wireshark/epan/dissectors/packet-ftdi-ft.c
John Thacker f1cbc6b662 epan: Remove fragment_get_reassembled()
Because completed reassemblies are hashed in the reassembled_table for
all the frame numbers that contributed fragments,
fragment_get_reassembled_id() works wherever fragment_get_reassembled()
does, and also works where the fragment id is not the frame number.

However, since the reassembled_table hash key only depends on the
fragment id and the frame number, it only allows a frame to have
one reassembly with a given fragment id. Some protocols can have
more than one reassembly with a given fragment id (that differ on
addresses or other keys), such as GSM SMS, and the wrong reassembly
is retrieved on the second pass in those cases.

For this reason, we might want to add additional key elements to
reassembled_table, such as layer number. fragment_get_reassembled_id
already takes packet_info as a parameter and can accommodate that
without further changes, but fragment_get_reassembled cannot, so
remove the latter in favor of the former.
2022-06-14 00:59:34 +00:00

1766 lines
60 KiB
C

/* packet-ftdi-ft.c
* Routines for FTDI FTxxxx USB converters dissection
*
* Copyright 2019 Tomasz Mon
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include "config.h"
#include <epan/packet.h>
#include <epan/prefs.h>
#include <epan/expert.h>
#include <epan/reassemble.h>
#include "packet-usb.h"
#include "packet-ftdi-ft.h"
static int proto_ftdi_ft = -1;
static gint hf_setup_brequest = -1;
static gint hf_setup_lvalue = -1;
static gint hf_setup_lvalue_purge = -1;
static gint hf_setup_lvalue_dtr = -1;
static gint hf_setup_lvalue_rts = -1;
static gint hf_setup_lvalue_xon_char = -1;
static gint hf_setup_lvalue_baud_low = -1;
static gint hf_setup_lvalue_data_size = -1;
static gint hf_setup_lvalue_event_char = -1;
static gint hf_setup_lvalue_error_char = -1;
static gint hf_setup_lvalue_latency_time = -1;
static gint hf_setup_lvalue_bitmask = -1;
static gint hf_setup_hvalue = -1;
static gint hf_setup_hvalue_dtr = -1;
static gint hf_setup_hvalue_rts = -1;
static gint hf_setup_hvalue_xoff_char = -1;
static gint hf_setup_hvalue_baud_mid = -1;
static gint hf_setup_hvalue_parity = -1;
static gint hf_setup_hvalue_stop_bits = -1;
static gint hf_setup_hvalue_break_bit = -1;
static gint hf_setup_hvalue_trigger = -1;
static gint hf_setup_hvalue_error_replacement = -1;
static gint hf_setup_hvalue_bitmode = -1;
static gint hf_setup_lindex = -1;
static gint hf_setup_lindex_port_ab = -1;
static gint hf_setup_lindex_port_abcd = -1;
static gint hf_setup_lindex_baud_high = -1;
static gint hf_setup_hindex = -1;
static gint hf_setup_hindex_rts_cts = -1;
static gint hf_setup_hindex_dtr_dsr = -1;
static gint hf_setup_hindex_xon_xoff = -1;
static gint hf_setup_hindex_baud_high = -1;
static gint hf_setup_hindex_baud_clock_divide = -1;
static gint hf_setup_wlength = -1;
static gint hf_response_lat_timer = -1;
static gint hf_modem_status = -1;
static gint hf_modem_status_fs_max_packet = -1;
static gint hf_modem_status_hs_max_packet = -1;
static gint hf_modem_status_cts = -1;
static gint hf_modem_status_dsr = -1;
static gint hf_modem_status_ri = -1;
static gint hf_modem_status_dcd = -1;
static gint hf_line_status = -1;
static gint hf_line_status_receive_overflow = -1;
static gint hf_line_status_parity_error = -1;
static gint hf_line_status_framing_error = -1;
static gint hf_line_status_break_received = -1;
static gint hf_line_status_tx_holding_reg_empty = -1;
static gint hf_line_status_tx_empty = -1;
static gint hf_if_a_rx_payload = -1;
static gint hf_if_a_tx_payload = -1;
static gint hf_if_b_rx_payload = -1;
static gint hf_if_b_tx_payload = -1;
static gint hf_if_c_rx_payload = -1;
static gint hf_if_c_tx_payload = -1;
static gint hf_if_d_rx_payload = -1;
static gint hf_if_d_tx_payload = -1;
static gint hf_ftdi_fragments = -1;
static gint hf_ftdi_fragment = -1;
static gint hf_ftdi_fragment_overlap = -1;
static gint hf_ftdi_fragment_overlap_conflicts = -1;
static gint hf_ftdi_fragment_multiple_tails = -1;
static gint hf_ftdi_fragment_too_long_fragment = -1;
static gint hf_ftdi_fragment_error = -1;
static gint hf_ftdi_fragment_count = -1;
static gint hf_ftdi_reassembled_in = -1;
static gint hf_ftdi_reassembled_length = -1;
static gint ett_ftdi_ft = -1;
static gint ett_modem_ctrl_lvalue = -1;
static gint ett_modem_ctrl_hvalue = -1;
static gint ett_flow_ctrl_hindex = -1;
static gint ett_baudrate_lindex = -1;
static gint ett_baudrate_hindex = -1;
static gint ett_setdata_hvalue = -1;
static gint ett_modem_status = -1;
static gint ett_line_status = -1;
static gint ett_ftdi_fragment = -1;
static gint ett_ftdi_fragments = -1;
static const fragment_items ftdi_frag_items = {
/* Fragment subtrees */
&ett_ftdi_fragment,
&ett_ftdi_fragments,
/* Fragment Fields */
&hf_ftdi_fragments,
&hf_ftdi_fragment,
&hf_ftdi_fragment_overlap,
&hf_ftdi_fragment_overlap_conflicts,
&hf_ftdi_fragment_multiple_tails,
&hf_ftdi_fragment_too_long_fragment,
&hf_ftdi_fragment_error,
&hf_ftdi_fragment_count,
/* Reassembled in field */
&hf_ftdi_reassembled_in,
/* Reassembled length field */
&hf_ftdi_reassembled_length,
/* Reassembled data field */
NULL,
/* Tag */
"FTDI FT fragments"
};
static dissector_handle_t ftdi_mpsse_handle;
static expert_field ei_undecoded = EI_INIT;
static dissector_handle_t ftdi_ft_handle;
static reassembly_table ftdi_reassembly_table;
static wmem_tree_t *request_info = NULL;
static wmem_tree_t *bitmode_info = NULL;
static wmem_tree_t *desegment_info = NULL;
typedef struct _request_data {
guint32 bus_id;
guint32 device_address;
guint8 request;
guint8 hvalue;
guint8 lindex;
} request_data_t;
typedef struct _bitmode_data {
guint32 bus_id;
guint32 device_address;
FTDI_INTERFACE interface;
guint8 bitmode;
} bitmode_data_t;
typedef struct _desegment_data desegment_data_t;
struct _desegment_data {
guint32 bus_id;
guint32 device_address;
FTDI_INTERFACE interface;
guint8 bitmode;
gint p2p_dir;
/* First frame where the segmented data starts (reassembly key) */
guint32 first_frame;
guint32 last_frame;
gint first_frame_offset;
/* Points to desegment data if the previous desegment data ends
* in last_frame that is equal to this desegment data first_frame.
