wireshark/epan/dissectors/packet-flexray.c

572 lines
23 KiB
C

/* packet-flexray.c
* Routines for FlexRay dissection
* Copyright 2016, Roman Leonhartsberger <ro.leonhartsberger@gmail.com>
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include <config.h>
#include <epan/packet.h>
#include <epan/decode_as.h>
#include <epan/prefs.h>
#include <wiretap/wtap.h>
#include <epan/expert.h>
#include <epan/uat.h>
#include "packet-flexray.h"
void proto_reg_handoff_flexray(void);
void proto_register_flexray(void);
static dissector_handle_t flexray_handle;
static gboolean prefvar_try_heuristic_first = FALSE;
static dissector_table_t subdissector_table;
static dissector_table_t flexrayid_subdissector_table;
static heur_dissector_list_t heur_subdissector_list;
static heur_dtbl_entry_t *heur_dtbl_entry;
static int proto_flexray;
static int hf_flexray_measurement_header_field;
static int hf_flexray_error_flags_field;
static int hf_flexray_frame_header;
static int hf_flexray_ti;
static int hf_flexray_ch;
static int hf_flexray_fcrc_err;
static int hf_flexray_hcrc_err;
static int hf_flexray_fes_err;
static int hf_flexray_cod_err;
static int hf_flexray_tss_viol;
static int hf_flexray_res;
static int hf_flexray_ppi;
static int hf_flexray_nfi;
static int hf_flexray_sfi;
static int hf_flexray_stfi;
static int hf_flexray_fid;
static int hf_flexray_pl;
static int hf_flexray_hcrc;
static int hf_flexray_cc;
static int hf_flexray_sl;
static int hf_flexray_flexray_id;
static gint ett_flexray;
static gint ett_flexray_measurement_header;
static gint ett_flexray_error_flags;
static gint ett_flexray_frame;
static int * const error_fields[] = {
&hf_flexray_fcrc_err,
&hf_flexray_hcrc_err,
&hf_flexray_fes_err,
&hf_flexray_cod_err,
&hf_flexray_tss_viol,
NULL
};
static expert_field ei_flexray_frame_payload_truncated;
static expert_field ei_flexray_symbol_frame;
static expert_field ei_flexray_error_flag;
static expert_field ei_flexray_stfi_flag;
#define FLEXRAY_FRAME 0x01
#define FLEXRAY_SYMBOL 0x02
#define FLEXRAY_HEADER_LENGTH 5
static const value_string flexray_type_names[] = {
{ FLEXRAY_FRAME, "FRAME" },
{ FLEXRAY_SYMBOL, "SYMB" },
{0, NULL}
};
static const true_false_string flexray_channel_tfs = {
"CHB",
"CHA"
};
static const true_false_string flexray_nfi_tfs = {
"False",
"True"
};
/* Senders and Receivers UAT */
typedef struct _sender_receiver_config {
guint bus_id;
guint channel;
guint cycle;
guint frame_id;
gchar *sender_name;
gchar *receiver_name;
} sender_receiver_config_t;
#define DATAFILE_FR_SENDER_RECEIVER "FR_senders_receivers"
static GHashTable *data_sender_receiver = NULL;
static sender_receiver_config_t *sender_receiver_configs = NULL;
static guint sender_receiver_config_num = 0;
UAT_HEX_CB_DEF(sender_receiver_configs, bus_id, sender_receiver_config_t)
UAT_HEX_CB_DEF(sender_receiver_configs, channel, sender_receiver_config_t)
UAT_HEX_CB_DEF(sender_receiver_configs, cycle, sender_receiver_config_t)
UAT_HEX_CB_DEF(sender_receiver_configs, frame_id, sender_receiver_config_t)
UAT_CSTRING_CB_DEF(sender_receiver_configs, sender_name, sender_receiver_config_t)
UAT_CSTRING_CB_DEF(sender_receiver_configs, receiver_name, sender_receiver_config_t)
static void *
copy_sender_receiver_config_cb(void *n, const void *o, size_t size _U_) {
sender_receiver_config_t *new_rec = (sender_receiver_config_t *)n;
