wireshark/epan/dissectors/packet-wireguard.c
John Thacker b80cdaa243 libgcrypt: Require version 1.8.0
Libgcrypt 1.8.x is required for a large amount of decryption
support and is the current LTS version of libgcrypt. The 1.6 and
1.7 series have been end-of-life since 2017-06-30 and 2019-06-30,
respectively.

The Linux distributions that have versions of libgcrypt before 1.8.0
are nearing or at end of support (RHEL7, SLES 12, Debian stretch,
Ubuntu 16.04LTS) and can be supported by the Wireshark 3.6 LTS release
series.

Remove an enormous amount of ifdefs based on libgcrypt versions
1.6.0, 1.7.0, and 1.8.0. There will be a second pass for the
commons defines HAVE_LIBGCRYPT_AEAD, HAVE_LIBGCRYPT_CHACHA20, and
HAVE_LIBGCRYPT_CHACHA20_POLY1305, which are now always defined.

The ISAKMP dissector has some comments noting that some workarounds
were used for libgcrypt 1.6 that aren't needed with 1.7; perhaps
that could be updated now.
2022-04-20 21:30:21 -04:00

1933 lines
67 KiB
C

/* packet-wireguard.c
* Routines for WireGuard dissection
* Copyright 2018, Peter Wu <peter@lekensteyn.nl>
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
/*
* Protocol details: https://www.wireguard.com/protocol/
*/
#include <config.h>
#include <errno.h>
#define WS_LOG_DOMAIN "packet-wireguard"
#include <epan/packet.h>
#include <epan/expert.h>
#include <epan/prefs.h>
#include <epan/proto_data.h>
#include <epan/conversation.h>
#include <epan/uat.h>
#include <wsutil/file_util.h>
#include <wsutil/filesystem.h>
#include <wsutil/wsgcrypt.h>
#include <wsutil/curve25519.h>
#include <wsutil/wslog.h>
#include <epan/secrets.h>
#include <wiretap/secrets-types.h>
void proto_reg_handoff_wg(void);
void proto_register_wg(void);
static int proto_wg = -1;
static int hf_wg_type = -1;
static int hf_wg_reserved = -1;
static int hf_wg_sender = -1;
static int hf_wg_ephemeral = -1;
static int hf_wg_encrypted_static = -1;
static int hf_wg_static = -1;
static int hf_wg_encrypted_timestamp = -1;
static int hf_wg_timestamp_tai64_label = -1;
static int hf_wg_timestamp_nanoseconds = -1;
static int hf_wg_timestamp_value = -1;
static int hf_wg_mac1 = -1;
static int hf_wg_mac2 = -1;
static int hf_wg_receiver = -1;
static int hf_wg_encrypted_empty = -1;
static int hf_wg_handshake_ok = -1;
static int hf_wg_nonce = -1;
static int hf_wg_encrypted_cookie = -1;
static int hf_wg_counter = -1;
static int hf_wg_encrypted_packet = -1;
static int hf_wg_stream = -1;
static int hf_wg_response_in = -1;
static int hf_wg_response_to = -1;
static int hf_wg_receiver_pubkey = -1;
static int hf_wg_receiver_pubkey_known_privkey = -1;
static int hf_wg_ephemeral_known_privkey = -1;
static int hf_wg_static_known_pubkey = -1;
static int hf_wg_static_known_privkey = -1;
static gint ett_wg = -1;
static gint ett_timestamp = -1;
static gint ett_key_info = -1;
static expert_field ei_wg_bad_packet_length = EI_INIT;
static expert_field ei_wg_keepalive = EI_INIT;
static expert_field ei_wg_decryption_error = EI_INIT;
static gboolean pref_dissect_packet = TRUE;
static const char *pref_keylog_file;
static dissector_handle_t ip_handle;
static dissector_handle_t wg_handle;
// Length of AEAD authentication tag
#define AUTH_TAG_LENGTH 16
typedef enum {
WG_TYPE_HANDSHAKE_INITIATION = 1,
WG_TYPE_HANDSHAKE_RESPONSE = 2,
WG_TYPE_COOKIE_REPLY = 3,
WG_TYPE_TRANSPORT_DATA = 4
} wg_message_type;
static const value_string wg_type_names[] = {
{ 0x01, "Handshake Initiation" },
{ 0x02, "Handshake Response" },
{ 0x03, "Cookie Reply" },
{ 0x04, "Transport Data" },
{ 0x00, NULL }
};
/* Decryption types. {{{ */
/*
* Most operations operate on 32 byte units (keys and hash output).
*/
typedef struct {
#define WG_KEY_LEN 32
guchar data[WG_KEY_LEN];
} wg_qqword;
/*
* Static key with the MAC1 key pre-computed and an optional private key.
*/
typedef struct wg_skey {
wg_qqword pub_key;
wg_qqword mac1_key;
wg_qqword priv_key; /* Optional, set to all zeroes if missing. */
} wg_skey_t;
/*
* Pre-shared key, needed while processing the handshake response message. At
* that point, ephemeral keys (from either the initiator or responder) should be
* known. Thus link the PSK to such ephemeral keys.
*
* Usually a "wg_ekey_t" contains an empty list (if there is no PSK, i.e. an
* all-zeroes PSK) or one item (if a PSK is configured). In the unlikely event
* that an ephemeral key is reused, support more than one PSK.
*/
typedef struct wg_psk {
wg_qqword psk_data;
struct wg_psk *next;
} wg_psk_t;
/*
* Ephemeral key.
*/
typedef struct wg_ekey {
wg_qqword pub_key;
wg_qqword priv_key; /* Optional, set to all zeroes if missing. */
wg_psk_t *psk_list; /* Optional, possible PSKs to try. */
} wg_ekey_t;
/*
* Set of (long-term) static keys (for guessing the peer based on MAC1).
* Maps the public key to the "wg_skey_t" structure.
* Keys are populated from the UAT and key log file.
*/
static GHashTable *wg_static_keys = NULL;
/*
* Set of ephemeral keys (for decryption). Maps the public key to the
* "wg_ekey_t" structure. The private key MUST be available.
* Keys are populated from the key log file and wmem_file_scope allocated.
*/
static wmem_map_t *wg_ephemeral_keys;
/*
* Key log file handle. Opened on demand (when keys are actually looked up),
* closed when the capture file closes.
*/
static FILE *wg_keylog_file;
/*
* The most recently parsed ephemeral key. If a PSK is configured, the key log
* file must have a PSK line after other keys. If not, then it is assumed that
* the session does not use a PSK.
*
* This pointer is cleared when the key log file is reset (i.e. when the capture
* file closes).
*/
static wg_ekey_t *wg_keylog_last_ekey;
enum wg_psk_iter_state {
WG_PSK_ITER_STATE_ENTER = 0,
WG_PSK_ITER_STATE_INITIATOR,
WG_PSK_ITER_STATE_RESPONDER,
WG_PSK_ITER_STATE_EXIT
};
/* See wg_psk_iter_next. */
typedef struct {
enum wg_psk_iter_state state;
wg_psk_t *next_psk;
} wg_psk_iter_context;
/* UAT adapter for populating wg_static_keys. */
enum { WG_KEY_UAT_PUBLIC, WG_KEY_UAT_PRIVATE };
static const value_string wg_key_uat_type_vals[] = {
{ WG_KEY_UAT_PUBLIC, "Public" },
{ WG_KEY_UAT_PRIVATE, "Private" },
{ 0, NULL }
};
typedef struct {
guint key_type; /* See "wg_key_uat_type_vals". */
char *key;
} wg_key_uat_record_t;
static wg_key_uat_record_t *wg_key_records;
static guint num_wg_key_records;
/*
* Input keying material for key derivation/decryption during the handshake.
* For the Initiation message, Spub_r and either Spriv_r or Epriv_i must be set.
* For the Response message, Epriv_r + Spriv_r or Epriv_r + Epub_i.
*
* The static and ephemeral keys are reset upon UAT changes or are invalidated
* when the capture file closes.
*/
typedef struct {
const wg_skey_t *initiator_skey; /* Spub_i based on Initiation.static (decrypted, null if decryption failed) */
const wg_skey_t *responder_skey; /* Spub_r based on Initiation.MAC1 (+Spriv_r if available) */
guint8 timestamp[12]; /* Initiation.timestamp (decrypted) */
gboolean timestamp_ok : 1; /* Whether the timestamp was successfully decrypted */
gboolean empty_ok : 1; /* Whether the empty field was successfully decrypted */
/* The following fields are only valid on the initial pass. */
const wg_ekey_t *initiator_ekey; /* Epub_i matching Initiation.Ephemeral (+Epriv_i if available) */
const wg_ekey_t *responder_ekey; /* Epub_r matching Response.Ephemeral (+Epriv_r if available) */
wg_qqword handshake_hash; /* Handshake hash H_i */
wg_qqword chaining_key; /* Chaining key C_i */
/* Transport ciphers. */
gcry_cipher_hd_t initiator_recv_cipher;
gcry_cipher_hd_t responder_recv_cipher;
} wg_handshake_state_t;
/** Hash(CONSTRUCTION), initialized by wg_decrypt_init. */
static wg_qqword hash_of_construction;
/** Hash(Hash(CONSTRUCTION) || IDENTIFIER), initialized by wg_decrypt_init. */
static wg_qqword hash_of_c_identifier;
/* Decryption types. }}} */
/*
* Information required to process and link messages as required on the first
* sequential pass. After that it can be erased.
*/
typedef struct {
address initiator_address;
address responder_address;
guint16 initiator_port;
guint16 responder_port;
} wg_initial_info_t;
/*
* A "session" between two peer is identified by a "sender" id as independently
* chosen by each side. In case both peer IDs collide, the source IP and UDP
* port number could be used to distinguish sessions. As IDs can be recycled
* over time, lookups should use the most recent initiation (or response).