*/
desegment_data_t *previous;
};
typedef struct _ftdi_fragment_key {
guint32 bus_id;
guint32 device_address;
FTDI_INTERFACE interface;
guint8 bitmode;
gint p2p_dir;
guint32 id;
} ftdi_fragment_key_t;
#define REQUEST_RESET 0x00
#define REQUEST_MODEM_CTRL 0x01
#define REQUEST_SET_FLOW_CTRL 0x02
#define REQUEST_SET_BAUD_RATE 0x03
#define REQUEST_SET_DATA 0x04
#define REQUEST_GET_MODEM_STAT 0x05
#define REQUEST_SET_EVENT_CHAR 0x06
#define REQUEST_SET_ERROR_CHAR 0x07
#define REQUEST_SET_LAT_TIMER 0x09
#define REQUEST_GET_LAT_TIMER 0x0A
#define REQUEST_SET_BITMODE 0x0B
static const value_string request_vals[] = {
{REQUEST_RESET, "Reset"},
{REQUEST_MODEM_CTRL, "ModemCtrl"},
{REQUEST_SET_FLOW_CTRL, "SetFlowCtrl"},
{REQUEST_SET_BAUD_RATE, "SetBaudRate"},
{REQUEST_SET_DATA, "SetData"},
{REQUEST_GET_MODEM_STAT, "GetModemStat"},
{REQUEST_SET_EVENT_CHAR, "SetEventChar"},
{REQUEST_SET_ERROR_CHAR, "SetErrorChar"},
{REQUEST_SET_LAT_TIMER, "SetLatTimer"},
{REQUEST_GET_LAT_TIMER, "GetLatTimer"},
{REQUEST_SET_BITMODE, "SetBitMode"},
{0, NULL}
};
static value_string_ext request_vals_ext = VALUE_STRING_EXT_INIT(request_vals);
static const value_string reset_purge_vals[] = {
{0x00, "Purge RX and TX"},
{0x01, "Purge RX"},
{0x02, "Purge TX"},
{0, NULL}
};
static const value_string index_port_ab_vals[] = {
{0x00, "Port A"},
{0x01, "Port A"},
{0x02, "Port B"},
{0, NULL}
};
static const value_string index_port_abcd_vals[] = {
{0x00, "Port A"},
{0x01, "Port A"},
{0x02, "Port B"},
{0x03, "Port C"},
{0x04, "Port D"},
{0, NULL}
};
static const value_string data_size_vals[] = {
{0x07, "7 bit data"},
{0x08, "8 bit data"},
{0, NULL}
};
static const value_string parity_vals[] = {
{0x0, "None"},
{0x1, "Odd"},
{0x2, "Even"},
{0x3, "Mark"},
{0x4, "Space"},
{0, NULL}
};
static const value_string stop_bits_vals[] = {
{0, "1 stop bit"},
{1, "2 stop bits"},
{0, NULL}
};
static const value_string break_bit_vals[] = {
{0, "No Break"},
{1, "Set Break"},
{0, NULL}
};
static const value_string event_char_trigger_vals[] = {
{0x00, "No trigger"},
{0x01, "Trigger IN on Event Char"},
{0, NULL}
};
static const value_string error_replacement_vals[] = {
{0x00, "No Error Replacement"},
{0x01, "Error Replacement On"},
{0, NULL}
};
#define BITMODE_RESET 0x00
#define BITMODE_BITBANG 0x01
#define BITMODE_MPSSE 0x02
#define BITMODE_SYNCBB 0x04
#define BITMODE_MCU 0x08
#define BITMODE_OPTO 0x10
#define BITMODE_CBUS 0x20
#define BITMODE_SYNCFF 0x40
#define BITMODE_FT1284 0x80
static const value_string bitmode_vals[] = {
{BITMODE_RESET, "switch off bitbang mode, back to regular serial / FIFO"},
{BITMODE_BITBANG, "classical asynchronous bitbang mode, introduced with B-type chips"},
{BITMODE_MPSSE, "MPSSE mode, available on 2232x chips"},
{BITMODE_SYNCBB, "synchronous bitbang mode, available on 2232x and R-type chips"},
{BITMODE_MCU, "MCU Host Bus Emulation mode, available on 2232x chips"},
{BITMODE_OPTO, "Fast Opto-Isolated Serial Interface Mode, available on 2232x chips"},
{BITMODE_CBUS, "Bitbang on CBUS pins of R-type chips, configure in EEPROM before"},
{BITMODE_SYNCFF, "Single Channel Synchronous FIFO mode, available on 2232H chips"},
{BITMODE_FT1284, "FT1284 mode, available on 232H chips"},
{0, NULL}
};
#define MODEM_STATUS_BIT_FS_64_MAX_PACKET (1 << 0)
#define MODEM_STATUS_BIT_HS_512_MAX_PACKET (1 << 1)
void proto_register_ftdi_ft(void);
void proto_reg_handoff_ftdi_ft(void);
/* It is assumed that this function is called only when the device is known
* to be FTDI FT chip and thus the VID and PID is not checked here.
* This function determines chip based on bcdDevice version which cannot be
* altered by the hardware vendor.
*/
static FTDI_CHIP
identify_chip(usb_conv_info_t *usb_conv_info)
{
switch (usb_conv_info->deviceVersion)
{
case 0x0200:
if (usb_conv_info->iSerialNumber)
{
/* Serial number enabled - it is FT8U232AM */
return FTDI_CHIP_FT8U232AM;
}
/* No serial number - FT232B without (or with blank) EEPROM fitted */
return FTDI_CHIP_FT232B;
case 0x0400:
return FTDI_CHIP_FT232B;
case 0x0500:
return FTDI_CHIP_FT2232D;
case 0x0600:
return FTDI_CHIP_FT232R;
case 0x0700:
return FTDI_CHIP_FT2232H;
case 0x0800:
return FTDI_CHIP_FT4232H;
case 0x0900:
return FTDI_CHIP_FT232H;
case 0x1000:
return FTDI_CHIP_X_SERIES;
default:
return FTDI_CHIP_UNKNOWN;
}
}
static FTDI_INTERFACE
endpoint_to_interface(usb_conv_info_t *usb_conv_info)
{
switch (usb_conv_info->endpoint)
{
case 0x01: /* A OUT */
case 0x02: /* A IN */
return FTDI_INTERFACE_A;
case 0x03: /* B OUT */
case 0x04: /* B IN */
return FTDI_INTERFACE_B;
case 0x05: /* C OUT */
case 0x06: /* C IN */
return FTDI_INTERFACE_C;
case 0x07: /* D OUT */
case 0x08: /* D IN */
return FTDI_INTERFACE_D;
default:
return FTDI_INTERFACE_UNKNOWN;
}
}
static FTDI_INTERFACE
lindex_to_interface(guint8 lindex)
{
switch (lindex)
{
case 0: /* ANY, default to A */
case 1:
return FTDI_INTERFACE_A;
case 2:
return FTDI_INTERFACE_B;
case 3:
return FTDI_INTERFACE_C;
case 4:
return FTDI_INTERFACE_D;
default:
return FTDI_INTERFACE_UNKNOWN;
}
}
static gint
dissect_request_reset(tvbuff_t *tvb, packet_info *pinfo _U_, gint offset, proto_tree *tree)
{
gint offset_start = offset;
proto_tree_add_item(tree, hf_setup_lvalue_purge, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_hvalue, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_lindex_port_abcd, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_hindex, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
return offset - offset_start;
}
static gint
dissect_request_modem_ctrl(tvbuff_t *tvb, packet_info *pinfo _U_, gint offset, proto_tree *tree)
{
static int * const lvalue_bits[] = {
&hf_setup_lvalue_dtr,
&hf_setup_lvalue_rts,
NULL
};
static int * const hvalue_bits[] = {
&hf_setup_hvalue_dtr,
&hf_setup_hvalue_rts,
NULL
};
gint offset_start = offset;
proto_tree_add_bitmask(tree, tvb, offset, hf_setup_lvalue,
ett_modem_ctrl_lvalue, lvalue_bits, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_bitmask(tree, tvb, offset, hf_setup_hvalue,
ett_modem_ctrl_hvalue, hvalue_bits, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_lindex_port_abcd, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_hindex, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
return offset - offset_start;
}
static gint
dissect_request_set_flow_ctrl(tvbuff_t *tvb, packet_info *pinfo _U_, gint offset, proto_tree *tree)
{
static int * const hindex_bits[] = {
&hf_setup_hindex_rts_cts,
&hf_setup_hindex_dtr_dsr,
&hf_setup_hindex_xon_xoff,
NULL
};
gint offset_start = offset;
proto_tree_add_item(tree, hf_setup_lvalue_xon_char, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_hvalue_xoff_char, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_lindex_port_abcd, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_bitmask(tree, tvb, offset, hf_setup_hindex,
ett_flow_ctrl_hindex, hindex_bits, ENC_LITTLE_ENDIAN);
offset++;
return offset - offset_start;
}
static gint
dissect_request_set_baud_rate(tvbuff_t *tvb, packet_info *pinfo, gint offset, proto_tree *tree, FTDI_CHIP chip)
{
static int * const lindex_bits[] = {
&hf_setup_lindex_baud_high,
NULL
};
static int * const hindex_bits[] = {
&hf_setup_hindex_baud_high,
NULL
};
static int * const hindex_bits_hispeed[] = {
&hf_setup_hindex_baud_high,
&hf_setup_hindex_baud_clock_divide,
NULL
};
gint offset_start = offset;
proto_tree_add_item(tree, hf_setup_lvalue_baud_low, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_hvalue_baud_mid, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
switch (chip)
{
case FTDI_CHIP_FT8U232AM:
proto_tree_add_item(tree, hf_setup_lindex, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_hindex, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
break;
case FTDI_CHIP_FT232B:
case FTDI_CHIP_FT232R:
proto_tree_add_bitmask(tree, tvb, offset, hf_setup_lindex,
ett_baudrate_lindex, lindex_bits, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_hindex, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
break;
case FTDI_CHIP_FT2232D:
case FTDI_CHIP_X_SERIES:
proto_tree_add_item(tree, hf_setup_lindex_port_ab, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_bitmask(tree, tvb, offset, hf_setup_hindex,
ett_baudrate_hindex, hindex_bits, ENC_LITTLE_ENDIAN);
offset++;
break;
case FTDI_CHIP_FT2232H:
case FTDI_CHIP_FT4232H:
case FTDI_CHIP_FT232H:
proto_tree_add_item(tree, hf_setup_lindex_port_abcd, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_bitmask(tree, tvb, offset, hf_setup_hindex,
ett_baudrate_hindex, hindex_bits_hispeed, ENC_LITTLE_ENDIAN);
offset++;
break;
case FTDI_CHIP_UNKNOWN:
default:
proto_tree_add_expert(tree, pinfo, &ei_undecoded, tvb, offset, 2);
offset += 2;
break;
}
return offset - offset_start;
}
static gint
dissect_request_set_data(tvbuff_t *tvb, packet_info *pinfo _U_, gint offset, proto_tree *tree)
{
static int * const hvalue_bits[] = {
&hf_setup_hvalue_parity,
&hf_setup_hvalue_stop_bits,
&hf_setup_hvalue_break_bit,
NULL
};
gint offset_start = offset;
proto_tree_add_item(tree, hf_setup_lvalue_data_size, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_bitmask(tree, tvb, offset, hf_setup_hvalue,
ett_setdata_hvalue, hvalue_bits, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_lindex_port_abcd, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_hindex, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
return offset - offset_start;
}
static gint
dissect_request_get_modem_stat(tvbuff_t *tvb, packet_info *pinfo _U_, gint offset, proto_tree *tree)
{
gint offset_start = offset;
proto_tree_add_item(tree, hf_setup_lvalue, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_hvalue, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_lindex_port_abcd, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_hindex, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
return offset - offset_start;
}
static gint
dissect_request_set_event_char(tvbuff_t *tvb, packet_info *pinfo _U_, gint offset, proto_tree *tree)
{
gint offset_start = offset;
proto_tree_add_item(tree, hf_setup_lvalue_event_char, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_hvalue_trigger, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_lindex_port_abcd, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_hindex, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
return offset - offset_start;
}
static gint
dissect_request_set_error_char(tvbuff_t *tvb, packet_info *pinfo _U_, gint offset, proto_tree *tree)
{
gint offset_start = offset;
proto_tree_add_item(tree, hf_setup_lvalue_error_char, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_hvalue_error_replacement, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_lindex_port_abcd, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_hindex, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
return offset - offset_start;
}
static gint
dissect_request_set_lat_timer(tvbuff_t *tvb, packet_info *pinfo _U_, gint offset, proto_tree *tree)
{
gint offset_start = offset;
proto_tree_add_item(tree, hf_setup_lvalue_latency_time, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_hvalue, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_lindex_port_abcd, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_hindex, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
return offset - offset_start;
}
static gint
dissect_request_get_lat_timer(tvbuff_t *tvb, packet_info *pinfo _U_, gint offset, proto_tree *tree)
{
gint offset_start = offset;
proto_tree_add_item(tree, hf_setup_lvalue, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_hvalue, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_lindex_port_abcd, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_hindex, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
return offset - offset_start;
}
static gint
dissect_response_get_lat_timer(tvbuff_t *tvb, packet_info *pinfo _U_, gint offset, proto_tree *tree)
{
gint offset_start = offset;
proto_tree_add_item(tree, hf_response_lat_timer, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
return offset - offset_start;
}
static gint
dissect_request_set_bitmode(tvbuff_t *tvb, packet_info *pinfo _U_, gint offset, proto_tree *tree)
{
gint offset_start = offset;
proto_tree_add_item(tree, hf_setup_lvalue_bitmask, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_hvalue_bitmode, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_lindex_port_abcd, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_setup_hindex, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
return offset - offset_start;
}
static gint
dissect_modem_status_bytes(tvbuff_t *tvb, packet_info *pinfo _U_, gint offset, proto_tree *tree, gint *out_rx_len)
{
static int * const modem_status_bits[] = {
&hf_modem_status_fs_max_packet,
&hf_modem_status_hs_max_packet,
&hf_modem_status_cts,
&hf_modem_status_dsr,
&hf_modem_status_ri,
&hf_modem_status_dcd,
NULL
};
static int * const line_status_bits[] = {
&hf_line_status_receive_overflow,
&hf_line_status_parity_error,
&hf_line_status_framing_error,
&hf_line_status_break_received,
&hf_line_status_tx_holding_reg_empty,
&hf_line_status_tx_empty,
NULL
};
guint64 modem_status;
proto_tree_add_bitmask_ret_uint64(tree, tvb, offset, hf_modem_status,
ett_modem_status, modem_status_bits, ENC_LITTLE_ENDIAN, &modem_status);
offset++;
proto_tree_add_bitmask(tree, tvb, offset, hf_line_status,
ett_line_status, line_status_bits, ENC_LITTLE_ENDIAN);
offset++;
if (out_rx_len)
{
*out_rx_len = tvb_reported_length_remaining(tvb, offset);
if (modem_status & MODEM_STATUS_BIT_FS_64_MAX_PACKET)
{
/* 2 bytes modem status, 62 bytes payload */
*out_rx_len = MIN(*out_rx_len, 62);
}
else if (modem_status & MODEM_STATUS_BIT_HS_512_MAX_PACKET)
{
/* 2 bytes modem status, 510 bytes payload */
*out_rx_len = MIN(*out_rx_len, 510);
}
}
return 2;
}
static void
record_interface_mode(packet_info *pinfo, usb_conv_info_t *usb_conv_info, FTDI_INTERFACE interface, guint8 bitmode)
{
guint32 k_bus_id = usb_conv_info->bus_id;
guint32 k_device_address = usb_conv_info->device_address;
guint32 k_interface = (guint32)interface;
wmem_tree_key_t key[] = {
{1, &k_bus_id},
{1, &k_device_address},
{1, &k_interface},
{1, &pinfo->num},
{0, NULL}
};
bitmode_data_t *bitmode_data = NULL;
bitmode_data = wmem_new(wmem_file_scope(), bitmode_data_t);
bitmode_data->bus_id = usb_conv_info->bus_id;
bitmode_data->device_address = usb_conv_info->device_address;
bitmode_data->interface = interface;
bitmode_data->bitmode = bitmode;
wmem_tree_insert32_array(bitmode_info, key, bitmode_data);
}
static guint8
get_recorded_interface_mode(packet_info *pinfo, usb_conv_info_t *usb_conv_info, FTDI_INTERFACE interface)
{
guint32 k_bus_id = usb_conv_info->bus_id;
guint32 k_device_address = usb_conv_info->device_address;
guint32 k_interface = (guint32)interface;
wmem_tree_key_t key[] = {
{1, &k_bus_id},
{1, &k_device_address},
{1, &k_interface},
{1, &pinfo->num},
{0, NULL}
};
bitmode_data_t *bitmode_data = NULL;
bitmode_data = (bitmode_data_t *)wmem_tree_lookup32_array_le(bitmode_info, key);
if (bitmode_data && bitmode_data->bus_id == k_bus_id && bitmode_data->device_address == k_device_address &&
