wireshark/epan/address_to_str.c

634 lines
17 KiB
C

/* address_to_str.c
* Routines for utilities to convert addresses to strings.
*
* $Id$
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "config.h"
#include <stdlib.h>
#include <string.h>
#ifdef HAVE_SYS_TYPES_H
# include <sys/types.h> /* needed for <netinet/in.h> */
#endif
#ifdef HAVE_NETINET_IN_H
# include <netinet/in.h> /* needed for <arpa/inet.h> on some platforms */
#endif
#ifdef HAVE_ARPA_INET_H
#include <arpa/inet.h>
#endif
#ifdef HAVE_SYS_SOCKET_H
#include <sys/socket.h> /* needed to define AF_ values on UNIX */
#endif
#ifdef HAVE_WINSOCK2_H
#include <winsock2.h> /* needed to define AF_ values on Windows */
#endif
#ifdef NEED_INET_V6DEFS_H
# include "wsutil/inet_v6defs.h"
#endif
#include "to_str.h"
#include "value_string.h"
#include "addr_resolv.h"
#include "pint.h"
#include "atalk-utils.h"
#include "sna-utils.h"
#include "osi-utils.h"
#include <epan/dissectors/packet-mtp3.h>
#include <stdio.h>
#include "emem.h"
/* private to_str.c API, don't export to .h! */
char *word_to_hex(char *out, guint16 word);
char *word_to_hex_npad(char *out, guint16 word);
char *dword_to_hex_punct(char *out, guint32 dword, char punct);
char *dword_to_hex(char *out, guint32 dword);
char *bytes_to_hexstr(char *out, const guint8 *ad, guint32 len);
char *bytes_to_hexstr_punct(char *out, const guint8 *ad, guint32 len, char punct);
/*
* If a user _does_ pass in a too-small buffer, this is probably
* going to be too long to fit. However, even a partial string
* starting with "[Buf" should provide enough of a clue to be
* useful.
*/
#define BUF_TOO_SMALL_ERR "[Buffer too small]"
/* Wrapper for the most common case of asking
* for a string using a colon as the hex-digit separator.
*/
/* XXX FIXME
remove this one later when every call has been converted to ep_address_to_str()
*/
gchar *
ether_to_str(const guint8 *ad)
{
return bytestring_to_str(ad, 6, ':');
}
gchar *
tvb_ether_to_str(tvbuff_t *tvb, const gint offset)
{
return bytestring_to_str(tvb_get_ptr(tvb, offset, 6), 6, ':');
}
/*
This function is very fast and this function is called a lot.
XXX update the ep_address_to_str stuff to use this function.
*/
const gchar *
ip_to_str(const guint8 *ad) {
gchar *buf;
buf=ep_alloc(MAX_IP_STR_LEN);
ip_to_str_buf(ad, buf, MAX_IP_STR_LEN);
return buf;
}
#define IPV4_LENGTH 4
const gchar *
tvb_ip_to_str(tvbuff_t *tvb, const gint offset)
{
gchar *buf;
buf=ep_alloc(MAX_IP_STR_LEN);
ip_to_str_buf(tvb_get_ptr(tvb, offset, IPV4_LENGTH), buf, MAX_IP_STR_LEN);
return buf;
}
/* XXX FIXME
remove this one later when every call has been converted to ep_address_to_str()
*/
gchar *
ip6_to_str(const struct e_in6_addr *ad) {
gchar *str;
str=ep_alloc(MAX_IP6_STR_LEN);
ip6_to_str_buf(ad, str);
return str;
}
#define IPV6_LENGTH 16
gchar *
tvb_ip6_to_str(tvbuff_t *tvb, const gint offset)
{
gchar *buf;
buf=ep_alloc(MAX_IP6_STR_LEN);
ip6_to_str_buf((const struct e_in6_addr *)tvb_get_ptr(tvb, offset, IPV6_LENGTH), buf);
return buf;
}
/* const char *
* inet_ntop6(src, dst, size)
* convert IPv6 binary address into presentation (printable) format
* author:
* Paul Vixie, 1996.