*
* XXX record timestamps (time since last message, for validating timers).
*/
typedef struct {
guint32 stream; /* Session identifier (akin to udp.stream). */
guint32 initiator_frame;
guint32 response_frame; /* Responder or Cookie Reply message. */
wg_initial_info_t initial; /* Valid only on the first pass. */
wg_handshake_state_t *hs; /* Handshake state to enable decryption. */
} wg_session_t;
/* Per-packet state. */
typedef struct {
wg_session_t *session;
gboolean receiver_is_initiator; /* Whether this transport data packet is sent to an Initiator. */
} wg_packet_info_t;
/* Map from Sender/Receiver IDs to a list of session information. */
static wmem_map_t *sessions;
static guint32 wg_session_count;
/* Key conversion routines. {{{ */
/* Import external random data as private key. */
static void
set_private_key(wg_qqword *privkey, const wg_qqword *inkey)
{
// The 254th bit of a Curve25519 secret will always be set in calculations,
// use this property to recognize whether a private key is set.
*privkey = *inkey;
privkey->data[31] |= 64;
}
/* Whether a private key is initialized (see set_private_key). */
static inline gboolean
has_private_key(const wg_qqword *secret)
{
return !!(secret->data[31] & 64);
}
/**
* Compute the Curve25519 public key from a private key.
*/
static void
priv_to_pub(wg_qqword *pub, const wg_qqword *priv)
{
int r = crypto_scalarmult_curve25519_base(pub->data, priv->data);
/* The computation should always be possible. */
DISSECTOR_ASSERT(r == 0);
}
static void
dh_x25519(wg_qqword *shared_secret, const wg_qqword *priv, const wg_qqword *pub)
{
/*
* If the point ("pub") is of small order, of if the result is all zeros, -1
* could be returned with Sodium. We are just interpreting the trace, so
* just ignore the condition for now.
*/
(void)crypto_scalarmult_curve25519(shared_secret->data, priv->data, pub->data);
}
/*
* Returns the string representation (base64) of a public key.
* The returned value is allocated with wmem_packet_scope.
*/
static const char *
pubkey_to_string(const wg_qqword *pubkey)
{
gchar *str = g_base64_encode(pubkey->data, WG_KEY_LEN);
gchar *ret = wmem_strdup(wmem_packet_scope(), str);
g_free(str);
return ret;
}
static gboolean
decode_base64_key(wg_qqword *out, const char *str)
{
gsize out_len;
gchar tmp[45];
if (strlen(str) + 1 != sizeof(tmp)) {
return FALSE;
}
memcpy(tmp, str, sizeof(tmp));
g_base64_decode_inplace(tmp, &out_len);
if (out_len != WG_KEY_LEN) {
return FALSE;
}
memcpy(out->data, tmp, WG_KEY_LEN);
return TRUE;
}
/* Key conversion routines. }}} */
static gboolean
wg_pubkey_equal(gconstpointer v1, gconstpointer v2)
{
const wg_qqword *pubkey1 = (const wg_qqword *)v1;
const wg_qqword *pubkey2 = (const wg_qqword *)v2;
return !memcmp(pubkey1->data, pubkey2->data, WG_KEY_LEN);
}
/* Protocol-specific crypto routines. {{{ */
/**
* Computes MAC1. Caller must ensure that GCRY_MD_BLAKE2S_256 is available.
*/
static void
wg_mac1_key(const wg_qqword *static_public, wg_qqword *mac_key_out)
{
gcry_md_hd_t hd;
if (gcry_md_open(&hd, GCRY_MD_BLAKE2S_256, 0) == 0) {
const char wg_label_mac1[] = "mac1----";
gcry_md_write(hd, wg_label_mac1, strlen(wg_label_mac1));
gcry_md_write(hd, static_public->data, sizeof(wg_qqword));
memcpy(mac_key_out->data, gcry_md_read(hd, 0), sizeof(wg_qqword));
gcry_md_close(hd);
return;
}
// caller should have checked this.
DISSECTOR_ASSERT_NOT_REACHED();
}
/*
* Verify that MAC(mac_key, data) matches "mac_output".
*/
static gboolean
wg_mac_verify(const wg_qqword *mac_key,
const guchar *data, guint data_len, const guint8 mac_output[16])
{
gboolean ok = FALSE;
gcry_md_hd_t hd;
if (gcry_md_open(&hd, GCRY_MD_BLAKE2S_128, 0) == 0) {
gcry_error_t r;
// not documented by Libgcrypt, but required for keyed blake2s
r = gcry_md_setkey(hd, mac_key->data, WG_KEY_LEN);
DISSECTOR_ASSERT(r == 0);
gcry_md_write(hd, data, data_len);
ok = memcmp(mac_output, gcry_md_read(hd, 0), 16) == 0;
gcry_md_close(hd);
} else {
// caller should have checked this.
DISSECTOR_ASSERT_NOT_REACHED();
}
return ok;
}
/**
* Update the new chained hash value: h = Hash(h || data).
*/
static void
wg_mix_hash(wg_qqword *h, const void *data, size_t data_len)
{
gcry_md_hd_t hd;
if (gcry_md_open(&hd, GCRY_MD_BLAKE2S_256, 0)) {
DISSECTOR_ASSERT_NOT_REACHED();
}
gcry_md_write(hd, h->data, sizeof(wg_qqword));
gcry_md_write(hd, data, data_len);
memcpy(h, gcry_md_read(hd, 0), sizeof(wg_qqword));
gcry_md_close(hd);
}
/**
* Computes KDF_n(key, input) where n is the number of derived keys.
*/
static void
wg_kdf(const wg_qqword *key, const guint8 *input, guint input_len, guint n, wg_qqword *out)
{
guint8 prk[32]; /* Blake2s_256 hash output. */
gcry_error_t err;
err = hkdf_extract(GCRY_MD_BLAKE2S_256, key->data, sizeof(wg_qqword), input, input_len, prk);
DISSECTOR_ASSERT(err == 0);
err = hkdf_expand(GCRY_MD_BLAKE2S_256, prk, sizeof(prk), NULL, 0, out->data, 32 * n);
DISSECTOR_ASSERT(err == 0);
}
/*
* Must be called before attempting decryption.
*/
static gboolean
wg_decrypt_init(void)
{
if (gcry_md_test_algo(GCRY_MD_BLAKE2S_128) != 0 ||
gcry_md_test_algo(GCRY_MD_BLAKE2S_256) != 0 ||
gcry_cipher_test_algo(GCRY_CIPHER_CHACHA20) != 0) {
return FALSE;
}
static const char construction[] = "Noise_IKpsk2_25519_ChaChaPoly_BLAKE2s";
gcry_md_hash_buffer(GCRY_MD_BLAKE2S_256, hash_of_construction.data, construction, strlen(construction));
static const char wg_identifier[] = "WireGuard v1 zx2c4 Jason@zx2c4.com";
memcpy(&hash_of_c_identifier, hash_of_construction.data, sizeof(wg_qqword));
wg_mix_hash(&hash_of_c_identifier, wg_identifier, strlen(wg_identifier));
return TRUE;
}
static gcry_cipher_hd_t
wg_create_cipher(const wg_qqword *key)
{
gcry_cipher_hd_t hd;
if (gcry_cipher_open(&hd, GCRY_CIPHER_CHACHA20, GCRY_CIPHER_MODE_POLY1305, 0)) {
return NULL;
}
if (gcry_cipher_setkey(hd, key->data, sizeof(*key))) {
gcry_cipher_close(hd);
hd = NULL;
}
return hd;
}
static gboolean
wg_handshake_state_destroy_cb(wmem_allocator_t *allocator _U_, wmem_cb_event_t event _U_, void *user_data)
{
wg_handshake_state_t *hs = (wg_handshake_state_t *)user_data;
if (hs->initiator_recv_cipher) {
gcry_cipher_close(hs->initiator_recv_cipher);
hs->initiator_recv_cipher = NULL;
}
if (hs->responder_recv_cipher) {
gcry_cipher_close(hs->responder_recv_cipher);
hs->responder_recv_cipher = NULL;
}
return FALSE;
}
/*
* Decrypt ciphertext using the ChaCha20-Poly1305 cipher. The auth tag must be
* included with the ciphertext.
*/
static gboolean
wg_aead_decrypt(gcry_cipher_hd_t hd, guint64 counter, const guchar *ctext, guint ctext_len, const guchar *aad, guint aad_len, guchar *out, guint out_len)
{
DISSECTOR_ASSERT(ctext_len >= AUTH_TAG_LENGTH);
ctext_len -= AUTH_TAG_LENGTH;
const guchar *auth_tag = ctext + ctext_len;
counter = GUINT64_TO_LE(counter);
guchar nonce[12] = { 0 };
memcpy(nonce + 4, &counter, 8);
return gcry_cipher_setiv(hd, nonce, sizeof(nonce)) == 0 &&
gcry_cipher_authenticate(hd, aad, aad_len) == 0 &&
gcry_cipher_decrypt(hd, out, out_len, ctext, ctext_len) == 0 &&
gcry_cipher_checktag(hd, auth_tag, AUTH_TAG_LENGTH) == 0;
}
/**
* Decrypt ciphertext using the ChaCha20-Poly1305 cipher. The auth tag must be
* included with the ciphertext.
*/
static gboolean
aead_decrypt(const wg_qqword *key, guint64 counter, const guchar *ctext, guint ctext_len, const guchar *aad, guint aad_len, guchar *out, guint out_len)
{
DISSECTOR_ASSERT(ctext_len >= AUTH_TAG_LENGTH);
gcry_cipher_hd_t hd = wg_create_cipher(key);
DISSECTOR_ASSERT(hd);
gboolean ok = wg_aead_decrypt(hd, counter, ctext, ctext_len, aad, aad_len, out, out_len);
gcry_cipher_close(hd);
return ok;
}
/* Protocol-specific crypto routines. }}} */
/*
* Add a static public or private key to "wg_static_keys".