bitmode_data->interface == interface)
{
return bitmode_data->bitmode;
}
return 0; /* Default to 0, which is plain serial data */
}
static desegment_data_t *
record_desegment_data(packet_info *pinfo, usb_conv_info_t *usb_conv_info,
FTDI_INTERFACE interface, guint8 bitmode)
{
guint32 k_bus_id = usb_conv_info->bus_id;
guint32 k_device_address = usb_conv_info->device_address;
guint32 k_interface = (guint32)interface;
guint32 k_p2p_dir = (guint32)pinfo->p2p_dir;
wmem_tree_key_t key[] = {
{1, &k_bus_id},
{1, &k_device_address},
{1, &k_interface},
{1, &k_p2p_dir},
{1, &pinfo->num},
{0, NULL}
};
desegment_data_t *desegment_data = NULL;
desegment_data = wmem_new(wmem_file_scope(), desegment_data_t);
desegment_data->bus_id = usb_conv_info->bus_id;
desegment_data->device_address = usb_conv_info->device_address;
desegment_data->interface = interface;
desegment_data->bitmode = bitmode;
desegment_data->p2p_dir = pinfo->p2p_dir;
desegment_data->first_frame = pinfo->num;
/* Last frame is currently unknown */
desegment_data->last_frame = 0;
desegment_data->first_frame_offset = 0;
desegment_data->previous = NULL;
wmem_tree_insert32_array(desegment_info, key, desegment_data);
return desegment_data;
}
static desegment_data_t *
get_recorded_desegment_data(packet_info *pinfo, usb_conv_info_t *usb_conv_info,
FTDI_INTERFACE interface, guint8 bitmode)
{
guint32 k_bus_id = usb_conv_info->bus_id;
guint32 k_device_address = usb_conv_info->device_address;
guint32 k_interface = (guint32)interface;
guint32 k_p2p_dir = (guint32)pinfo->p2p_dir;
wmem_tree_key_t key[] = {
{1, &k_bus_id},
{1, &k_device_address},
{1, &k_interface},
{1, &k_p2p_dir},
{1, &pinfo->num},
{0, NULL}
};
desegment_data_t *desegment_data = NULL;
desegment_data = (desegment_data_t*)wmem_tree_lookup32_array_le(desegment_info, key);
if (desegment_data && desegment_data->bus_id == k_bus_id && desegment_data->device_address == k_device_address &&
desegment_data->interface == interface && desegment_data->bitmode == bitmode &&
desegment_data->p2p_dir == pinfo->p2p_dir)
{
/* Return desegment data only if it is relevant to current packet */
if ((desegment_data->last_frame == 0) || (desegment_data->last_frame >= pinfo->num))
{
return desegment_data;
}
}
return NULL;
}
static guint ftdi_fragment_key_hash(gconstpointer k)
{
const ftdi_fragment_key_t *key = (const ftdi_fragment_key_t *)k;
return key->id;
}
static gint ftdi_fragment_key_equal(gconstpointer k1, gconstpointer k2)
{
const ftdi_fragment_key_t *key1 = (const ftdi_fragment_key_t *)k1;
const ftdi_fragment_key_t *key2 = (const ftdi_fragment_key_t *)k2;
/* id is most likely to differ and thus should be checked first */
return (key1->id == key2->id) &&
(key1->bus_id == key2->bus_id) &&
(key1->device_address == key2->device_address) &&
(key1->interface == key2->interface) &&
(key1->bitmode == key2->bitmode) &&
(key1->p2p_dir == key2->p2p_dir);
}
static gpointer ftdi_fragment_key(const packet_info *pinfo _U_, const guint32 id, const void *data)
{
desegment_data_t *desegment_data = (desegment_data_t *)data;
ftdi_fragment_key_t *key = g_slice_new(ftdi_fragment_key_t);
key->bus_id = desegment_data->bus_id;
key->device_address = desegment_data->device_address;
key->interface = desegment_data->interface;
key->bitmode = desegment_data->bitmode;
key->p2p_dir = desegment_data->p2p_dir;
key->id = id;
return (gpointer)key;
}
static void ftdi_fragment_free_key(gpointer ptr)
{
ftdi_fragment_key_t *key = (ftdi_fragment_key_t *)ptr;
g_slice_free(ftdi_fragment_key_t, key);
}
static const reassembly_table_functions ftdi_reassembly_table_functions = {
.hash_func = ftdi_fragment_key_hash,
.equal_func = ftdi_fragment_key_equal,
.temporary_key_func = ftdi_fragment_key,
.persistent_key_func = ftdi_fragment_key,
.free_temporary_key_func = ftdi_fragment_free_key,
.free_persistent_key_func = ftdi_fragment_free_key,
};
static void
dissect_payload(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, usb_conv_info_t *usb_conv_info,
FTDI_INTERFACE interface, guint8 bitmode)
{
guint32 k_bus_id;
guint32 k_device_address;
k_bus_id = usb_conv_info->bus_id;
k_device_address = usb_conv_info->device_address;
if (tvb && ((bitmode == BITMODE_MPSSE) || (bitmode == BITMODE_MCU)))
{
ftdi_mpsse_info_t mpsse_info = {
.bus_id = k_bus_id,
.device_address = k_device_address,
.chip = identify_chip(usb_conv_info),
.iface = interface,
.mcu_mode = (bitmode == BITMODE_MCU),
};
call_dissector_with_data(ftdi_mpsse_handle, tvb, pinfo, tree, &mpsse_info);
}
}
static gint
dissect_serial_payload(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, proto_tree *ftdi_tree,
usb_conv_info_t *usb_conv_info, FTDI_INTERFACE interface)
{
guint16 save_can_desegment;
int save_desegment_offset;
guint32 save_desegment_len;
desegment_data_t *desegment_data;
guint32 bytes;
save_can_desegment = pinfo->can_desegment;
save_desegment_offset = pinfo->desegment_offset;
save_desegment_len = pinfo->desegment_len;
bytes = tvb_reported_length(tvb);
if (bytes > 0)
{
tvbuff_t *payload_tvb = NULL;
guint32 reassembled_bytes = 0;
guint8 bitmode;
guint8 curr_layer_num = pinfo->curr_layer_num;
bitmode = get_recorded_interface_mode(pinfo, usb_conv_info, interface);
pinfo->can_desegment = 2;
pinfo->desegment_offset = 0;
pinfo->desegment_len = 0;
desegment_data = get_recorded_desegment_data(pinfo, usb_conv_info, interface, bitmode);
if (desegment_data)
{
fragment_head *fd_head;
desegment_data_t *next_desegment_data = NULL;
if ((desegment_data->previous) && (desegment_data->first_frame == pinfo->num))
{
DISSECTOR_ASSERT(desegment_data->previous->last_frame == pinfo->num);
next_desegment_data = desegment_data;
desegment_data = desegment_data->previous;
}
if (!PINFO_FD_VISITED(pinfo))
{
/* Combine data reassembled so far with current tvb and check if this is last fragment or not */
fragment_item *item;
fd_head = fragment_get(&ftdi_reassembly_table, pinfo, desegment_data->first_frame, desegment_data);
DISSECTOR_ASSERT(fd_head && !(fd_head->flags & FD_DEFRAGMENTED) && fd_head->next);
payload_tvb = tvb_new_composite();
for (item = fd_head->next; item; item = item->next)
{
DISSECTOR_ASSERT(reassembled_bytes == item->offset);
tvb_composite_append(payload_tvb, item->tvb_data);
reassembled_bytes += item->len;
}
tvb_composite_append(payload_tvb, tvb);
tvb_composite_finalize(payload_tvb);
}
else
{
fd_head = fragment_get_reassembled_id(&ftdi_reassembly_table, pinfo, desegment_data->first_frame);
payload_tvb = process_reassembled_data(tvb, 0, pinfo, "Reassembled", fd_head,
&ftdi_frag_items, NULL, ftdi_tree);
}
if (next_desegment_data)
{
fragment_head *next_head;
next_head = fragment_get_reassembled_id(&ftdi_reassembly_table, pinfo, next_desegment_data->first_frame);
process_reassembled_data(tvb, 0, pinfo, "Reassembled", next_head, &ftdi_frag_items, NULL, ftdi_tree);
}
if ((desegment_data->first_frame == pinfo->num) && (desegment_data->first_frame_offset > 0))
{
payload_tvb = tvb_new_subset_length(tvb, 0, desegment_data->first_frame_offset);
}
}
else
{
/* Packet is not part of reassembly sequence, simply use it without modifications */
payload_tvb = tvb;
}
dissect_payload(payload_tvb, pinfo, tree, usb_conv_info, interface, bitmode);
if (!PINFO_FD_VISITED(pinfo))
{
/* FTDI FT dissector doesn't know if the last fragment is really the last one unless it passes
* the data to the next dissector. There is absolutely no metadata that could help with it as
* FTDI FT is pretty much a direct replacement to UART (COM port) and is pretty much transparent
* to the actual serial protocol used.