*/
static void
ip6_to_str_buf_len(const guchar* src, char *buf, size_t buf_len)
{
struct { int base, len; } best, cur;
guint words[8];
int i;
if (buf_len < MAX_IP6_STR_LEN) { /* buf_len < 40 */
g_strlcpy(buf, BUF_TOO_SMALL_ERR, buf_len); /* Let the unexpected value alert user */
return;
}
/*
* Preprocess:
* Copy the input (bytewise) array into a wordwise array.
* Find the longest run of 0x00's in src[] for :: shorthanding.
*/
for (i = 0; i < 16; i += 2) {
words[i / 2] = (src[i+1] << 0);
words[i / 2] |= (src[i] << 8);
}
best.base = -1; best.len = 0;
cur.base = -1; cur.len = 0;
for (i = 0; i < 8; i++) {
if (words[i] == 0) {
if (cur.base == -1) {
cur.base = i;
cur.len = 1;
} else
cur.len++;
} else {
if (cur.base != -1) {
if (best.base == -1 || cur.len > best.len)
best = cur;
cur.base = -1;
}
}
}
if (cur.base != -1) {
if (best.base == -1 || cur.len > best.len)
best = cur;
}
if (best.base != -1 && best.len < 2)
best.base = -1;
/* Is this address an encapsulated IPv4? */
/* XXX,
* Orginal code dated 1996 uses ::/96 as a valid IPv4-compatible addresses
* but since Feb 2006 ::/96 is deprecated one.
* Quoting wikipedia [0]:
* > The 96-bit zero-value prefix ::/96, originally known as IPv4-compatible
* > addresses, was mentioned in 1995[35] but first described in 1998.[41]
* > This class of addresses was used to represent IPv4 addresses within
* > an IPv6 transition technology. Such an IPv6 address has its first
* > (most significant) 96 bits set to zero, while its last 32 bits are the
* > IPv4 address that is represented.
* > In February 2006 the Internet Engineering Task Force (IETF) has deprecated
* > the use of IPv4-compatible addresses.[1] The only remaining use of this address
* > format is to represent an IPv4 address in a table or database with fixed size
* > members that must also be able to store an IPv6 address.
*
* If needed it can be fixed by changing next line:
* if (best.base == 0 && (best.len == 6 || (best.len == 5 && words[5] == 0xffff)))
* to:
* if (best.base == 0 && best.len == 5 && words[5] == 0xffff)
*
* [0] http://en.wikipedia.org/wiki/IPv6_address#Historical_notes
*/
if (best.base == 0 && (best.len == 6 || (best.len == 5 && words[5] == 0xffff)))
{
/* best.len == 6 -> ::IPv4; 5 -> ::ffff:IPv4 */
buf = g_stpcpy(buf, "::");
if (best.len == 5)
buf = g_stpcpy(buf, "ffff:");
ip_to_str_buf(src + 12, buf, MAX_IP_STR_LEN);
/* max: 2 + 5 + 16 == 23 bytes */
return;
}
/*
* Format the result.
*/
for (i = 0; i < 8; i++) {
/* Are we inside the best run of 0x00's? */
if (i == best.base) {
*buf++ = ':';
i += best.len;
/* Was it a trailing run of 0x00's? */
if (i == 8) {
*buf++ = ':';
break;
}
}
/* Are we following an initial run of 0x00s or any real hex? */
if (i != 0)
*buf++ = ':';
buf = word_to_hex_npad(buf, words[i]); /* max: 4B */
/* max: 8 * 4 + 7 == 39 bytes */
}
*buf = '\0'; /* 40 byte */
}
void
ip6_to_str_buf(const struct e_in6_addr *ad, gchar *buf)
{
ip6_to_str_buf_len((const guchar*)ad, buf, MAX_IP6_STR_LEN);
}
gchar*
ipx_addr_to_str(const guint32 net, const guint8 *ad)
{
gchar *buf;
char *name;
name = get_ether_name_if_known(ad);
if (name) {
buf = ep_strdup_printf("%s.%s", get_ipxnet_name(net), name);
}
else {
buf = ep_strdup_printf("%s.%s", get_ipxnet_name(net),
bytestring_to_str(ad, 6, '\0'));
}
return buf;
}
gchar*
ipxnet_to_string(const guint8 *ad)
{
guint32 addr = pntohl(ad);
return ipxnet_to_str_punct(addr, ' ');
}
gchar *
ipxnet_to_str_punct(const guint32 ad, const char punct)
{
gchar *buf = ep_alloc(12);
*dword_to_hex_punct(buf, ad, punct) = '\0';
return buf;
}
static void
vines_addr_to_str_buf(const guint8 *addrp, gchar *buf, int buf_len)
{
if (buf_len < 14) {
g_strlcpy(buf, BUF_TOO_SMALL_ERR, buf_len); /* Let the unexpected value alert user */
return;
}
buf = dword_to_hex(buf, pntohl(&addrp[0])); /* 8 bytes */
*buf++ = '.'; /* 1 byte */
buf = word_to_hex(buf, pntohs(&addrp[4])); /* 4 bytes */
*buf = '\0'; /* 1 byte */
}
gchar *
tvb_vines_addr_to_str(tvbuff_t *tvb, const gint offset)
{
gchar *buf;
buf=ep_alloc(214); /* XXX, 14 here? */
vines_addr_to_str_buf(tvb_get_ptr(tvb, offset, VINES_ADDR_LEN), buf, 214);
return buf;
}
/*
This function is very fast and this function is called a lot.
