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_cblk_xs_ofs,
{ "Xs Offset", "selfm.fmconfig.cblk_xs_ofs", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_cblk_ia_idx,
{ "Analog Record Ia Index Position", "selfm.fmconfig.cblk_ia_idx", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_cblk_ib_idx,
{ "Analog Record Ib Index Position", "selfm.fmconfig.cblk_ib_idx", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_cblk_ic_idx,
{ "Analog Record Ic Index Position", "selfm.fmconfig.cblk_ic_idx", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_cblk_va_idx,
{ "Analog Record Va/Vab Index Position", "selfm.fmconfig.cblk_va_idx", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_cblk_vb_idx,
{ "Analog Record Vb/Vbc Index Position", "selfm.fmconfig.cblk_vb_idx", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_cblk_vc_idx,
{ "Analog Record Vc/Vca Index Position", "selfm.fmconfig.cblk_vc_idx", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
/* "Fast Meter Data" specific fields */
{ &hf_selfm_fmdata_len,
{ "Length", "selfm.fmdata.len", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmdata_flagbyte,
{ "Status Flags Byte", "selfm.fmdata.flagbyte", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmdata_ai_sf_fp,
{ "Using IEEE FP Format Scale Factor", "selfm.fmdata.ai.sf_fp",FT_FLOAT, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmdata_dig_b0,
{ "Bit 0", "selfm.fmdata.dig_b0", FT_BOOLEAN, 8, NULL, 0x01, NULL, HFILL }},
{ &hf_selfm_fmdata_dig_b1,
{ "Bit 1", "selfm.fmdata.dig_b1", FT_BOOLEAN, 8, NULL, 0x02, NULL, HFILL }},
{ &hf_selfm_fmdata_dig_b2,
{ "Bit 2", "selfm.fmdata.dig_b2", FT_BOOLEAN, 8, NULL, 0x04, NULL, HFILL }},
{ &hf_selfm_fmdata_dig_b3,
{ "Bit 3", "selfm.fmdata.dig_b3", FT_BOOLEAN, 8, NULL, 0x08, NULL, HFILL }},
{ &hf_selfm_fmdata_dig_b4,
{ "Bit 4", "selfm.fmdata.dig_b4", FT_BOOLEAN, 8, NULL, 0x10, NULL, HFILL }},
{ &hf_selfm_fmdata_dig_b5,
{ "Bit 5", "selfm.fmdata.dig_b5", FT_BOOLEAN, 8, NULL, 0x20, NULL, HFILL }},
{ &hf_selfm_fmdata_dig_b6,
{ "Bit 6", "selfm.fmdata.dig_b6", FT_BOOLEAN, 8, NULL, 0x40, NULL, HFILL }},
{ &hf_selfm_fmdata_dig_b7,
{ "Bit 7", "selfm.fmdata.dig_b7", FT_BOOLEAN, 8, NULL, 0x80, NULL, HFILL }},
/* "Fast Operate Configuration" specific fields */
{ &hf_selfm_foconfig_len,
{ "Length", "selfm.foconfig.len", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_foconfig_num_brkr,
{ "Number of Breaker Bits", "selfm.foconfig.num_brkr", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_foconfig_num_rb,
{ "Number of Remote Bits", "selfm.foconfig.num_rb", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_foconfig_prb_supp,
{ "Remote Bit Pulse Supported", "selfm.foconfig.prb_supp", FT_UINT8, BASE_DEC, VALS(selfm_foconfig_prb_supp_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_foconfig_reserved,
{ "Reserved Bit (Future)", "selfm.foconfig.reserved", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_foconfig_brkr_open,
{ "Breaker Bit Open Command", "selfm.foconfig.brkr_open", FT_UINT8, BASE_HEX, VALS(selfm_fo_br_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_foconfig_brkr_close,
{ "Breaker Bit Close Command", "selfm.foconfig.brkr_close", FT_UINT8, BASE_HEX, VALS(selfm_fo_br_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_foconfig_rb_cmd,
{ "Remote Bit Command", "selfm.foconfig.rb_cmd", FT_UINT8, BASE_HEX, VALS(selfm_fo_rb_vals), 0x0, NULL, HFILL }},
/* "Alternate Fast Operate Configuration" specific fields */
{ &hf_selfm_alt_foconfig_len,
{ "Length", "selfm.alt_foconfig.len", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_alt_foconfig_num_ports,
{ "Number of Ports Available", "selfm.alt_foconfig.num_ports", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_alt_foconfig_num_brkr,