*/
static void
wg_add_static_key(const wg_qqword *tmp_key, gboolean is_private)
{
wg_skey_t *key = g_new0(wg_skey_t, 1);
if (is_private) {
set_private_key(&key->priv_key, tmp_key);
priv_to_pub(&key->pub_key, tmp_key);
} else {
key->pub_key = *tmp_key;
}
// If a previous pubkey exists, skip adding the new key. Do add the
// secret if it has become known in meantime.
wg_skey_t *oldkey = (wg_skey_t *)g_hash_table_lookup(wg_static_keys, &key->pub_key);
if (oldkey) {
if (!has_private_key(&oldkey->priv_key) && is_private) {
oldkey->priv_key = key->priv_key;
}
g_free(key);
return;
}
// New key, precompute the MAC1 label.
wg_mac1_key(&key->pub_key, &key->mac1_key);
g_hash_table_insert(wg_static_keys, &key->pub_key, key);
}
/**
* Stores the given ephemeral private key.
*/
static wg_ekey_t *
wg_add_ephemeral_privkey(const wg_qqword *priv_key)
{
wg_qqword pub_key;
priv_to_pub(&pub_key, priv_key);
wg_ekey_t *key = (wg_ekey_t *)wmem_map_lookup(wg_ephemeral_keys, &pub_key);
if (!key) {
key = wmem_new0(wmem_file_scope(), wg_ekey_t);
key->pub_key = pub_key;
set_private_key(&key->priv_key, priv_key);
wmem_map_insert(wg_ephemeral_keys, &key->pub_key, key);
}
return key;
}
/* PSK handling. {{{ */
static void
wg_add_psk(wg_ekey_t *ekey, const wg_qqword *psk)
{
wg_psk_t *psk_entry = wmem_new0(wmem_file_scope(), wg_psk_t);
psk_entry->psk_data = *psk;
psk_entry->next = ekey->psk_list;
ekey->psk_list = psk_entry;
}
/*
* Retrieves the next PSK to try and returns TRUE if one is found or FALSE if
* there are no more to try.
*/
static gboolean
wg_psk_iter_next(wg_psk_iter_context *psk_iter, const wg_handshake_state_t *hs,
wg_qqword *psk_out)
{
wg_psk_t *psk = psk_iter->next_psk;
while (!psk) {
/*
* Yield PSKs based on Epub_i, then those based on Epub_r, then yield an
* all-zeroes key and finally fail in the terminating state.
*/
switch (psk_iter->state) {
case WG_PSK_ITER_STATE_ENTER:
psk = hs->initiator_ekey->psk_list;
psk_iter->state = WG_PSK_ITER_STATE_INITIATOR;
break;
case WG_PSK_ITER_STATE_INITIATOR:
psk = hs->responder_ekey->psk_list;
psk_iter->state = WG_PSK_ITER_STATE_RESPONDER;
break;
case WG_PSK_ITER_STATE_RESPONDER:
memset(psk_out->data, 0, WG_KEY_LEN);
psk_iter->state = WG_PSK_ITER_STATE_EXIT;
return TRUE;
case WG_PSK_ITER_STATE_EXIT:
return FALSE;
}
}
*psk_out = psk->psk_data;
psk_iter->next_psk = psk->next;
return TRUE;
}
/* PSK handling. }}} */
/* UAT and key configuration. {{{ */
static void
wg_keylog_reset(void)
{
if (wg_keylog_file) {
fclose(wg_keylog_file);
wg_keylog_file = NULL;
wg_keylog_last_ekey = NULL;
}
}
static void wg_keylog_process_lines(const void *data, guint datalen);
static void
wg_keylog_read(void)
{
if (!pref_keylog_file || !*pref_keylog_file) {
return;
}
// Reopen file if it got deleted/overwritten.
if (wg_keylog_file && file_needs_reopen(ws_fileno(wg_keylog_file), pref_keylog_file)) {
ws_debug("Key log file got changed or deleted, trying to re-open.");
wg_keylog_reset();
}
if (!wg_keylog_file) {
wg_keylog_file = ws_fopen(pref_keylog_file, "r");
if (!wg_keylog_file) {
ws_debug("Failed to open key log file %s: %s", pref_keylog_file, g_strerror(errno));
return;
}
ws_debug("Opened key log file %s", pref_keylog_file);
}
/* File format: each line follows the format "<type>=<key>" (leading spaces
* and spaces around '=' as produced by extract-handshakes.sh are ignored).
* For available <type>s, see below. <key> is the base64-encoded key (44
* characters).
*
* Example:
* LOCAL_STATIC_PRIVATE_KEY = AKeZaHwBxjiKLFnkY2unvEdOTtg4AL+M9dQXfopFVFk=
* REMOTE_STATIC_PUBLIC_KEY = YDCttCs9e1J52/g9vEnwJJa+2x6RqaayAYMpSVQfGEY=
* LOCAL_EPHEMERAL_PRIVATE_KEY = sLGLJSOQfyz7JNJ5ZDzFf3Uz1rkiCMMjbWerNYcPFFU=
* PRESHARED_KEY = AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA=
*/
for (;;) {
char buf[512];
if (!fgets(buf, sizeof(buf), wg_keylog_file)) {
if (feof(wg_keylog_file)) {
clearerr(wg_keylog_file);
} else if (ferror(wg_keylog_file)) {
ws_debug("Error while reading %s, closing it.", pref_keylog_file);
wg_keylog_reset();
}
break;
}
wg_keylog_process_lines((const guint8 *)buf, (guint)strlen(buf));
}
}
static void
wg_keylog_process_lines(const void *data, guint datalen)
{
const char *next_line = (const char *)data;
const char *line_end = next_line + datalen;
while (next_line && next_line < line_end) {
/* Note: line is NOT nul-terminated. */
const char *line = next_line;
next_line = (const char *)memchr(line, '\n', line_end - line);
gssize linelen;
if (next_line) {
linelen = next_line - line;
next_line++; /* drop LF */
} else {
linelen = (gssize)(line_end - line);
}
if (linelen > 0 && line[linelen - 1] == '\r') {
linelen--; /* drop CR */
}
ws_debug("Read WG key log line: %.*s", (int)linelen, line);
/* Strip leading spaces. */
const char *p = line;
while (p < line_end && *p == ' ') {
++p;
}
char key_type[sizeof("LOCAL_EPHEMERAL_PRIVATE_KEY")];
char key_value[45] = { 0 };
const char *p0 = p;
p = (const char *)memchr(p0, '=', line_end - p);
if (p && p0 != p) {
/* Extract "key-type" from "key-type = key-value" */
gsize key_type_len = p - p0;
while (key_type_len && p0[key_type_len - 1] == ' ') {
--key_type_len;
}
if (key_type_len && key_type_len < sizeof(key_type)) {
memcpy(key_type, p0, key_type_len);
key_type[key_type_len] = '\0';
/* Skip '=' and any spaces. */
p = p + 1;
while (p < line_end && *p == ' ') {
++p;
}
gsize key_value_len = (line + linelen) - p;
if (key_value_len && key_value_len < sizeof(key_value)) {
memcpy(key_value, p, key_value_len);
}
}
}
wg_qqword key;
if (!key_value[0] || !decode_base64_key(&key, key_value)) {
ws_debug("Unrecognized key log line: %.*s", (int)linelen, line);
continue;
}
if (!strcmp(key_type, "LOCAL_STATIC_PRIVATE_KEY")) {
wg_add_static_key(&key, TRUE);
} else if (!strcmp(key_type, "REMOTE_STATIC_PUBLIC_KEY")) {
wg_add_static_key(&key, FALSE);
} else if (!strcmp(key_type, "LOCAL_EPHEMERAL_PRIVATE_KEY")) {
wg_keylog_last_ekey = wg_add_ephemeral_privkey(&key);
} else if (!strcmp(key_type, "PRESHARED_KEY")) {
/* Link the PSK to the last ephemeral key. */
if (wg_keylog_last_ekey) {
wg_add_psk(wg_keylog_last_ekey, &key);
wg_keylog_last_ekey = NULL;
} else {
ws_debug("Ignored PSK as no new ephemeral key was found");
}
} else {
ws_debug("Unrecognized key log line: %.*s", (int)linelen, line);
}
}
}
static void*
wg_key_uat_record_copy_cb(void *dest, const void *source, size_t len _U_)
{
const wg_key_uat_record_t* o = (const wg_key_uat_record_t*)source;
wg_key_uat_record_t* d = (wg_key_uat_record_t*)dest;
d->key_type = o->key_type;
d->key = g_strdup(o->key);
return dest;
}
static gboolean
wg_key_uat_record_update_cb(void *r, char **error)
{
wg_key_uat_record_t *rec = (wg_key_uat_record_t *)r;
wg_qqword key;
/* Check for valid base64-encoding. */
if (!decode_base64_key(&key, rec->key)) {
*error = g_strdup("Invalid key");
return FALSE;
}
return TRUE;
}
static void
wg_key_uat_record_free_cb(void *r)
{
wg_key_uat_record_t *rec = (wg_key_uat_record_t *)r;
g_free(rec->key);
}
static void
wg_key_uat_apply(void)
{
if (!wg_static_keys) {
// The first field of "wg_skey_t" is the pubkey (and the table key),
// its initial four bytes should be good enough as key hash.
wg_static_keys = g_hash_table_new_full(g_int_hash, wg_pubkey_equal, NULL, g_free);
} else {
g_hash_table_remove_all(wg_static_keys);
}
// As static keys from the key log file also end up in "wg_static_keys",
// reset the file pointer such that it will be fully read later.
wg_keylog_reset();
/* Convert base64-encoded strings to wg_skey_t and derive pubkey. */
for (guint i = 0; i < num_wg_key_records; i++) {
wg_key_uat_record_t *rec = &wg_key_records[i];
wg_qqword tmp_key; /* Either public or private, not sure yet. */
/* Populate public (and private) keys. */
gboolean decoded = decode_base64_key(&tmp_key, rec->key);
DISSECTOR_ASSERT(decoded);
wg_add_static_key(&tmp_key, rec->key_type == WG_KEY_UAT_PRIVATE);
}
}
static void
wg_key_uat_reset(void)
{
/* Erase keys when the UAT is unloaded. */
if (wg_static_keys != NULL) {
g_hash_table_destroy(wg_static_keys);
wg_static_keys = NULL;
}
}
UAT_VS_DEF(wg_key_uat, key_type, wg_key_uat_record_t, guint, WG_KEY_UAT_PUBLIC, "Public")
UAT_CSTRING_CB_DEF(wg_key_uat, key, wg_key_uat_record_t)
/* UAT and key configuration. }}} */
/**
* Tries to decrypt the initiation message.