*
* Passing the data to next dissector results in curr_layer_num being increased if it dissected
* the data (when it is the last fragment). This would prevent the process_reassembled_data()
* (after the first pass) from returning the reassembled tvb in FTFI FT which in turn prevents
* the data from being passed to the next dissector.
*
* Override pinfo->curr_layer_num value when the fragments are being added to reassembly table.
* This is ugly hack. Is there any better approach?
*
* There doesn't seem to be a mechanism to "back-track" just added fragments to reassembly table,
* or any way to "shorten" the last added fragment. The most problematic case is when current
* packet is both last packet for previous reassembly and a first packet for next reassembly.
*/
guint8 save_curr_layer_num = pinfo->curr_layer_num;
pinfo->curr_layer_num = curr_layer_num;
if (!pinfo->desegment_len)
{
if (desegment_data)
{
/* Current tvb is really the last fragment */
fragment_add_check(&ftdi_reassembly_table, tvb, 0, pinfo, desegment_data->first_frame,
desegment_data, reassembled_bytes, bytes, FALSE);
desegment_data->last_frame = pinfo->num;
}
}
else
{
DISSECTOR_ASSERT_HINT(pinfo->desegment_len == DESEGMENT_ONE_MORE_SEGMENT,
"FTDI FT supports only DESEGMENT_ONE_MORE_SEGMENT");
if (!desegment_data)
{
/* Start desegmenting */
gint fragment_length = tvb_reported_length_remaining(tvb, pinfo->desegment_offset);
desegment_data = record_desegment_data(pinfo, usb_conv_info, interface, bitmode);
desegment_data->first_frame_offset = pinfo->desegment_offset;
fragment_add_check(&ftdi_reassembly_table, tvb, pinfo->desegment_offset, pinfo,
desegment_data->first_frame, desegment_data, 0, fragment_length, TRUE);
}
else if (pinfo->desegment_offset == 0)
{
/* Continue reassembling */
fragment_add_check(&ftdi_reassembly_table, tvb, 0, pinfo, desegment_data->first_frame,
desegment_data, reassembled_bytes, bytes, TRUE);
}
else
{
gint fragment_length;
gint previous_bytes;
desegment_data_t *previous_desegment_data;
/* This packet contains both an end from a previous reassembly and start of a new one */
DISSECTOR_ASSERT((guint32)pinfo->desegment_offset > reassembled_bytes);
previous_bytes = pinfo->desegment_offset - reassembled_bytes;
fragment_add_check(&ftdi_reassembly_table, tvb, 0, pinfo, desegment_data->first_frame,
desegment_data, reassembled_bytes, previous_bytes, FALSE);
desegment_data->last_frame = pinfo->num;
previous_desegment_data = desegment_data;
fragment_length = bytes - previous_bytes;
desegment_data = record_desegment_data(pinfo, usb_conv_info, interface, bitmode);
desegment_data->first_frame_offset = previous_bytes;
desegment_data->previous = previous_desegment_data;
fragment_add_check(&ftdi_reassembly_table, tvb, previous_bytes, pinfo, desegment_data->first_frame,
desegment_data, 0, fragment_length, TRUE);
}
}
pinfo->curr_layer_num = save_curr_layer_num;
}
}
pinfo->can_desegment = save_can_desegment;
pinfo->desegment_offset = save_desegment_offset;
pinfo->desegment_len = save_desegment_len;
return bytes;
}
static gint
dissect_ftdi_ft(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data)
{
proto_item *main_item;
proto_tree *main_tree;
gint offset = 0;
usb_conv_info_t *usb_conv_info = (usb_conv_info_t *)data;
request_data_t *request_data = NULL;
wmem_tree_key_t key[4];
guint32 k_bus_id;
guint32 k_device_address;
if (!usb_conv_info)
{
return offset;
}
if (usb_conv_info->is_setup)
{
/* This dissector can only process device Vendor specific setup data */
if ((USB_TYPE(usb_conv_info->setup_requesttype) != RQT_SETUP_TYPE_VENDOR) ||
(USB_RECIPIENT(usb_conv_info->setup_requesttype) != RQT_SETUP_RECIPIENT_DEVICE))
{
return offset;
}
}
k_bus_id = usb_conv_info->bus_id;
k_device_address = usb_conv_info->device_address;
key[0].length = 1;
key[0].key = &k_bus_id;
key[1].length = 1;
key[1].key = &k_device_address;
key[2].length = 1;
key[2].key = &pinfo->num;
key[3].length = 0;
key[3].key = NULL;
main_item = proto_tree_add_item(tree, proto_ftdi_ft, tvb, offset, -1, ENC_NA);
main_tree = proto_item_add_subtree(main_item, ett_ftdi_ft);
if (usb_conv_info->transfer_type == URB_CONTROL)
{
col_set_str(pinfo->cinfo, COL_PROTOCOL, "FTDI FT");
col_set_str(pinfo->cinfo, COL_INFO, "FTDI FT ");
col_append_str(pinfo->cinfo, COL_INFO, usb_conv_info->is_request ? "Request" : "Response");
if (usb_conv_info->is_setup)
{
gint bytes_dissected;
guint8 brequest;
guint8 hvalue;
guint8 lindex;
brequest = tvb_get_guint8(tvb, offset);
col_append_fstr(pinfo->cinfo, COL_INFO, ": %s",
val_to_str_ext_const(brequest, &request_vals_ext, "Unknown"));
proto_tree_add_item(main_tree, hf_setup_brequest, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
hvalue = tvb_get_guint8(tvb, offset + 1);
lindex = tvb_get_guint8(tvb, offset + 2);
switch (brequest)
{
case REQUEST_RESET:
bytes_dissected = dissect_request_reset(tvb, pinfo, offset, main_tree);
break;
case REQUEST_MODEM_CTRL:
bytes_dissected = dissect_request_modem_ctrl(tvb, pinfo, offset, main_tree);
break;
case REQUEST_SET_FLOW_CTRL:
bytes_dissected = dissect_request_set_flow_ctrl(tvb, pinfo, offset, main_tree);
break;
case REQUEST_SET_BAUD_RATE:
{
FTDI_CHIP chip = identify_chip(usb_conv_info);
bytes_dissected = dissect_request_set_baud_rate(tvb, pinfo, offset, main_tree, chip);
break;
}
case REQUEST_SET_DATA:
bytes_dissected = dissect_request_set_data(tvb, pinfo, offset, main_tree);
break;
case REQUEST_GET_MODEM_STAT:
bytes_dissected = dissect_request_get_modem_stat(tvb, pinfo, offset, main_tree);
break;
case REQUEST_SET_EVENT_CHAR:
bytes_dissected = dissect_request_set_event_char(tvb, pinfo, offset, main_tree);
break;
case REQUEST_SET_ERROR_CHAR:
bytes_dissected = dissect_request_set_error_char(tvb, pinfo, offset, main_tree);
break;
case REQUEST_SET_LAT_TIMER:
bytes_dissected = dissect_request_set_lat_timer(tvb, pinfo, offset, main_tree);
break;
case REQUEST_GET_LAT_TIMER:
bytes_dissected = dissect_request_get_lat_timer(tvb, pinfo, offset, main_tree);
break;
case REQUEST_SET_BITMODE:
bytes_dissected = dissect_request_set_bitmode(tvb, pinfo, offset, main_tree);
break;
default:
bytes_dissected = 0;
break;
}
offset += bytes_dissected;
if (bytes_dissected < 4)
{
proto_tree_add_expert(main_tree, pinfo, &ei_undecoded, tvb, offset, 4 - bytes_dissected);
offset += 4 - bytes_dissected;
}
proto_tree_add_item(main_tree, hf_setup_wlength, tvb, offset, 2, ENC_LITTLE_ENDIAN);
offset += 2;
/* Record the request type so we can find it when dissecting response */
request_data = wmem_new(wmem_file_scope(), request_data_t);
request_data->bus_id = usb_conv_info->bus_id;
request_data->device_address = usb_conv_info->device_address;
request_data->request = brequest;
request_data->hvalue = hvalue;
request_data->lindex = lindex;
wmem_tree_insert32_array(request_info, key, request_data);
}
else
{
/* Retrieve request type */
request_data = (request_data_t *)wmem_tree_lookup32_array_le(request_info, key);
if (request_data && request_data->bus_id == k_bus_id && request_data->device_address == k_device_address)
{
col_append_fstr(pinfo->cinfo, COL_INFO, ": %s",
val_to_str_ext_const(request_data->request, &request_vals_ext, "Unknown"));
switch (request_data->request)
{
case REQUEST_GET_MODEM_STAT:
offset += dissect_modem_status_bytes(tvb, pinfo, offset, main_tree, NULL);
break;
case REQUEST_GET_LAT_TIMER:
offset += dissect_response_get_lat_timer(tvb, pinfo, offset, main_tree);
break;
case REQUEST_SET_BITMODE:
/* TODO: Record interface mode only if the control request has succeeded */
record_interface_mode(pinfo, usb_conv_info, lindex_to_interface(request_data->lindex), request_data->hvalue);
break;
default:
break;
}
}
else
{
col_append_str(pinfo->cinfo, COL_INFO, ": Unknown");
}
/* Report any potentially undissected response data */
if (tvb_reported_length_remaining(tvb, offset) > 0)
{
proto_tree_add_expert(main_tree, pinfo, &ei_undecoded, tvb, offset, -1);
}
}
}
else
{
const char *interface_str;
FTDI_INTERFACE interface;
gint rx_hf, tx_hf;
interface = endpoint_to_interface(usb_conv_info);
switch (interface)
{
case FTDI_INTERFACE_A:
interface_str = "A";
rx_hf = hf_if_a_rx_payload;
tx_hf = hf_if_a_tx_payload;
break;
case FTDI_INTERFACE_B:
interface_str = "B";
rx_hf = hf_if_b_rx_payload;
tx_hf = hf_if_b_tx_payload;
break;
case FTDI_INTERFACE_C:
interface_str = "C";
rx_hf = hf_if_c_rx_payload;
tx_hf = hf_if_c_tx_payload;
break;
case FTDI_INTERFACE_D:
interface_str = "D";
rx_hf = hf_if_d_rx_payload;
tx_hf = hf_if_d_tx_payload;
break;
default:
return offset;
}
col_set_str(pinfo->cinfo, COL_PROTOCOL, "FTDI FT");
if (pinfo->p2p_dir == P2P_DIR_RECV)
{
gint total_rx_len = 0;
gint rx_len;
tvbuff_t *rx_tvb = tvb_new_composite();
col_add_fstr(pinfo->cinfo, COL_INFO, "INTERFACE %s RX", interface_str);
do
{
/* First two bytes are status */
offset += dissect_modem_status_bytes(tvb, pinfo, offset, main_tree, &rx_len);
total_rx_len += rx_len;
if (rx_len > 0)
{
tvbuff_t *rx_tvb_fragment = tvb_new_subset_length(tvb, offset, rx_len);
tvb_composite_append(rx_tvb, rx_tvb_fragment);
proto_tree_add_item(main_tree, rx_hf, tvb, offset, rx_len, ENC_NA);
offset += rx_len;
}
}
while (tvb_reported_length_remaining(tvb, offset) > 0);
if (total_rx_len > 0)
{
tvb_composite_finalize(rx_tvb);
col_append_fstr(pinfo->cinfo, COL_INFO, " %d bytes", total_rx_len);
add_new_data_source(pinfo, rx_tvb, "RX Payload");
dissect_serial_payload(rx_tvb, pinfo, tree, main_tree, usb_conv_info, interface);
}
else
{
tvb_free_chain(rx_tvb);
}
}
else
{
gint bytes;
col_add_fstr(pinfo->cinfo, COL_INFO, "INTERFACE %s TX", interface_str);
bytes = tvb_reported_length_remaining(tvb, offset);
if (bytes > 0)
{
tvbuff_t *tx_tvb;
col_append_fstr(pinfo->cinfo, COL_INFO, " %d bytes", bytes);
proto_tree_add_item(main_tree, tx_hf, tvb, offset, bytes, ENC_NA);
tx_tvb = tvb_new_subset_length(tvb, offset, bytes);
add_new_data_source(pinfo, tx_tvb, "TX Payload");
dissect_serial_payload(tx_tvb, pinfo, tree, main_tree, usb_conv_info, interface);
offset += bytes;
}
}
}
return offset;
}
void
proto_register_ftdi_ft(void)
{
expert_module_t *expert_module;
static hf_register_info hf[] = {
{ &hf_setup_brequest,
{ "Request", "ftdi-ft.bRequest",
FT_UINT8, BASE_DEC | BASE_EXT_STRING, &request_vals_ext, 0x0,
NULL, HFILL }
},
{ &hf_setup_lvalue,
{ "lValue", "ftdi-ft.lValue",
FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }
},
{ &hf_setup_lvalue_purge,
{ "lValue", "ftdi-ft.lValue",
FT_UINT8, BASE_HEX, VALS(reset_purge_vals), 0x0,
NULL, HFILL }
},
{ &hf_setup_lvalue_dtr,
{ "DTR Active", "ftdi-ft.lValue.b0",
FT_BOOLEAN, 8, NULL, (1 << 0),
NULL, HFILL }
},
{ &hf_setup_lvalue_rts,
{ "RTS Active", "ftdi-ft.lValue.b1",
FT_BOOLEAN, 8, NULL, (1 << 1),
NULL, HFILL }
},
{ &hf_setup_lvalue_xon_char,
{ "XON Char", "ftdi-ft.lValue",
FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }
},
{ &hf_setup_lvalue_baud_low,