{ "Number of Breaker Bits per Port", "selfm.alt_foconfig.num_brkr", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_alt_foconfig_num_rb,
{ "Number of Remote Bits per Port", "selfm.alt_foconfig.num_rb", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_alt_foconfig_funccode,
{ "Supported Function Code", "selfm.alt_foconfig.funccode", FT_UINT8, BASE_HEX, VALS(selfm_foconfig_alt_funccode_vals), 0x0, NULL, HFILL }},
/* "Fast Operate Command" specific fields */
{ &hf_selfm_fastop_len,
{ "Length", "selfm.fastop.len", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastop_rb_code,
{ "Remote Bit Operate Code", "selfm.fastop.rb_code", FT_UINT8, BASE_HEX, VALS(selfm_fo_rb_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_fastop_br_code,
{ "Breaker Bit Operate Code", "selfm.fastop.br_code", FT_UINT8, BASE_HEX, VALS(selfm_fo_br_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_fastop_valid,
{ "Operate Code Validation", "selfm.fastop.valid", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
/* "Alternate Fast Operate Command" specific fields */
{ &hf_selfm_alt_fastop_len,
{ "Length", "selfm.alt_fastop.len", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_alt_fastop_code,
{ "Operate Code", "selfm.alt_fastop.code", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_alt_fastop_valid,
{ "Operate Code Validation", "selfm.alt_fastop.valid", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }},
/* "Fast SER Message" specific fields */
{ &hf_selfm_fastser_len,
{ "Length", "selfm.fastser.len", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_routing_addr,
{ "Routing Address (future)", "selfm.fastser.routing_addr", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_status,
{ "Status Byte", "selfm.fastser.status", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_funccode,
{ "Function Code", "selfm.fastser.funccode", FT_UINT8, BASE_HEX, VALS(selfm_fastser_func_code_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_seq,
{ "Sequence Byte", "selfm.fastser.seq", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_seq_fir,
{ "FIR", "selfm.fastser.seq_fir", FT_BOOLEAN, 8, NULL, FAST_SER_SEQ_FIR, NULL, HFILL }},
{ &hf_selfm_fastser_seq_fin,
{ "FIN", "selfm.fastser.seq_fin", FT_BOOLEAN, 8, NULL, FAST_SER_SEQ_FIN, NULL, HFILL }},
{ &hf_selfm_fastser_seq_cnt,
{ "Count", "selfm.fastser.seq_cnt", FT_UINT8, BASE_DEC, NULL, FAST_SER_SEQ_CNT, "Frame Count Number", HFILL }},
{ &hf_selfm_fastser_resp_num,
{ "Response Number", "selfm.fastser.resp_num", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_crc16,
{ "CRC-16", "selfm.fastser.crc16", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_def_route_sup,
{ "Routing Support", "selfm.fastser.def_route_sup", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_def_rx_stat,
{ "Status RX", "selfm.fastser.def_rx_stat", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_def_tx_stat,
{ "Status TX", "selfm.fastser.def_tx_stat", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_def_rx_maxfr,
{ "Max Frames RX", "selfm.fastser.def_rx_maxfr", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_def_tx_maxfr,
{ "Max Frames TX", "selfm.fastser.def_tx_maxfr", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_def_rx_num_fc,
{ "Number of Supported RX Function Codes", "selfm.fastser.def_rx_num_fc", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_def_rx_fc,
{ "Receive Function Code", "selfm.fastser.def_rx_fc", FT_UINT8, BASE_HEX, VALS(selfm_fastser_func_code_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_def_tx_num_fc,