* Assumes responder_skey and initiator_ekey to be set.
*/
static void
wg_process_initiation(tvbuff_t *tvb, wg_handshake_state_t *hs)
{
DISSECTOR_ASSERT(hs->responder_skey);
DISSECTOR_ASSERT(hs->initiator_ekey);
DISSECTOR_ASSERT(hs->initiator_skey == NULL);
wg_qqword decrypted_static = {{ 0 }};
const gboolean has_Spriv_r = has_private_key(&hs->responder_skey->priv_key);
const gboolean has_Epriv_i = has_private_key(&hs->initiator_ekey->priv_key);
// Either Spriv_r or Epriv_i + Spriv_i are needed. If the first two are not
// available, fail early. Spriv_i will be looked up later.
if (!has_Spriv_r && !has_Epriv_i) {
return;
}
const wg_qqword *ephemeral = (const wg_qqword *)tvb_get_ptr(tvb, 8, WG_KEY_LEN);
#define WG_ENCRYPTED_STATIC_LENGTH (32 + AUTH_TAG_LENGTH)
const guint8 *encrypted_static = (const guint8 *)tvb_get_ptr(tvb, 40, WG_ENCRYPTED_STATIC_LENGTH);
#define WG_ENCRYPTED_TIMESTAMP_LENGTH (12 + AUTH_TAG_LENGTH)
const guint8 *encrypted_timestamp = (const guint8 *)tvb_get_ptr(tvb, 88, WG_ENCRYPTED_TIMESTAMP_LENGTH);
wg_qqword c_and_k[2], h;
wg_qqword *c = &c_and_k[0], *k = &c_and_k[1];
// c = Hash(CONSTRUCTION)
memcpy(c->data, hash_of_construction.data, sizeof(wg_qqword));
// h = Hash(c || IDENTIFIER)
memcpy(h.data, hash_of_c_identifier.data, sizeof(wg_qqword));
// h = Hash(h || Spub_r)
wg_mix_hash(&h, hs->responder_skey->pub_key.data, sizeof(wg_qqword));
// c = KDF1(c, msg.ephemeral)
wg_kdf(c, ephemeral->data, WG_KEY_LEN, 1, c);
// h = Hash(h || msg.ephemeral)
wg_mix_hash(&h, ephemeral, WG_KEY_LEN);
// dh1 = DH(Spriv_r, msg.ephemeral) if kType = R
// dh1 = DH(Epriv_i, Spub_r) if kType = I
wg_qqword dh1 = {{ 0 }};
if (has_Spriv_r) {
dh_x25519(&dh1, &hs->responder_skey->priv_key, ephemeral);
} else {
dh_x25519(&dh1, &hs->initiator_ekey->priv_key, &hs->responder_skey->pub_key);
}
// (c, k) = KDF2(c, dh1)
wg_kdf(c, dh1.data, sizeof(dh1), 2, c_and_k);
// Spub_i = AEAD-Decrypt(k, 0, msg.static, h)
if (!aead_decrypt(k, 0, encrypted_static, WG_ENCRYPTED_STATIC_LENGTH, h.data, sizeof(wg_qqword), decrypted_static.data, sizeof(decrypted_static))) {
return;
}
// Save static public key to the context and lookup private key if possible.
wg_skey_t *skey_i = (wg_skey_t *)g_hash_table_lookup(wg_static_keys, &decrypted_static);
if (!skey_i) {
skey_i = wmem_new0(wmem_file_scope(), wg_skey_t);
skey_i->pub_key = decrypted_static;
}
hs->initiator_skey = skey_i;
// If Spriv_r is not available, then Epriv_i + Spriv_i must be available.
if (!has_Spriv_r && !has_private_key(&hs->initiator_skey->priv_key)) {
return;
}
// h = Hash(h || msg.static)
wg_mix_hash(&h, encrypted_static, WG_ENCRYPTED_STATIC_LENGTH);
// dh2 = DH(Spriv_r, Spub_i) if kType = R
// dh2 = DH(Spriv_i, Spub_r) if kType = I
wg_qqword dh2 = {{ 0 }};
if (has_Spriv_r) {
dh_x25519(&dh2, &hs->responder_skey->priv_key, &hs->initiator_skey->pub_key);
} else {
dh_x25519(&dh2, &hs->initiator_skey->priv_key, &hs->responder_skey->pub_key);
}
// (c, k) = KDF2(c, dh2)
wg_kdf(c, dh2.data, sizeof(wg_qqword), 2, c_and_k);
// timestamp = AEAD-Decrypt(k, 0, msg.timestamp, h)
if (!aead_decrypt(k, 0, encrypted_timestamp, WG_ENCRYPTED_TIMESTAMP_LENGTH, h.data, sizeof(wg_qqword), hs->timestamp, sizeof(hs->timestamp))) {
return;
}
hs->timestamp_ok = TRUE;
// h = Hash(h || msg.timestamp)
wg_mix_hash(&h, encrypted_timestamp, WG_ENCRYPTED_TIMESTAMP_LENGTH);
// save (h, k) context for responder message processing
hs->handshake_hash = h;
hs->chaining_key = *c;
}
static void
wg_process_response(tvbuff_t *tvb, wg_handshake_state_t *hs)
{
DISSECTOR_ASSERT(hs->initiator_ekey);
DISSECTOR_ASSERT(hs->initiator_skey);
DISSECTOR_ASSERT(hs->responder_ekey);
DISSECTOR_ASSERT(hs->responder_skey);
// XXX when multiple responses are linkable to a single handshake state,
// they should probably fork into a new state or be discarded when equal.
if (hs->initiator_recv_cipher || hs->responder_recv_cipher) {
ws_warning("%s FIXME multiple responses linked to a single session", G_STRFUNC);
return;
}
DISSECTOR_ASSERT(!hs->initiator_recv_cipher);
DISSECTOR_ASSERT(!hs->responder_recv_cipher);
const gboolean has_Epriv_i = has_private_key(&hs->initiator_ekey->priv_key);
const gboolean has_Spriv_i = has_private_key(&hs->initiator_skey->priv_key);
const gboolean has_Epriv_r = has_private_key(&hs->responder_ekey->priv_key);
// Either Epriv_i + Spriv_i or Epriv_r + Epub_i + Spub_i are required.
if (!(has_Epriv_i && has_Spriv_i) && !has_Epriv_r) {
return;
}
const wg_qqword *ephemeral = (const wg_qqword *)tvb_get_ptr(tvb, 12, WG_KEY_LEN);
const guint8 *encrypted_empty = (const guint8 *)tvb_get_ptr(tvb, 44, AUTH_TAG_LENGTH);
wg_qqword ctk[3], h;
wg_qqword *c = &ctk[0], *t = &ctk[1], *k = &ctk[2];
h = hs->handshake_hash;
*c = hs->chaining_key;
// c = KDF1(c, msg.ephemeral)
wg_kdf(c, ephemeral->data, WG_KEY_LEN, 1, c);
// h = Hash(h || msg.ephemeral)
wg_mix_hash(&h, ephemeral, WG_KEY_LEN);
// dh1 = DH(Epriv_i, msg.ephemeral) if kType == I
// dh1 = DH(Epriv_r, Epub_i) if kType == R
wg_qqword dh1;
if (has_Epriv_i && has_Spriv_i) {
dh_x25519(&dh1, &hs->initiator_ekey->priv_key, ephemeral);
} else {
dh_x25519(&dh1, &hs->responder_ekey->priv_key, &hs->initiator_ekey->pub_key);
}
// c = KDF1(c, dh1)
wg_kdf(c, dh1.data, sizeof(dh1), 1, c);
// dh2 = DH(Spriv_i, msg.ephemeral) if kType == I
// dh2 = DH(Epriv_r, Spub_i) if kType == R
wg_qqword dh2;
if (has_Epriv_i && has_Spriv_i) {
dh_x25519(&dh2, &hs->initiator_skey->priv_key, ephemeral);
} else {
dh_x25519(&dh2, &hs->responder_ekey->priv_key, &hs->initiator_skey->pub_key);
}
// c = KDF1(c, dh2)
wg_kdf(c, dh2.data, sizeof(dh2), 1, c);
wg_qqword h_before_psk = h, c_before_psk = *c, psk;
wg_psk_iter_context psk_iter = { WG_PSK_ITER_STATE_ENTER, NULL };
while (wg_psk_iter_next(&psk_iter, hs, &psk)) {
// c, t, k = KDF3(c, PSK)
wg_kdf(c, psk.data, WG_KEY_LEN, 3, ctk);
// h = Hash(h || t)
wg_mix_hash(&h, t, sizeof(wg_qqword));
// empty = AEAD-Decrypt(k, 0, msg.empty, h)
if (!aead_decrypt(k, 0, encrypted_empty, AUTH_TAG_LENGTH, h.data, sizeof(wg_qqword), NULL, 0)) {
/* Possibly bad PSK, reset and try another. */
h = h_before_psk;
*c = c_before_psk;
continue;
}
hs->empty_ok = TRUE;
break;
}
if (!hs->empty_ok) {
return;
}
// h = Hash(h || msg.empty)
wg_mix_hash(&h, encrypted_empty, AUTH_TAG_LENGTH);
// Calculate transport keys and create ciphers.