XXX update the ep_address_to_str stuff to use this function.
*/
gchar *
eui64_to_str(const guint64 ad) {
gchar *buf;
guint8 *p_eui64;
p_eui64 = ep_alloc(8);
buf=ep_alloc(EUI64_STR_LEN);
/* Copy and convert the address to network byte order. */
*(guint64 *)(void *)(p_eui64) = pntoh64(&(ad));
g_snprintf(buf, EUI64_STR_LEN, "%.2x:%.2x:%.2x:%.2x:%.2x:%.2x:%.2x:%.2x",
p_eui64[0], p_eui64[1], p_eui64[2], p_eui64[3],
p_eui64[4], p_eui64[5], p_eui64[6], p_eui64[7] );
return buf;
}
gchar *
tvb_eui64_to_str(tvbuff_t *tvb, const gint offset, const guint encoding)
{
if(encoding)
{
return eui64_to_str(tvb_get_letoh64(tvb, offset));
}else {
return eui64_to_str(tvb_get_ntoh64(tvb, offset));
}
}
static void
usb_addr_to_str_buf(const guint8 *addrp, gchar *buf, int buf_len)
{
if(pletohl(&addrp[0])==0xffffffff){
g_snprintf(buf, buf_len, "host");
} else {
g_snprintf(buf, buf_len, "%d.%d", pletohl(&addrp[0]), pletohl(&addrp[4]));
}
}
static void
tipc_addr_to_str_buf( const guint8 *data, gchar *buf, int buf_len){
guint8 zone;
guint16 subnetwork;
guint16 processor;
guint32 tipc_address;
tipc_address = data[0];
tipc_address = (tipc_address << 8) ^ data[1];
tipc_address = (tipc_address << 8) ^ data[2];
tipc_address = (tipc_address << 8) ^ data[3];
processor = tipc_address & 0x0fff;
tipc_address = tipc_address >> 12;
subnetwork = tipc_address & 0x0fff;
tipc_address = tipc_address >> 12;
zone = tipc_address & 0xff;
g_snprintf(buf,buf_len,"%u.%u.%u",zone,subnetwork,processor);
}
static void
ib_addr_to_str_buf( const address *addr, gchar *buf, int buf_len){
if (addr->len >= 16) { /* GID is 128bits */
#define PREAMBLE_STR_LEN (sizeof("GID: ") - 1)
g_snprintf(buf,buf_len,"GID: ");
if (buf_len < (int)PREAMBLE_STR_LEN ||
inet_ntop(AF_INET6, addr->data, buf + PREAMBLE_STR_LEN,
buf_len - PREAMBLE_STR_LEN) == NULL ) /* Returns NULL if no space and does not touch buf */
g_snprintf ( buf, buf_len, BUF_TOO_SMALL_ERR ); /* Let the unexpected value alert user */
} else { /* this is a LID (16 bits) */
guint16 lid_number;
memcpy((void *)&lid_number, addr->data, sizeof lid_number);
g_snprintf(buf,buf_len,"LID: %u",lid_number);
}
}
/* XXX FIXME
remove this one later when every call has been converted to ep_address_to_str()