{ "Number of Supported TX Function Codes", "selfm.fastser.def_tx_num_fc", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_def_tx_fc,
{ "Transmit Function Code", "selfm.fastser.def_tx_fc", FT_UINT8, BASE_HEX, VALS(selfm_fastser_func_code_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_uns_en_fc,
{ "Function Code to Enable", "selfm.fastser.uns_en_fc", FT_UINT8, BASE_HEX, VALS(selfm_fastser_func_code_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_uns_en_fc_data,
{ "Function Code Data", "selfm.fastser.uns_en_fc_data", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_uns_dis_fc,
{ "Function Code to Disable", "selfm.fastser.uns_dis_fc", FT_UINT8, BASE_HEX, VALS(selfm_fastser_func_code_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_uns_dis_fc_data,
{ "Function Code Data", "selfm.fastser.uns_dis_fc_data", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_unsresp_orig,
{ "Origination path", "selfm.fastser.unsresp_orig", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_unsresp_doy,
{ "Day of Year", "selfm.fastser.unsresp_doy", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_unsresp_year,
{ "Year", "selfm.fastser.unsresp_year", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_unsresp_todms,
{ "Time of Day (in ms)", "selfm.fastser.unsresp_todms", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_unsresp_num_elmt,
{ "Number of SER Elements", "selfm.fastser.unsresp_num_elmt", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_unsresp_elmt_idx,
{ "SER Element Index", "selfm.fastser.unsresp_elmt_idx", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_unsresp_elmt_ts_ofs,
{ "SER Element Timestamp Offset (us)", "selfm.fastser.unsresp_elmt_ts_ofs", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_unsresp_elmt_status,
{ "SER Element Status", "selfm.fastser.unsresp_elmt_status", FT_UINT8, BASE_DEC, VALS(selfm_ser_status_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_unsresp_eor,
{ "End of Record Indicator", "selfm.fastser.unsresp_eor", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_unsresp_elmt_statword,
{ "SER Element Status Word", "selfm.fastser.unsresp_elmt_statword", FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_unswrite_addr1,
{ "Write Address Region #1", "selfm.fastser.unswrite_addr1", FT_UINT16, BASE_HEX, VALS(selfm_fastser_unswrite_com_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_unswrite_addr2,
{ "Write Address Region #2", "selfm.fastser.unswrite_addr2", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_unswrite_num_reg,
{ "Number of Registers", "selfm.fastser.unswrite_num_reg", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_unswrite_reg_val,
{ "Register Value", "selfm.fastser.unswrite_reg_val", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_baseaddr,
{ "Base Address", "selfm.fastser.baseaddr", FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_numwords,
{ "Number of 16-bit Words", "selfm.fastser.numwords", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_flags,
{ "Flag Word", "selfm.fastser.flags", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_datafmt_resp_numitem,
{ "Number of Data Items Records", "selfm.fastser.datafmt_resp_numitem", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_dataitem_qty,
{ "Data Item Quantity", "selfm.fastser.dataitem_qty", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_dataitem_type,
{ "Data Item Type", "selfm.fastser.dataitem_type", FT_UINT16, BASE_HEX, VALS(selfm_fastser_tagtype_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_dataitem_uint16,
{ "(uint16)", "selfm.fastser.dataitem_uint16", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_dataitem_int16,