// (Tsend_i = Trecv_r, Trecv_i = Tsend_r) = KDF2(C, "")
wg_qqword transport_keys[2];
wg_kdf(c, NULL, 0, 2, transport_keys);
hs->initiator_recv_cipher = wg_create_cipher(&transport_keys[1]);
hs->responder_recv_cipher = wg_create_cipher(&transport_keys[0]);
}
static void
wg_sessions_insert(guint32 id, wg_session_t *session)
{
wmem_list_t *list = (wmem_list_t *)wmem_map_lookup(sessions, GUINT_TO_POINTER(id));
if (!list) {
list = wmem_list_new(wmem_file_scope());
wmem_map_insert(sessions, GUINT_TO_POINTER(id), list);
}
wmem_list_append(list, session);
}
static wg_session_t *
wg_session_new(void)
{
wg_session_t *session = wmem_new0(wmem_file_scope(), wg_session_t);
session->stream = wg_session_count++;
return session;
}
/* Updates the peer address based on the source address. */
static void
wg_session_update_address(wg_session_t *session, packet_info *pinfo, gboolean sender_is_initiator)
{
DISSECTOR_ASSERT(!PINFO_FD_VISITED(pinfo));
if (sender_is_initiator) {
copy_address_wmem(wmem_file_scope(), &session->initial.initiator_address, &pinfo->src);
session->initial.initiator_port = (guint16)pinfo->srcport;
} else {
copy_address_wmem(wmem_file_scope(), &session->initial.responder_address, &pinfo->src);
session->initial.responder_port = (guint16)pinfo->srcport;
}
}
/* Finds an initiation message based on the given Receiver ID that was not
* previously associated with a responder message. Returns the session if a
* matching initation message can be found or NULL otherwise.
*/
static wg_session_t *
wg_sessions_lookup_initiation(packet_info *pinfo, guint32 receiver_id)
{
DISSECTOR_ASSERT(!PINFO_FD_VISITED(pinfo));
/* Look for the initiation message matching this Receiver ID. */
wmem_list_t *list = (wmem_list_t *)wmem_map_lookup(sessions, GUINT_TO_POINTER(receiver_id));
if (!list) {
return NULL;
}
/* Walk backwards to find the most recent message first. All packets are
* guaranteed to arrive before this frame because this is the first pass. */
for (wmem_list_frame_t *item = wmem_list_tail(list); item; item = wmem_list_frame_prev(item)) {
wg_session_t *session = (wg_session_t *)wmem_list_frame_data(item);
if (session->initial.initiator_port != pinfo->destport ||
!addresses_equal(&session->initial.initiator_address, &pinfo->dst)) {
/* Responder messages are expected to be sent to the initiator. */
continue;
}
if (session->response_frame && session->response_frame != pinfo->num) {
/* This session was linked elsewhere. */
continue;
}
/* This assumes no malicious messages and no contrived sequences:
* Any initiator or responder message is not duplicated nor are these
* mutated. If this must be detected, the caller could decrypt or check
* mac1 to distinguish valid messages.
*/
return session;
}
return NULL;
}
/* Finds a session with a completed handshake that matches the Receiver ID. */
static wg_session_t *
wg_sessions_lookup(packet_info *pinfo, guint32 receiver_id, gboolean *receiver_is_initiator)
{
DISSECTOR_ASSERT(!PINFO_FD_VISITED(pinfo));
wmem_list_t *list = (wmem_list_t *)wmem_map_lookup(sessions, GUINT_TO_POINTER(receiver_id));
if (!list) {
return NULL;
}
/* Walk backwards to find the most recent message first. */
for (wmem_list_frame_t *item = wmem_list_tail(list); item; item = wmem_list_frame_prev(item)) {
wg_session_t *session = (wg_session_t *)wmem_list_frame_data(item);
if (!session->response_frame) {
/* Ignore sessions that are not fully established. */
continue;
}
if (session->initial.initiator_port == pinfo->destport &&
addresses_equal(&session->initial.initiator_address, &pinfo->dst)) {
*receiver_is_initiator = TRUE;
} else if (session->initial.responder_port == pinfo->destport &&
addresses_equal(&session->initial.responder_address, &pinfo->dst)) {
*receiver_is_initiator = FALSE;
} else {
/* Both peers do not match the destination, ignore. */
continue;
}
return session;
}
return NULL;
}
/*
* Finds the static public key for the receiver of this message based on the
* MAC1 value.
* TODO on PINFO_FD_VISITED, reuse previously discovered keys from session?
*/
static const wg_skey_t *
wg_mac1_key_probe(tvbuff_t *tvb, gboolean is_initiation)
{
const int mac1_offset = is_initiation ? 116 : 60;
// Shortcut: skip MAC1 validation if no pubkeys are configured.
if (g_hash_table_size(wg_static_keys) == 0) {
return NULL;
}
guint8 *mac1_msgdata = (guint8 *)tvb_memdup(wmem_packet_scope(), tvb, 0, mac1_offset);
const guint8 *mac1_output = tvb_get_ptr(tvb, mac1_offset, 16);
// MAC1 is computed over a message with three reserved bytes set to zero.
mac1_msgdata[1] = mac1_msgdata[2] = mac1_msgdata[3] = 0;
// Find public key that matches the 16-byte MAC1 field.
GHashTableIter iter;
gpointer value;
g_hash_table_iter_init(&iter, wg_static_keys);
while (g_hash_table_iter_next(&iter, NULL, &value)) {
const wg_skey_t *skey = (wg_skey_t *)value;
if (wg_mac_verify(&skey->mac1_key, mac1_msgdata, (guint)mac1_offset, mac1_output)) {
return skey;
}
}
return NULL;
}
/*
* Builds the handshake decryption state when sufficient keying material is
* available from the initiation message.
*/
static wg_handshake_state_t *
wg_prepare_handshake_keys(const wg_skey_t *skey_r, tvbuff_t *tvb)
{
wg_handshake_state_t *hs;
gboolean has_r_keys = skey_r && has_private_key(&skey_r->priv_key);
wg_ekey_t *ekey_i = (wg_ekey_t *)wmem_map_lookup(wg_ephemeral_keys, tvb_get_ptr(tvb, 8, WG_KEY_LEN));
// If neither private keys are available, do not create a session.
if (!has_r_keys && !ekey_i) {
return NULL;
}
// Even if Spriv_r is available, store Epub_i for Response decryption.
if (!ekey_i) {
ekey_i = wmem_new0(wmem_file_scope(), wg_ekey_t);
tvb_memcpy(tvb, ekey_i->pub_key.data, 8, WG_KEY_LEN);
}
hs = wmem_new0(wmem_file_scope(), wg_handshake_state_t);
hs->responder_skey = skey_r;
hs->initiator_ekey = ekey_i;
wmem_register_callback(wmem_file_scope(), wg_handshake_state_destroy_cb, hs);
return hs;
}
/*
* Processes a Response message, storing additional keys in the state.
*/
static void
wg_prepare_handshake_responder_keys(wg_handshake_state_t *hs, tvbuff_t *tvb)
{
wg_ekey_t *ekey_r = (wg_ekey_t *)wmem_map_lookup(wg_ephemeral_keys, tvb_get_ptr(tvb, 12, WG_KEY_LEN));
// Response decryption needs Epriv_r (or Epub_r + additional secrets).
if (!ekey_r) {
ekey_r = wmem_new0(wmem_file_scope(), wg_ekey_t);
tvb_memcpy(tvb, ekey_r->pub_key.data, 12, WG_KEY_LEN);
}
hs->responder_ekey = ekey_r;
}
/* Converts a TAI64 label to the seconds since the Unix epoch.
* See https://cr.yp.to/libtai/tai64.html */
static gboolean tai64n_to_unix(guint64 tai64_label, guint32 nanoseconds, nstime_t *nstime)
{
const guint64 pow2_62 = 1ULL << 62;
if (tai64_label < pow2_62 || tai64_label >= (1ULL << 63) || nanoseconds > 999999999) {
// Seconds before 1970 and values larger than 2^63 (reserved) cannot
// be represented. Nanoseconds must also be valid.