{ "Baud low", "ftdi-ft.lValue",
FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }
},
{ &hf_setup_lvalue_data_size,
{ "Data Size", "ftdi-ft.lValue",
FT_UINT8, BASE_HEX, VALS(data_size_vals), 0x0,
NULL, HFILL }
},
{ &hf_setup_lvalue_event_char,
{ "Event Char", "ftdi-ft.lValue",
FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }
},
{ &hf_setup_lvalue_error_char,
{ "Parity Error Char", "ftdi-ft.lValue",
FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }
},
{ &hf_setup_lvalue_latency_time,
{ "Latency Time", "ftdi-ft.lValue",
FT_UINT8, BASE_DEC, NULL, 0x0,
"Latency time in milliseconds", HFILL }
},
{ &hf_setup_lvalue_bitmask,
{ "Bit Mask", "ftdi-ft.lValue",
FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }
},
{ &hf_setup_hvalue,
{ "hValue", "ftdi-ft.hValue",
FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }
},
{ &hf_setup_hvalue_dtr,
{ "en DTR for writing", "ftdi-ft.hValue.b0",
FT_BOOLEAN, 8, NULL, (1 << 0),
NULL, HFILL }
},
{ &hf_setup_hvalue_rts,
{ "en RTS for writing", "ftdi-ft.hValue.b1",
FT_BOOLEAN, 8, NULL, (1 << 1),
NULL, HFILL }
},
{ &hf_setup_hvalue_xoff_char,
{ "XOFF Char", "ftdi-ft.hValue",
FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }
},
{ &hf_setup_hvalue_baud_mid,
{ "Baud mid", "ftdi-ft.hValue",
FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }
},
{ &hf_setup_hvalue_parity,
{ "Parity", "ftdi-ft.hValue.parity",
FT_UINT8, BASE_HEX, VALS(parity_vals), (0x7 << 0),
NULL, HFILL }
},
{ &hf_setup_hvalue_stop_bits,
{ "Stop Bits", "ftdi-ft.hValue.b4",
FT_UINT8, BASE_HEX, VALS(stop_bits_vals), (1 << 4),
NULL, HFILL }
},
{ &hf_setup_hvalue_break_bit,
{ "Break Bit", "ftdi-ft.hValue.b6",
FT_UINT8, BASE_HEX, VALS(break_bit_vals), (1 << 6),
NULL, HFILL }
},
{ &hf_setup_hvalue_trigger,
{ "hValue", "ftdi-ft.hValue",
FT_UINT8, BASE_HEX, VALS(event_char_trigger_vals), 0x0,
NULL, HFILL }
},
{ &hf_setup_hvalue_error_replacement,
{ "hValue", "ftdi-ft.hValue",
FT_UINT8, BASE_HEX, VALS(error_replacement_vals), 0x0,
NULL, HFILL }
},
{ &hf_setup_hvalue_bitmode,
{ "Bit Mode", "ftdi-ft.hValue",
FT_UINT8, BASE_HEX, VALS(bitmode_vals), 0x0,
NULL, HFILL }
},
{ &hf_setup_lindex,
{ "lIndex", "ftdi-ft.lIndex",
FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }
},
{ &hf_setup_lindex_port_ab,
{ "lIndex", "ftdi-ft.lIndex",
FT_UINT8, BASE_HEX, VALS(index_port_ab_vals), 0x0,
NULL, HFILL }
},
{ &hf_setup_lindex_port_abcd,
{ "lIndex", "ftdi-ft.lIndex",
FT_UINT8, BASE_HEX, VALS(index_port_abcd_vals), 0x0,
NULL, HFILL }
},
{ &hf_setup_lindex_baud_high,
{ "Baud High", "ftdi-ft.lIndex.b0",
FT_UINT8, BASE_HEX, NULL, (1 << 0),
NULL, HFILL }
},
{ &hf_setup_hindex,
{ "hIndex", "ftdi-ft.hIndex",
FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }
},
{ &hf_setup_hindex_rts_cts,
{ "RTS/CTS Flow Control", "ftdi-ft.hIndex.b0",
FT_BOOLEAN, 8, NULL, (1 << 0),
NULL, HFILL }
},
{ &hf_setup_hindex_dtr_dsr,
{ "DTR/DSR Flow Control", "ftdi-ft.hIndex.b1",
FT_BOOLEAN, 8, NULL, (1 << 1),
NULL, HFILL }
},
{ &hf_setup_hindex_xon_xoff,
{ "XON/XOFF Flow Control", "ftdi-ft.hIndex.b2",
FT_BOOLEAN, 8, NULL, (1 << 2),
NULL, HFILL }
},
{ &hf_setup_hindex_baud_high,
{ "Baud High", "ftdi-ft.baud_high.b0",
FT_UINT8, BASE_HEX, NULL, (1 << 0),
NULL, HFILL }
},
{ &hf_setup_hindex_baud_clock_divide,
{ "Baud Clock Divide off", "ftdi-ft.baud_clock_divide.b1",
FT_BOOLEAN, 8, NULL, (1 << 1),
"When active 120 MHz is max frequency instead of 48 MHz", HFILL }
},
{ &hf_setup_wlength,
{ "wLength", "ftdi-ft.wLength",
FT_UINT16, BASE_DEC, NULL, 0x0,
NULL, HFILL }
},
{ &hf_response_lat_timer,
{ "Latency Time", "ftdi-ft.latency_time",
FT_UINT8, BASE_DEC, NULL, 0x0,
"Latency time in milliseconds", HFILL }
},
{ &hf_modem_status,
{ "Modem Status", "ftdi-ft.modem_status",
FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }
},
{ &hf_modem_status_fs_max_packet,
{ "Full Speed 64 byte MAX packet", "ftdi-ft.modem_status.b0",
FT_BOOLEAN, 8, NULL, (1 << 0),
NULL, HFILL }
},
{ &hf_modem_status_hs_max_packet,
{ "High Speed 512 byte MAX packet", "ftdi-ft.modem_status.b1",
FT_BOOLEAN, 8, NULL, (1 << 1),
NULL, HFILL }
},
{ &hf_modem_status_cts,
{ "CTS", "ftdi-ft.modem_status.b4",
FT_BOOLEAN, 8, NULL, (1 << 4),
NULL, HFILL }
},
{ &hf_modem_status_dsr,
{ "DSR", "ftdi-ft.modem_status.b5",
FT_BOOLEAN, 8, NULL, (1 << 5),
NULL, HFILL }
},
{ &hf_modem_status_ri,
{ "RI", "ftdi-ft.modem_status.b6",
FT_BOOLEAN, 8, NULL, (1 << 6),
NULL, HFILL }
},
{ &hf_modem_status_dcd,
{ "DCD", "ftdi-ft.modem_status.b7",
FT_BOOLEAN, 8, NULL, (1 << 7),
NULL, HFILL }
},
{ &hf_line_status,
{ "Line Status", "ftdi-ft.line_status",
FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }
},
{ &hf_line_status_receive_overflow,
{ "Receive Overflow Error", "ftdi-ft.line_status.b1",
FT_BOOLEAN, 8, NULL, (1 << 1),
NULL, HFILL }
},
{ &hf_line_status_parity_error,
{ "Parity Error", "ftdi-ft.line_status.b2",
FT_BOOLEAN, 8, NULL, (1 << 2),
NULL, HFILL }
},
{ &hf_line_status_framing_error,
{ "Framing Error", "ftdi-ft.line_status.b3",
FT_BOOLEAN, 8, NULL, (1 << 3),
NULL, HFILL }
},
{ &hf_line_status_break_received,
{ "Break Received", "ftdi-ft.line_status.b4",
FT_BOOLEAN, 8, NULL, (1 << 4),
NULL, HFILL }
},
{ &hf_line_status_tx_holding_reg_empty,
{ "Transmitter Holding Register Empty", "ftdi-ft.line_status.b5",
FT_BOOLEAN, 8, NULL, (1 << 5),
NULL, HFILL }
},
{ &hf_line_status_tx_empty,
{ "Transmitter Empty", "ftdi-ft.line_status.b6",
FT_BOOLEAN, 8, NULL, (1 << 6),