{ "(int16)", "selfm.fastser.dataitem_int16", FT_INT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_dataitem_uint32,
{ "(uint32)", "selfm.fastser.dataitem_uint32", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_dataitem_int32,
{ "(int32)", "selfm.fastser.dataitem_int32", FT_INT32, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_dataitem_float,
{ "(float)", "selfm.fastser.dataitem_float", FT_FLOAT, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_devdesc_num_region,
{ "Number of Data Regions", "selfm.fastser.devdesc_num_region", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_devdesc_num_ctrl,
{ "Number of Control Regions", "selfm.fastser.devdesc_num_ctrl", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_soe_req_orig,
{ "Origination path", "selfm.fastser.soe_req_orig", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_soe_resp_numblks,
{ "Number of Blocks", "selfm.fastser.soe_resp_numblks", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_soe_resp_orig,
{ "Origination path", "selfm.fastser.soe_resp_orig", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_soe_resp_numbits,
{ "Number of Bits", "selfm.fastser.soe_resp_numbits", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_soe_resp_pad,
{ "Pad Byte", "selfm.fastser.soe_resp_pad", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_soe_resp_doy,
{ "Day of Year", "selfm.fastser.soe_resp_doy", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_soe_resp_year,
{ "Year", "selfm.fastser.soe_resp_year", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_soe_resp_tod,
{ "Time of Day (ms)", "selfm.fastser.soe_resp_tod", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }},
/* { &hf_selfm_fastser_soe_resp_data,
{ "Packed Binary State Data", "selfm.fastser.soe_resp_data", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }}, */
/* "Fast SER Message" Re-assembly header fields */
{ &hf_selfm_fragment,
{ "SEL Fast Msg Response Data Fragment", "selfm.respdata.fragment", FT_FRAMENUM, BASE_NONE, NULL, 0x0, "SEL Fast Message Response Data Fragment", HFILL }},
{ &hf_selfm_fragments,
{ "SEL Fast Msg Response Data Fragments", "selfm.respdata.fragments", FT_NONE, BASE_NONE, NULL, 0x0, "SEL Fast Message Response Data Fragments", HFILL }},
{ &hf_selfm_fragment_overlap,
{ "Fragment overlap", "selfm.respdata.fragment.overlap", FT_BOOLEAN, BASE_NONE, NULL, 0x0, "Fragment overlaps with other fragments", HFILL }},
{ &hf_selfm_fragment_overlap_conflict,
{ "Conflicting data in fragment overlap", "selfm.respdata.fragment.overlap.conflict", FT_BOOLEAN, BASE_NONE, NULL, 0x0, "Overlapping fragments contained conflicting data", HFILL }},
{ &hf_selfm_fragment_multiple_tails,
{ "Multiple tail fragments found", "selfm.respdata.fragment.multipletails", FT_BOOLEAN, BASE_NONE, NULL, 0x0, "Several tails were found when defragmenting the packet", HFILL }},
{ &hf_selfm_fragment_too_long_fragment,
{ "Fragment too long", "selfm.respdata.fragment.toolongfragment", FT_BOOLEAN, BASE_NONE, NULL, 0x0, "Fragment contained data past end of packet", HFILL }},
{ &hf_selfm_fragment_error,
{ "Defragmentation error", "selfm.respdata.fragment.error", FT_FRAMENUM, BASE_NONE, NULL, 0x0, "Defragmentation error due to illegal fragments", HFILL }},
{ &hf_selfm_fragment_count,
{ "Fragment count", "selfm.respdata.fragment.count", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fragment_reassembled_in,
{ "Reassembled PDU In Frame", "selfm.respdata.fragment.reassembled_in", FT_FRAMENUM, BASE_NONE, NULL, 0x0, "This PDU is reassembled in this frame", HFILL }},
{ &hf_selfm_fragment_reassembled_length,
{ "Reassembled SEL Fast Msg length", "selfm.respdata.fragment.reassembled.length", FT_UINT32, BASE_DEC, NULL, 0x0, "The total length of the reassembled payload", HFILL }