return FALSE;
}
// TODO this can result in loss of precision
nstime->secs = (time_t)(tai64_label - pow2_62);
nstime->nsecs = (int)nanoseconds;
return TRUE;
}
static void
wg_dissect_key_extra(proto_tree *tree, tvbuff_t *tvb, const wg_qqword *pubkey, gboolean is_ephemeral)
{
guint32 has_private = FALSE;
proto_item *ti;
if (is_ephemeral) {
wg_ekey_t *ekey = (wg_ekey_t *)wmem_map_lookup(wg_ephemeral_keys, pubkey->data);
has_private = ekey && has_private_key(&ekey->priv_key);
} else {
wg_skey_t *skey = (wg_skey_t *)g_hash_table_lookup(wg_static_keys, pubkey->data);
has_private = skey && has_private_key(&skey->priv_key);
ti = proto_tree_add_boolean(tree, hf_wg_static_known_pubkey, tvb, 0, 0, !!skey);
proto_item_set_generated(ti);
}
int hf_known_privkey = is_ephemeral ? hf_wg_ephemeral_known_privkey : hf_wg_static_known_privkey;
ti = proto_tree_add_boolean(tree, hf_known_privkey, tvb, 0, 0, has_private);
proto_item_set_generated(ti);
}
static void
wg_dissect_pubkey(proto_tree *tree, tvbuff_t *tvb, int offset, gboolean is_ephemeral)
{
const guint8 *pubkey = tvb_get_ptr(tvb, offset, 32);
gchar *str = g_base64_encode(pubkey, 32);
gchar *key_str = wmem_strdup(wmem_packet_scope(), str);
g_free(str);
int hf_id = is_ephemeral ? hf_wg_ephemeral : hf_wg_static;
proto_item *ti = proto_tree_add_string(tree, hf_id, tvb, offset, 32, key_str);
proto_tree *key_tree = proto_item_add_subtree(ti, ett_key_info);
wg_dissect_key_extra(key_tree, tvb, (const wg_qqword *)pubkey, is_ephemeral);
}
static void
wg_dissect_decrypted_static(tvbuff_t *tvb, packet_info *pinfo, proto_tree *wg_tree, wg_handshake_state_t *hs)
{
tvbuff_t *new_tvb;
if (!hs || !hs->initiator_skey) {
return;
}
new_tvb = tvb_new_child_real_data(tvb, hs->initiator_skey->pub_key.data, WG_KEY_LEN, WG_KEY_LEN);
add_new_data_source(pinfo, new_tvb, "Decrypted Static");
wg_dissect_pubkey(wg_tree, new_tvb, 0, FALSE);
}
static void
wg_dissect_decrypted_timestamp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, wg_handshake_state_t *hs)
{
guint64 tai64_label;
guint32 nanoseconds;
nstime_t nstime;
proto_item *ti;
tvbuff_t *new_tvb;
if (!hs || !hs->timestamp_ok) {
return;
}
new_tvb = tvb_new_child_real_data(tvb, hs->timestamp, sizeof(hs->timestamp), sizeof(hs->timestamp));
add_new_data_source(pinfo, new_tvb, "Decrypted Timestamp");
tai64_label = tvb_get_guint64(new_tvb, 0, ENC_BIG_ENDIAN);
nanoseconds = tvb_get_guint32(new_tvb, 8, ENC_BIG_ENDIAN);
if (tai64n_to_unix(tai64_label, nanoseconds, &nstime)) {
ti = proto_tree_add_time(tree, hf_wg_timestamp_value, new_tvb, 0, 12, &nstime);
tree = proto_item_add_subtree(ti, ett_timestamp);
}
proto_tree_add_item(tree, hf_wg_timestamp_tai64_label, new_tvb, 0, 8, ENC_BIG_ENDIAN);
proto_tree_add_item(tree, hf_wg_timestamp_nanoseconds, new_tvb, 8, 4, ENC_BIG_ENDIAN);
}
static void
wg_dissect_decrypted_packet(tvbuff_t *tvb, packet_info *pinfo, proto_tree *wg_tree, wg_packet_info_t *wg_pinfo, guint64 counter, gint plain_length)
{
wg_handshake_state_t *hs = wg_pinfo->session->hs;
gcry_cipher_hd_t cipher = wg_pinfo->receiver_is_initiator ? hs->initiator_recv_cipher : hs->responder_recv_cipher;
if (!cipher) {
return;
}
DISSECTOR_ASSERT(plain_length >= 0);
const gint ctext_len = plain_length + AUTH_TAG_LENGTH;
const guchar *ctext = tvb_get_ptr(tvb, 16, ctext_len);
guchar *plain = (guchar *)wmem_alloc0(pinfo->pool, (guint)plain_length);
if (!wg_aead_decrypt(cipher, counter, ctext, (guint)ctext_len, NULL, 0, plain, (guint)plain_length)) {
proto_tree_add_expert(wg_tree, pinfo, &ei_wg_decryption_error, tvb, 16, ctext_len);
return;
}
if (plain_length == 0) {
return;
}
tvbuff_t *new_tvb = tvb_new_child_real_data(tvb, plain, (guint)plain_length, plain_length);
add_new_data_source(pinfo, new_tvb, "Decrypted Packet");
proto_tree *tree = proto_item_get_parent(wg_tree);
if (!pref_dissect_packet) {
// (IP packet not shown, preference "Dissect transport data" is disabled)
call_data_dissector(new_tvb, pinfo, tree);
} else {
call_dissector(ip_handle, new_tvb, pinfo, tree);
}
}
static void
wg_dissect_mac1_pubkey(proto_tree *tree, tvbuff_t *tvb, const wg_skey_t *skey)
{
proto_item *ti;
if (!skey) {
return;
}
ti = proto_tree_add_string(tree, hf_wg_receiver_pubkey, tvb, 0, 0, pubkey_to_string(&skey->pub_key));
proto_item_set_generated(ti);
proto_tree *key_tree = proto_item_add_subtree(ti, ett_key_info);
ti = proto_tree_add_boolean(key_tree, hf_wg_receiver_pubkey_known_privkey, tvb, 0, 0, !!has_private_key(&skey->priv_key));
proto_item_set_generated(ti);
}
static int
wg_dissect_handshake_initiation(tvbuff_t *tvb, packet_info *pinfo, proto_tree *wg_tree, wg_packet_info_t *wg_pinfo)
{
guint32 sender_id;
proto_item *ti;
wg_keylog_read();
const wg_skey_t *skey_r = wg_mac1_key_probe(tvb, TRUE);
wg_handshake_state_t *hs = NULL;
if (!PINFO_FD_VISITED(pinfo)) {
if (skey_r) {
hs = wg_prepare_handshake_keys(skey_r, tvb);
if (hs) {
wg_process_initiation(tvb, hs);
}
}
} else if (wg_pinfo && wg_pinfo->session) {
hs = wg_pinfo->session->hs;
}
proto_tree_add_item_ret_uint(wg_tree, hf_wg_sender, tvb, 4, 4, ENC_LITTLE_ENDIAN, &sender_id);
col_append_fstr(pinfo->cinfo, COL_INFO, ", sender=0x%08X", sender_id);
wg_dissect_pubkey(wg_tree, tvb, 8, TRUE);
proto_tree_add_item(wg_tree, hf_wg_encrypted_static, tvb, 40, 32 + AUTH_TAG_LENGTH, ENC_NA);
wg_dissect_decrypted_static(tvb, pinfo, wg_tree, hs);
proto_tree_add_item(wg_tree, hf_wg_encrypted_timestamp, tvb, 88, 12 + AUTH_TAG_LENGTH, ENC_NA);
wg_dissect_decrypted_timestamp(tvb, pinfo, wg_tree, hs);
proto_tree_add_item(wg_tree, hf_wg_mac1, tvb, 116, 16, ENC_NA);
wg_dissect_mac1_pubkey(wg_tree, tvb, skey_r);
proto_tree_add_item(wg_tree, hf_wg_mac2, tvb, 132, 16, ENC_NA);
if (!PINFO_FD_VISITED(pinfo)) {
/* XXX should an initiation message with the same contents (except MAC2) be
* considered part of the same "session"? */
wg_session_t *session = wg_session_new();
session->initiator_frame = pinfo->num;
wg_session_update_address(session, pinfo, TRUE);
session->hs = hs;
wg_sessions_insert(sender_id, session);
wg_pinfo->session = session;
}
wg_session_t *session = wg_pinfo ? wg_pinfo->session : NULL;
if (session) {
ti = proto_tree_add_uint(wg_tree, hf_wg_stream, tvb, 0, 0, session->stream);
proto_item_set_generated(ti);
}
if (session && session->response_frame) {
ti = proto_tree_add_uint(wg_tree, hf_wg_response_in, tvb, 0, 0, session->response_frame);
proto_item_set_generated(ti);
}
return 148;
}
static int
wg_dissect_handshake_response(tvbuff_t *tvb, packet_info *pinfo, proto_tree *wg_tree, wg_packet_info_t *wg_pinfo)
{
guint32 sender_id, receiver_id;
proto_item *ti;
wg_session_t *session;
wg_keylog_read();
const wg_skey_t *skey_i = wg_mac1_key_probe(tvb, FALSE);
proto_tree_add_item_ret_uint(wg_tree, hf_wg_sender, tvb, 4, 4, ENC_LITTLE_ENDIAN, &sender_id);
col_append_fstr(pinfo->cinfo, COL_INFO, ", sender=0x%08X", sender_id);
proto_tree_add_item_ret_uint(wg_tree, hf_wg_receiver, tvb, 8, 4, ENC_LITTLE_ENDIAN, &receiver_id);
col_append_fstr(pinfo->cinfo, COL_INFO, ", receiver=0x%08X", receiver_id);
if (!PINFO_FD_VISITED(pinfo)) {
session = wg_sessions_lookup_initiation(pinfo, receiver_id);
if (session && session->hs) {
wg_prepare_handshake_responder_keys(session->hs, tvb);
wg_process_response(tvb, session->hs);
}
} else {
session = wg_pinfo ? wg_pinfo->session : NULL;
}
wg_dissect_pubkey(wg_tree, tvb, 12, TRUE);
proto_tree_add_item(wg_tree, hf_wg_encrypted_empty, tvb, 44, 16, ENC_NA);
if (session && session->hs) {
ti = proto_tree_add_boolean(wg_tree, hf_wg_handshake_ok, tvb, 0, 0, !!session->hs->empty_ok);
proto_item_set_generated(ti);