*/
gchar *
fc_to_str(const guint8 *ad)
{
return bytestring_to_str (ad, 3, '.');
}
gchar *
tvb_fc_to_str(tvbuff_t *tvb, const gint offset)
{
return bytestring_to_str (tvb_get_ptr(tvb, offset, 3), 3, '.');
}
/* FC Network Header Network Address Authority Identifiers */
#define FC_NH_NAA_IEEE 1 /* IEEE 802.1a */
#define FC_NH_NAA_IEEE_E 2 /* IEEE Exteneded */
#define FC_NH_NAA_LOCAL 3
#define FC_NH_NAA_IP 4 /* 32-bit IP address */
#define FC_NH_NAA_IEEE_R 5 /* IEEE Registered */
#define FC_NH_NAA_IEEE_R_E 6 /* IEEE Registered Exteneded */
/* according to FC-PH 3 draft these are now reclaimed and reserved */
#define FC_NH_NAA_CCITT_INDV 12 /* CCITT 60 bit individual address */
#define FC_NH_NAA_CCITT_GRP 14 /* CCITT 60 bit group address */
gchar *
fcwwn_to_str (const guint8 *ad)
{
int fmt;
guint8 oui[6];
gchar *ethstr;
gchar *ethptr;
if (ad == NULL) return NULL;
ethstr=ep_alloc(512);
ethptr = bytes_to_hexstr_punct(ethstr, ad, 8, ':'); /* 23 bytes */
fmt = (ad[0] & 0xF0) >> 4;
switch (fmt) {
case FC_NH_NAA_IEEE:
case FC_NH_NAA_IEEE_E:
memcpy (oui, &ad[2], 6);
g_snprintf (ethptr, 512-23, " (%s)", get_manuf_name (oui));
break;
case FC_NH_NAA_IEEE_R:
oui[0] = ((ad[0] & 0x0F) << 4) | ((ad[1] & 0xF0) >> 4);
oui[1] = ((ad[1] & 0x0F) << 4) | ((ad[2] & 0xF0) >> 4);
oui[2] = ((ad[2] & 0x0F) << 4) | ((ad[3] & 0xF0) >> 4);
oui[3] = ((ad[3] & 0x0F) << 4) | ((ad[4] & 0xF0) >> 4);
oui[4] = ((ad[4] & 0x0F) << 4) | ((ad[5] & 0xF0) >> 4);
oui[5] = ((ad[5] & 0x0F) << 4) | ((ad[6] & 0xF0) >> 4);
g_snprintf (ethptr, 512-23, " (%s)", get_manuf_name (oui));
break;
default:
*ethptr = '\0';
break;
}
return (ethstr);
}
gchar *
tvb_fcwwn_to_str(tvbuff_t *tvb, const gint offset)
{
return fcwwn_to_str (tvb_get_ptr(tvb, offset, 8));
}
/* XXX FIXME
remove this one later when every call has been converted to address_to_str()
*/
gchar *
ax25_to_str(const guint8 *ad)
{
return bytestring_to_str(ad, 7, ':');
}
/* XXX FIXME
remove this one later when every call has been converted to address_to_str()
*/
gchar *
get_ax25_name(const guint8 *ad)
{
address addr;
addr.type = AT_AX25;
addr.len = 7;
addr.data = ad;
return address_to_str( &addr );
}
/*XXX FIXME the code below may be called very very frequently in the future.