}
};
/* Setup protocol subtree array */
static gint *ett[] = {
&ett_selfm,
&ett_selfm_relaydef,
&ett_selfm_relaydef_fm,
&ett_selfm_relaydef_proto,
&ett_selfm_relaydef_flags,
&ett_selfm_fmconfig,
&ett_selfm_fmconfig_ai,
&ett_selfm_fmconfig_calc,
&ett_selfm_foconfig,
&ett_selfm_foconfig_brkr,
&ett_selfm_foconfig_rb,
&ett_selfm_fastop,
&ett_selfm_fmdata,
&ett_selfm_fmdata_ai,
&ett_selfm_fmdata_dig,
&ett_selfm_fmdata_ai_ch,
&ett_selfm_fmdata_dig_ch,
&ett_selfm_fastser,
&ett_selfm_fastser_seq,
&ett_selfm_fastser_def_fc,
&ett_selfm_fastser_tag,
&ett_selfm_fastser_element_list,
&ett_selfm_fastser_element,
&ett_selfm_fastser_datareg,
&ett_selfm_fragment,
&ett_selfm_fragments
};
module_t *selfm_module;
/* Register protocol init routine */
register_init_routine(&selfm_init);
/* Register the protocol name and description */
proto_selfm = proto_register_protocol("SEL Fast Message", "SEL Fast Message", "selfm");
/* Registering protocol to be called by another dissector */
new_register_dissector("selfm", dissect_selfm_simple, proto_selfm);
/* Required function calls to register the header fields and subtrees used */
proto_register_field_array(proto_selfm, selfm_hf, array_length(selfm_hf));
proto_register_subtree_array(ett, array_length(ett));
/* Register required preferences for SEL Protocol register decoding */
selfm_module = prefs_register_protocol(proto_selfm, proto_reg_handoff_selfm);
/* SEL Protocol - Desegmentmentation; defaults to TRUE for TCP desegmentation*/
prefs_register_bool_preference(selfm_module, "desegment",
"Desegment all SEL Fast Message Protocol packets spanning multiple TCP segments",
"Whether the SEL Protocol dissector should desegment all messages spanning multiple TCP segments",
&selfm_desegment);
/* SEL Protocol - Telnet protocol IAC (0xFF) processing; defaults to TRUE to allow Telnet Encapsulated Data */
prefs_register_bool_preference(selfm_module, "telnetclean",
"Enable Automatic pre-processing of Telnet-encapsulated data to remove extra 0xFF (IAC) bytes",
"Whether the SEL Protocol dissector should automatically pre-process Telnet data to remove IAC bytes",
&selfm_telnet_clean);
/* SEL Protocol Preference - Default TCP Port, allows for "user" port either than 0. */
prefs_register_uint_preference(selfm_module, "tcp.port", "SEL Protocol Port",
"Set the TCP port for SEL FM Protocol packets (if other"
" than the default of 0)",
10, &global_selfm_tcp_port);
}
/******************************************************************************************************/
/* If this dissector uses sub-dissector registration add a registration routine.
This format is required because a script is used to find these routines and
create the code that calls these routines.
*/
/******************************************************************************************************/
void
proto_reg_handoff_selfm(void)
{
static int selfm_prefs_initialized = FALSE;
static dissector_handle_t selfm_handle;
static unsigned int selfm_port;
/* Make sure to use SEL FM Protocol Preferences field to determine default TCP port */
if (! selfm_prefs_initialized) {
selfm_handle = new_create_dissector_handle(dissect_selfm_tcp, proto_selfm);
selfm_prefs_initialized = TRUE;
}
else {
dissector_delete_uint("tcp.port", selfm_port, selfm_handle);
}
selfm_port = global_selfm_tcp_port;
dissector_add_uint("tcp.port", selfm_port, selfm_handle);
}
/*
* Editor modelines - http://www.wireshark.org/tools/modelines.html
*
* Local variables:
* c-basic-offset: 4
* tab-width: 8
* indent-tabs-mode: nil
* End:
*
* vi: set shiftwidth=4 tabstop=8 expandtab:
* :indentSize=4:tabSize=8:noTabs=true:
*/