}
proto_tree_add_item(wg_tree, hf_wg_mac1, tvb, 60, 16, ENC_NA);
wg_dissect_mac1_pubkey(wg_tree, tvb, skey_i);
proto_tree_add_item(wg_tree, hf_wg_mac2, tvb, 76, 16, ENC_NA);
if (!PINFO_FD_VISITED(pinfo)) {
/* XXX should probably check whether decryption succeeds before linking
* and somehow mark that this response is related but not correct. */
if (session) {
session->response_frame = pinfo->num;
wg_session_update_address(session, pinfo, FALSE);
wg_sessions_insert(sender_id, session);
wg_pinfo->session = session;
}
}
if (session) {
ti = proto_tree_add_uint(wg_tree, hf_wg_stream, tvb, 0, 0, session->stream);
proto_item_set_generated(ti);
ti = proto_tree_add_uint(wg_tree, hf_wg_response_to, tvb, 0, 0, session->initiator_frame);
proto_item_set_generated(ti);
}
return 92;
}
static int
wg_dissect_handshake_cookie(tvbuff_t *tvb, packet_info *pinfo, proto_tree *wg_tree, wg_packet_info_t *wg_pinfo)
{
guint32 receiver_id;
proto_item *ti;
proto_tree_add_item_ret_uint(wg_tree, hf_wg_receiver, tvb, 4, 4, ENC_LITTLE_ENDIAN, &receiver_id);
col_append_fstr(pinfo->cinfo, COL_INFO, ", receiver=0x%08X", receiver_id);
proto_tree_add_item(wg_tree, hf_wg_nonce, tvb, 8, 24, ENC_NA);
proto_tree_add_item(wg_tree, hf_wg_encrypted_cookie, tvb, 32, 16 + AUTH_TAG_LENGTH, ENC_NA);
wg_session_t *session;
if (!PINFO_FD_VISITED(pinfo)) {
/* Check for Cookie Reply from Responder to Initiator. */
session = wg_sessions_lookup_initiation(pinfo, receiver_id);
if (session) {
session->response_frame = pinfo->num;
wg_session_update_address(session, pinfo, FALSE);
wg_pinfo->session = session;
}
/* XXX check for cookie reply from Initiator to Responder */
} else {
session = wg_pinfo ? wg_pinfo->session : NULL;
}
if (session) {
ti = proto_tree_add_uint(wg_tree, hf_wg_stream, tvb, 0, 0, session->stream);
proto_item_set_generated(ti);
/* XXX check for cookie reply from Initiator to Responder */
ti = proto_tree_add_uint(wg_tree, hf_wg_response_to, tvb, 0, 0, session->initiator_frame);
proto_item_set_generated(ti);
}
return 64;
}
static int
wg_dissect_data(tvbuff_t *tvb, packet_info *pinfo, proto_tree *wg_tree, wg_packet_info_t *wg_pinfo)
{
guint32 receiver_id;
guint64 counter;
proto_item *ti;
proto_tree_add_item_ret_uint(wg_tree, hf_wg_receiver, tvb, 4, 4, ENC_LITTLE_ENDIAN, &receiver_id);
col_append_fstr(pinfo->cinfo, COL_INFO, ", receiver=0x%08X", receiver_id);
proto_tree_add_item_ret_uint64(wg_tree, hf_wg_counter, tvb, 8, 8, ENC_LITTLE_ENDIAN, &counter);
col_append_fstr(pinfo->cinfo, COL_INFO, ", counter=%" PRIu64, counter);
gint packet_length = tvb_captured_length_remaining(tvb, 16);
if (packet_length < AUTH_TAG_LENGTH) {
proto_tree_add_expert(wg_tree, pinfo, &ei_wg_bad_packet_length, tvb, 16, packet_length);
return 16 + packet_length;
} else if (packet_length != AUTH_TAG_LENGTH) {
/* Keepalive messages are already marked, no need to append data length. */
col_append_fstr(pinfo->cinfo, COL_INFO, ", datalen=%d", packet_length - AUTH_TAG_LENGTH);
}
ti = proto_tree_add_item(wg_tree, hf_wg_encrypted_packet, tvb, 16, packet_length, ENC_NA);
if (packet_length == AUTH_TAG_LENGTH) {
expert_add_info(pinfo, ti, &ei_wg_keepalive);
}
wg_session_t *session;
if (!PINFO_FD_VISITED(pinfo)) {
gboolean receiver_is_initiator;
session = wg_sessions_lookup(pinfo, receiver_id, &receiver_is_initiator);
if (session) {
wg_session_update_address(session, pinfo, !receiver_is_initiator);
wg_pinfo->session = session;
wg_pinfo->receiver_is_initiator = receiver_is_initiator;
}
} else {
session = wg_pinfo ? wg_pinfo->session : NULL;
}
if (session) {
ti = proto_tree_add_uint(wg_tree, hf_wg_stream, tvb, 0, 0, session->stream);
proto_item_set_generated(ti);
}
if (session && session->hs) {
wg_dissect_decrypted_packet(tvb, pinfo, wg_tree, wg_pinfo, counter, packet_length - AUTH_TAG_LENGTH);
}
return 16 + packet_length;
}
static gboolean
wg_is_valid_message_length(guint8 message_type, guint length)
{
switch (message_type) {
case WG_TYPE_HANDSHAKE_INITIATION:
return length == 148;
case WG_TYPE_HANDSHAKE_RESPONSE:
return length == 92;
case WG_TYPE_COOKIE_REPLY:
return length == 64;
case WG_TYPE_TRANSPORT_DATA:
return length >= 32;
default:
return FALSE;
}
}
static int
dissect_wg(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_)
{
proto_item *ti;
proto_tree *wg_tree;
guint32 message_type;
const char *message_type_str;
wg_packet_info_t *wg_pinfo;
message_type = tvb_get_guint8(tvb, 0);
message_type_str = try_val_to_str(message_type, wg_type_names);
if (!message_type_str)
return 0;
if (!wg_is_valid_message_length(message_type, tvb_reported_length(tvb))) {
return 0;
}
/* Special case: zero-length data message is a Keepalive message. */
if (message_type == WG_TYPE_TRANSPORT_DATA && tvb_reported_length(tvb) == 32) {
message_type_str = "Keepalive";
}
col_set_str(pinfo->cinfo, COL_PROTOCOL, "WireGuard");
col_set_str(pinfo->cinfo, COL_INFO, message_type_str);
ti = proto_tree_add_item(tree, proto_wg, tvb, 0, -1, ENC_NA);
wg_tree = proto_item_add_subtree(ti, ett_wg);
proto_tree_add_item(wg_tree, hf_wg_type, tvb, 0, 1, ENC_NA);
proto_tree_add_item(wg_tree, hf_wg_reserved, tvb, 1, 3, ENC_NA);
if (!PINFO_FD_VISITED(pinfo)) {
wg_pinfo = wmem_new0(wmem_file_scope(), wg_packet_info_t);
p_add_proto_data(wmem_file_scope(), pinfo, proto_wg, 0, wg_pinfo);
} else {
/*
* Note: this may be NULL if the heuristics dissector sets a
* conversation dissector later in the stream, for example due to a new
* Handshake Initiation message. Previous messages are potentially
* Transport Data messages which might not be detected through
* heuristics.
*/
wg_pinfo = (wg_packet_info_t *)p_get_proto_data(wmem_file_scope(), pinfo, proto_wg, 0);
}
switch ((wg_message_type)message_type) {
case WG_TYPE_HANDSHAKE_INITIATION:
return wg_dissect_handshake_initiation(tvb, pinfo, wg_tree, wg_pinfo);
case WG_TYPE_HANDSHAKE_RESPONSE:
return wg_dissect_handshake_response(tvb, pinfo, wg_tree, wg_pinfo);
case WG_TYPE_COOKIE_REPLY:
return wg_dissect_handshake_cookie(tvb, pinfo, wg_tree, wg_pinfo);
case WG_TYPE_TRANSPORT_DATA:
return wg_dissect_data(tvb, pinfo, wg_tree, wg_pinfo);
}
DISSECTOR_ASSERT_NOT_REACHED();
}
static gboolean
dissect_wg_heur(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_)
{
/*
* Heuristics to detect the WireGuard protocol:
* - The first byte must be one of the valid four messages.
* - The total packet length depends on the message type, and is fixed for
* three of them. The Data type has a minimum length however.
* - The next three bytes are reserved and zero in the official protocol.
* Cloudflare's implementation however uses this field for load balancing
* purposes, so this condition is not checked here for most messages.
* It is checked for data messages to avoid false positives.
*/
guint32 message_type;
gboolean reserved_is_zeroes;
if (tvb_reported_length(tvb) < 4)
return FALSE;
message_type = tvb_get_guint8(tvb, 0);
reserved_is_zeroes = tvb_get_ntoh24(tvb, 1) == 0;
if (!wg_is_valid_message_length(message_type, tvb_reported_length(tvb))) {
return FALSE;
}
switch (message_type) {
case WG_TYPE_COOKIE_REPLY:
case WG_TYPE_TRANSPORT_DATA:
if (!reserved_is_zeroes)
return FALSE;
break;
}
/*
* Assuming that this is a new handshake, make sure that future messages are
* directed to our dissector. This ensures that cookie replies and data
* messages using non-zero reserved bytes are still properly recognized.
* An edge case occurs when the address or port change. In that case, Data
* messages using non-zero reserved bytes will not be recognized. The user
* can use Decode As for this case.