NULL, HFILL }
},
{ &hf_if_a_rx_payload,
{ "A RX payload", "ftdi-ft.if_a_rx_payload",
FT_BYTES, BASE_NONE, NULL, 0x0,
"Data received on interface A", HFILL }
},
{ &hf_if_a_tx_payload,
{ "A TX payload", "ftdi-ft.if_a_tx_payload",
FT_BYTES, BASE_NONE, NULL, 0x0,
"Data to transmit on interface A", HFILL }
},
{ &hf_if_b_rx_payload,
{ "B RX payload", "ftdi-ft.if_b_rx_payload",
FT_BYTES, BASE_NONE, NULL, 0x0,
"Data received on interface B", HFILL }
},
{ &hf_if_b_tx_payload,
{ "B TX payload", "ftdi-ft.if_b_tx_payload",
FT_BYTES, BASE_NONE, NULL, 0x0,
"Data to transmit on interface B", HFILL }
},
{ &hf_if_c_rx_payload,
{ "C RX payload", "ftdi-ft.if_c_rx_payload",
FT_BYTES, BASE_NONE, NULL, 0x0,
"Data received on interface C", HFILL }
},
{ &hf_if_c_tx_payload,
{ "C TX payload", "ftdi-ft.if_c_tx_payload",
FT_BYTES, BASE_NONE, NULL, 0x0,
"Data to transmit on interface C", HFILL }
},
{ &hf_if_d_rx_payload,
{ "D RX payload", "ftdi-ft.if_d_rx_payload",
FT_BYTES, BASE_NONE, NULL, 0x0,
"Data received on interface D", HFILL }
},
{ &hf_if_d_tx_payload,
{ "D TX payload", "ftdi-ft.if_d_tx_payload",
FT_BYTES, BASE_NONE, NULL, 0x0,
"Data to transmit on interface D", HFILL }
},
{ &hf_ftdi_fragments,
{ "Payload fragments", "ftdi-ft.fragments",
FT_NONE, BASE_NONE, NULL, 0x0,
NULL, HFILL }
},
{ &hf_ftdi_fragment,
{ "Payload fragment", "ftdi-ft.fragment",
FT_FRAMENUM, BASE_NONE, NULL, 0x0,
NULL, HFILL }
},
{ &hf_ftdi_fragment_overlap,
{ "Payload fragment overlap", "ftdi-ft.fragment.overlap",
FT_BOOLEAN, BASE_NONE, NULL, 0x0,
NULL, HFILL }
},
{ &hf_ftdi_fragment_overlap_conflicts,
{ "Payload fragment overlapping with conflicting data", "ftdi-ft.fragment.overlap.conflicts",
FT_BOOLEAN, BASE_NONE, NULL, 0x0,
NULL, HFILL }
},
{ &hf_ftdi_fragment_multiple_tails,
{ "Payload has multiple tails", "ftdi-ft.fragment.multiple_tails",
FT_BOOLEAN, BASE_NONE, NULL, 0x0,
NULL, HFILL}
},
{ &hf_ftdi_fragment_too_long_fragment,
{ "Payload fragment too long", "ftdi-ft.fragment.too_long_fragment",
FT_BOOLEAN, BASE_NONE, NULL, 0x0,
NULL, HFILL }
},
{ &hf_ftdi_fragment_error,
{ "Payload defragmentation error", "ftdi-ft.fragment.error",
FT_FRAMENUM, BASE_NONE, NULL, 0x0,
NULL, HFILL }
},
{ &hf_ftdi_fragment_count,
{ "Payload fragment count", "ftdi-ft.fragment.count",
FT_UINT32, BASE_DEC, NULL, 0x0,
NULL, HFILL }
},
{ &hf_ftdi_reassembled_in,
{ "Payload reassembled in", "ftdi-ft.reassembled.in",
FT_FRAMENUM, BASE_NONE, NULL, 0x0,
NULL, HFILL }
},
{ &hf_ftdi_reassembled_length,
{ "Payload reassembled length", "ftdi-ft.reassembled.length",
FT_UINT32, BASE_DEC, NULL, 0x0,
NULL, HFILL }
},
};
static ei_register_info ei[] = {
{ &ei_undecoded, { "ftdi-ft.undecoded", PI_UNDECODED, PI_WARN, "Not dissected yet (report to wireshark.org)", EXPFILL }},
};
static gint *ett[] = {
&ett_ftdi_ft,
&ett_modem_ctrl_lvalue,
&ett_modem_ctrl_hvalue,
&ett_flow_ctrl_hindex,
&ett_baudrate_lindex,
&ett_baudrate_hindex,
&ett_setdata_hvalue,
&ett_modem_status,
&ett_line_status,
&ett_ftdi_fragment,
&ett_ftdi_fragments,
};
request_info = wmem_tree_new_autoreset(wmem_epan_scope(), wmem_file_scope());
bitmode_info = wmem_tree_new_autoreset(wmem_epan_scope(), wmem_file_scope());
desegment_info = wmem_tree_new_autoreset(wmem_epan_scope(), wmem_file_scope());
proto_ftdi_ft = proto_register_protocol("FTDI FT USB", "FTDI FT", "ftdi-ft");
proto_register_field_array(proto_ftdi_ft, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));
ftdi_ft_handle = register_dissector("ftdi-ft", dissect_ftdi_ft, proto_ftdi_ft);
expert_module = expert_register_protocol(proto_ftdi_ft);
expert_register_field_array(expert_module, ei, array_length(ei));
reassembly_table_register(&ftdi_reassembly_table, &ftdi_reassembly_table_functions);
}
void
proto_reg_handoff_ftdi_ft(void)
{
/* TODO: Add configuration option to specify VID and PID.
* The values below denote default VID/PID of FT converters (as of 2019)
* The VID and PID can be changed by hardware vendor.
*/
dissector_add_uint("usb.product", (0x0403 << 16) | 0x6001, ftdi_ft_handle);
dissector_add_uint("usb.product", (0x0403 << 16) | 0x6010, ftdi_ft_handle);
dissector_add_uint("usb.product", (0x0403 << 16) | 0x6011, ftdi_ft_handle);
dissector_add_uint("usb.product", (0x0403 << 16) | 0x6014, ftdi_ft_handle);
dissector_add_uint("usb.product", (0x0403 << 16) | 0x6015, ftdi_ft_handle);
/* Devices that use FTDI FT converter with changed Vendor ID and/or Product ID */
dissector_add_uint("usb.product", (0x0403 << 16) | 0xcff8, ftdi_ft_handle); /* Amontec JTAGkey */
dissector_add_uint("usb.product", (0x15ba << 16) | 0x0003, ftdi_ft_handle); /* Olimex ARM-USB-OCD */
dissector_add_uint("usb.product", (0x15ba << 16) | 0x0004, ftdi_ft_handle); /* Olimex ARM-USB-TINY */
dissector_add_uint("usb.product", (0x15ba << 16) | 0x002a, ftdi_ft_handle); /* Olimex ARM-USB-TINY-H */
dissector_add_uint("usb.product", (0x15ba << 16) | 0x002b, ftdi_ft_handle); /* Olimex ARM-USB-OCD-H */
dissector_add_uint("usb.product", (0x1d50 << 16) | 0x607c, ftdi_ft_handle); /* OpenVizsla USB sniffer/analyzer */
dissector_add_for_decode_as("usb.device", ftdi_ft_handle);
ftdi_mpsse_handle = find_dissector_add_dependency("ftdi-mpsse", proto_ftdi_ft);
}
/*
* Editor modelines - https://www.wireshark.org/tools/modelines.html
*
* Local variables:
* c-basic-offset: 4
* tab-width: 8
* indent-tabs-mode: nil
* End:
*
* vi: set shiftwidth=4 tabstop=8 expandtab:
* :indentSize=4:tabSize=8:noTabs=true:
*/