optimize it for speed and get rid of the slow sprintfs */
/* XXX - perhaps we should have individual address types register
a table of routines to do operations such as address-to-name translation,
address-to-string translation, and the like, and have this call them,
and also have an address-to-string-with-a-name routine */
/* XXX - use this, and that future address-to-string-with-a-name routine,
in "col_set_addr()"; it might also be useful to have address types
export the names of the source and destination address fields, so
that "col_set_addr()" need know nothing whatsoever about particular
address types */
/* convert an address struct into a printable string */
gchar*
ep_address_to_str(const address *addr)
{
gchar *str;
str=ep_alloc(MAX_ADDR_STR_LEN);
address_to_str_buf(addr, str, MAX_ADDR_STR_LEN);
return str;
}
/* The called routines use se_alloc'ed memory */
gchar*
se_address_to_str(const address *addr)
{
gchar *str;
str=se_alloc(MAX_ADDR_STR_LEN);
address_to_str_buf(addr, str, MAX_ADDR_STR_LEN);
return str;
}
void
address_to_str_buf(const address *addr, gchar *buf, int buf_len)
{
const guint8 *addrdata;
struct atalk_ddp_addr ddp_addr;
char temp[32];
char *tempptr = temp;
if (!buf || !buf_len)
return;
switch(addr->type){
case AT_NONE:
buf[0] = '\0';
break;
case AT_ETHER: /* 18 bytes */
tempptr = bytes_to_hexstr_punct(tempptr, addr->data, 6, ':'); /* 17 bytes */
break;
case AT_IPv4:
ip_to_str_buf(addr->data, buf, buf_len);
break;
case AT_IPv6:
ip6_to_str_buf_len(addr->data, buf, buf_len);
break;
case AT_IPX: /* 22 bytes */
addrdata = addr->data;
tempptr = bytes_to_hexstr(tempptr, &addrdata[0], 4); /* 8 bytes */
*tempptr++ = '.'; /* 1 byte */
tempptr = bytes_to_hexstr(tempptr, &addrdata[4], 6); /* 12 bytes */
break;
case AT_SNA:
sna_fid_to_str_buf(addr, buf, buf_len);
break;
case AT_ATALK:
memcpy(&ddp_addr, addr->data, sizeof ddp_addr);
atalk_addr_to_str_buf(&ddp_addr, buf, buf_len);
break;
case AT_VINES:
vines_addr_to_str_buf(addr->data, buf, buf_len);
break;
case AT_USB:
usb_addr_to_str_buf(addr->data, buf, buf_len);
break;
case AT_OSI:
print_nsap_net_buf(addr->data, addr->len, buf, buf_len);
break;
case AT_ARCNET: /* 5 bytes */
tempptr = g_stpcpy(tempptr, "0x"); /* 2 bytes */
tempptr = bytes_to_hexstr(tempptr, addr->data, 1); /* 2 bytes */
break;
case AT_FC: /* 9 bytes */
tempptr = bytes_to_hexstr_punct(tempptr, addr->data, 3, '.'); /* 8 bytes */
break;
case AT_SS7PC:
mtp3_addr_to_str_buf((const mtp3_addr_pc_t *)addr->data, buf, buf_len);
break;
case AT_STRINGZ:
g_strlcpy(buf, addr->data, buf_len);
break;
case AT_EUI64: /* 24 bytes */
tempptr = bytes_to_hexstr_punct(tempptr, addr->data, 8, ':'); /* 23 bytes */
break;
case AT_URI: {
int copy_len = addr->len < (buf_len - 1) ? addr->len : (buf_len - 1);
memcpy(buf, addr->data, copy_len );
buf[copy_len] = '\0';
}
break;
case AT_TIPC:
tipc_addr_to_str_buf(addr->data, buf, buf_len);
break;
case AT_IB:
ib_addr_to_str_buf(addr, buf, buf_len);
break;
case AT_AX25:
addrdata = addr->data;
g_snprintf(buf, buf_len, "%c%c%c%c%c%c-%02d",
(addrdata[0] >> 1) & 0x7f, (addrdata[1] >> 1) & 0x7f, (addrdata[2] >> 1) & 0x7f,
(addrdata[3] >> 1) & 0x7f, (addrdata[4] >> 1) & 0x7f, (addrdata[5] >> 1) & 0x7f,
(addrdata[6] >> 1) & 0x0f );
break;
default:
g_assert_not_reached();
}
/* copy to output buffer */
if (tempptr != temp) {
size_t temp_len = (size_t) (tempptr - temp);
if (temp_len < (size_t) buf_len) {
memcpy(buf, temp, temp_len);
buf[temp_len] = '\0';
} else
g_strlcpy(buf, BUF_TOO_SMALL_ERR, buf_len);/* Let the unexpected value alert user */
}
}