*/
if (message_type == WG_TYPE_HANDSHAKE_INITIATION) {
conversation_t *conversation = find_or_create_conversation(pinfo);
conversation_set_dissector(conversation, wg_handle);
}
dissect_wg(tvb, pinfo, tree, NULL);
return TRUE;
}
static void
wg_init(void)
{
wg_session_count = 0;
}
void
proto_register_wg(void)
{
module_t *wg_module;
expert_module_t *expert_wg;
static hf_register_info hf[] = {
/* Initiation message */
{ &hf_wg_type,
{ "Type", "wg.type",
FT_UINT8, BASE_DEC, VALS(wg_type_names), 0x0,
NULL, HFILL }
},
{ &hf_wg_reserved,
{ "Reserved", "wg.reserved",
FT_BYTES, BASE_NONE, NULL, 0x0,
NULL, HFILL }
},
{ &hf_wg_sender,
{ "Sender", "wg.sender",
FT_UINT32, BASE_HEX, NULL, 0x0,
"Identifier as chosen by the sender", HFILL }
},
{ &hf_wg_ephemeral,
{ "Ephemeral", "wg.ephemeral",
FT_STRING, BASE_NONE, NULL, 0x0,
"Ephemeral public key of sender", HFILL }
},
{ &hf_wg_encrypted_static,
{ "Encrypted Static", "wg.encrypted_static",
FT_NONE, BASE_NONE, NULL, 0x0,
"Encrypted long-term static public key of sender", HFILL }
},
{ &hf_wg_static,
{ "Static Public Key", "wg.static",
FT_STRING, BASE_NONE, NULL, 0x0,
"Long-term static public key of sender", HFILL }
},
{ &hf_wg_encrypted_timestamp,
{ "Encrypted Timestamp", "wg.encrypted_timestamp",
FT_NONE, BASE_NONE, NULL, 0x0,
NULL, HFILL }
},
{ &hf_wg_timestamp_tai64_label,
{ "TAI64 Label", "wg.timestamp.tai64_label",
FT_UINT64, BASE_DEC, NULL, 0x0,
NULL, HFILL }
},
{ &hf_wg_timestamp_nanoseconds,
{ "Nanoseconds", "wg.timestamp.nanoseconds",
FT_UINT32, BASE_DEC, NULL, 0x0,
NULL, HFILL }
},
{ &hf_wg_timestamp_value,
{ "Timestamp", "wg.timestamp.value",
FT_ABSOLUTE_TIME, ABSOLUTE_TIME_UTC, NULL, 0x0,
NULL, HFILL }
},
{ &hf_wg_mac1,
{ "mac1", "wg.mac1",
FT_BYTES, BASE_NONE, NULL, 0x0,
NULL, HFILL }
},
{ &hf_wg_mac2,
{ "mac2", "wg.mac2",
FT_BYTES, BASE_NONE, NULL, 0x0,
NULL, HFILL }
},
/* Response message */
{ &hf_wg_receiver,
{ "Receiver", "wg.receiver",
FT_UINT32, BASE_HEX, NULL, 0x0,
"Identifier as chosen by receiver", HFILL }
},
{ &hf_wg_encrypted_empty,
{ "Encrypted Empty", "wg.encrypted_empty",
FT_NONE, BASE_NONE, NULL, 0x0,
"Authenticated encryption of an empty string", HFILL }
},
{ &hf_wg_handshake_ok,
{ "Handshake decryption successful", "wg.handshake_ok",
FT_BOOLEAN, BASE_NONE, NULL, 0x0,
"Whether decryption keys were successfully derived", HFILL }
},
/* Cookie message */
{ &hf_wg_nonce,
{ "Nonce", "wg.nonce",
FT_BYTES, BASE_NONE, NULL, 0x0,
NULL, HFILL }
},
{ &hf_wg_encrypted_cookie,
{ "Encrypted Cookie", "wg.encrypted_cookie",
FT_BYTES, BASE_NONE, NULL, 0x0,
NULL, HFILL }
},
/* TODO decrypted cookie field. */
/* Data message */
{ &hf_wg_counter,
{ "Counter", "wg.counter",
FT_UINT64, BASE_DEC, NULL, 0x0,
NULL, HFILL }
},
{ &hf_wg_encrypted_packet,
{ "Encrypted Packet", "wg.encrypted_packet",
FT_NONE, BASE_NONE, NULL, 0x0,
NULL, HFILL }
},
/* Association tracking. */
{ &hf_wg_stream,
{ "Stream index", "wg.stream",
FT_UINT32, BASE_DEC, NULL, 0x0,
"Identifies a session in this capture file", HFILL }
},
{ &hf_wg_response_in,
{ "Response in Frame", "wg.response_in",
FT_FRAMENUM, BASE_NONE, FRAMENUM_TYPE(FT_FRAMENUM_RESPONSE), 0x0,
"The response to this initiation message is in this frame", HFILL }
},
{ &hf_wg_response_to,
{ "Response to Frame", "wg.response_to",
FT_FRAMENUM, BASE_NONE, FRAMENUM_TYPE(FT_FRAMENUM_REQUEST), 0x0,
"This is a response to the initiation message in this frame", HFILL }
},
/* Additional fields. */
{ &hf_wg_receiver_pubkey,
{ "Receiver Static Public Key", "wg.receiver_pubkey",
FT_STRING, BASE_NONE, NULL, 0x0,
"Public key of the receiver (matched based on MAC1)", HFILL }
},
{ &hf_wg_receiver_pubkey_known_privkey,
{ "Has Private Key", "wg.receiver_pubkey.known_privkey",
FT_BOOLEAN, BASE_NONE, NULL, 0x0,
"Whether the corresponding private key is known (configured via prefs)", HFILL }
},
{ &hf_wg_ephemeral_known_privkey,
{ "Has Private Key", "wg.ephemeral.known_privkey",
FT_BOOLEAN, BASE_NONE, NULL, 0x0,
"Whether the corresponding private key is known (configured via prefs)", HFILL }
},
{ &hf_wg_static_known_pubkey,
{ "Known Public Key", "wg.static.known_pubkey",
FT_BOOLEAN, BASE_NONE, NULL, 0x0,
"Whether this public key is known (configured via prefs)", HFILL }
},
{ &hf_wg_static_known_privkey,
{ "Has Private Key", "wg.static.known_privkey",
FT_BOOLEAN, BASE_NONE, NULL, 0x0,
"Whether the corresponding private key is known (configured via prefs)", HFILL }
},
};
static gint *ett[] = {
&ett_wg,
&ett_timestamp,
&ett_key_info,
};
static ei_register_info ei[] = {
{ &ei_wg_bad_packet_length,
{ "wg.bad_packet_length", PI_MALFORMED, PI_ERROR,
"Packet length is too small", EXPFILL }
},
{ &ei_wg_keepalive,
{ "wg.keepalive", PI_SEQUENCE, PI_CHAT,
"This is a Keepalive message", EXPFILL }
},
{ &ei_wg_decryption_error,
{ "wg.decryption_error", PI_DECRYPTION, PI_WARN,
"Packet data decryption failed", EXPFILL }
},
};
/* UAT for header fields */
static uat_field_t wg_key_uat_fields[] = {
UAT_FLD_VS(wg_key_uat, key_type, "Key type", wg_key_uat_type_vals, "Public or Private"),
UAT_FLD_CSTRING(wg_key_uat, key, "Key", "Base64-encoded key"),
UAT_END_FIELDS
};
proto_wg = proto_register_protocol("WireGuard Protocol", "WireGuard", "wg");
proto_register_field_array(proto_wg, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));
expert_wg = expert_register_protocol(proto_wg);
expert_register_field_array(expert_wg, ei, array_length(ei));
wg_handle = register_dissector("wg", dissect_wg, proto_wg);
wg_module = prefs_register_protocol(proto_wg, NULL);
uat_t *wg_keys_uat = uat_new("WireGuard static keys",
sizeof(wg_key_uat_record_t),
"wg_keys", /* filename */
TRUE, /* from_profile */
&wg_key_records, /* data_ptr */
&num_wg_key_records, /* numitems_ptr */
UAT_AFFECTS_DISSECTION, /* affects dissection of packets, but not set of named fields */
NULL, /* Help section (currently a wiki page) */
wg_key_uat_record_copy_cb, /* copy_cb */
wg_key_uat_record_update_cb, /* update_cb */
wg_key_uat_record_free_cb, /* free_cb */
wg_key_uat_apply, /* post_update_cb */
wg_key_uat_reset, /* reset_cb */
wg_key_uat_fields);
prefs_register_uat_preference(wg_module, "keys",
"WireGuard static keys",
"A table of long-term static keys to enable WireGuard peer identification or partial decryption",
wg_keys_uat);
prefs_register_bool_preference(wg_module, "dissect_packet",
"Dissect transport data",
"Whether the IP dissector should dissect decrypted transport data.",
&pref_dissect_packet);
prefs_register_filename_preference(wg_module, "keylog_file", "Key log filename",
"The path to the file which contains a list of secrets in the following format:\n"
"\"<key-type> = <base64-encoded-key>\" (without quotes, leading spaces and spaces around '=' are ignored).\n"
"<key-type> is one of: LOCAL_STATIC_PRIVATE_KEY, REMOTE_STATIC_PUBLIC_KEY, "
"LOCAL_EPHEMERAL_PRIVATE_KEY or PRESHARED_KEY.",
&pref_keylog_file, FALSE);
if (!wg_decrypt_init()) {
ws_warning("%s: decryption will not be possible due to lack of algorithms support", G_STRFUNC);
}
secrets_register_type(SECRETS_TYPE_WIREGUARD, wg_keylog_process_lines);
wg_ephemeral_keys = wmem_map_new_autoreset(wmem_epan_scope(), wmem_file_scope(), g_int_hash, wg_pubkey_equal);
register_init_routine(wg_init);
register_cleanup_routine(wg_keylog_reset);
sessions = wmem_map_new_autoreset(wmem_epan_scope(), wmem_file_scope(), g_direct_hash, g_direct_equal);
}
void
proto_reg_handoff_wg(void)
{
dissector_add_uint_with_preference("udp.port", 0, wg_handle);
heur_dissector_add("udp", dissect_wg_heur, "WireGuard", "wg", proto_wg, HEURISTIC_ENABLE);
ip_handle = find_dissector("ip");
}
/*
* Editor modelines - https://www.wireshark.org/tools/modelines.html
*
* Local variables:
* c-basic-offset: 4
* tab-width: 8
* indent-tabs-mode: nil
* End:
*
* vi: set shiftwidth=4 tabstop=8 expandtab:
* :indentSize=4:tabSize=8:noTabs=true:
*/