const sender_receiver_config_t *old_rec = (const sender_receiver_config_t *)o;
new_rec->bus_id = old_rec->bus_id;
new_rec->channel = old_rec->channel;
new_rec->cycle = old_rec->cycle;
new_rec->frame_id = old_rec->frame_id;
new_rec->sender_name = g_strdup(old_rec->sender_name);
new_rec->receiver_name = g_strdup(old_rec->receiver_name);
return new_rec;
}
static bool
update_sender_receiver_config(void *r, char **err) {
sender_receiver_config_t *rec = (sender_receiver_config_t *)r;
if (rec->channel > 0x1) {
*err = ws_strdup_printf("We currently only support 0 and 1 for Channels (Channel: %i Frame ID: %i)", rec->channel, rec->frame_id);
return FALSE;
}
if (rec->cycle > 0xff) {
*err = ws_strdup_printf("We currently only support 8 bit Cycles (Cycle: %i Frame ID: %i)", rec->cycle, rec->frame_id);
return FALSE;
}
if (rec->frame_id > 0xffff) {
*err = ws_strdup_printf("We currently only support 16 bit Frame IDs (Cycle: %i Frame ID: %i)", rec->cycle, rec->frame_id);
return FALSE;
}
if (rec->bus_id > 0xffff) {
*err = ws_strdup_printf("We currently only support 16 bit bus identifiers (Bus ID: 0x%x)", rec->bus_id);
return FALSE;
}
return TRUE;
}
static void
free_sender_receiver_config_cb(void *r) {
sender_receiver_config_t *rec = (sender_receiver_config_t *)r;
/* freeing result of g_strdup */
g_free(rec->sender_name);
rec->sender_name = NULL;
g_free(rec->receiver_name);
rec->receiver_name = NULL;
}
static guint64
sender_receiver_key(guint16 bus_id, guint8 channel, guint8 cycle, guint16 frame_id) {
return ((guint64)bus_id << 32) | ((guint64)channel << 24) | ((guint64)cycle << 16) | frame_id;
}
static sender_receiver_config_t *
ht_lookup_sender_receiver_config(flexray_info_t *flexray_info) {
sender_receiver_config_t *tmp = NULL;
guint64 key = 0;
if (sender_receiver_configs == NULL) {
return NULL;
}
key = sender_receiver_key(flexray_info->bus_id, flexray_info->ch, flexray_info->cc, flexray_info->id);
tmp = (sender_receiver_config_t *)g_hash_table_lookup(data_sender_receiver, &key);
if (tmp == NULL) {
key = sender_receiver_key(0, flexray_info->ch, flexray_info->cc, flexray_info->id);
tmp = (sender_receiver_config_t *)g_hash_table_lookup(data_sender_receiver, &key);
}
return tmp;
}
static void
sender_receiver_free_key(gpointer key) {
wmem_free(wmem_epan_scope(), key);
}
static void
post_update_sender_receiver_cb(void) {
guint i;
guint64 *key_id = NULL;
/* destroy old hash table, if it exist */
if (data_sender_receiver) {
g_hash_table_destroy(data_sender_receiver);
data_sender_receiver = NULL;
}
/* create new hash table */
data_sender_receiver = g_hash_table_new_full(g_int64_hash, g_int64_equal, &sender_receiver_free_key, NULL);
if (data_sender_receiver == NULL || sender_receiver_configs == NULL || sender_receiver_config_num == 0) {
return;
}
for (i = 0; i < sender_receiver_config_num; i++) {
key_id = wmem_new(wmem_epan_scope(), guint64);
*key_id = sender_receiver_key(sender_receiver_configs[i].bus_id, sender_receiver_configs[i].channel,
sender_receiver_configs[i].cycle, sender_receiver_configs[i].frame_id);
g_hash_table_insert(data_sender_receiver, key_id, &sender_receiver_configs[i]);
}
}
gboolean
flexray_set_source_and_destination_columns(packet_info *pinfo, flexray_info_t *flexray_info) {
sender_receiver_config_t *tmp = ht_lookup_sender_receiver_config(flexray_info);
if (tmp != NULL) {
/* remove all addresses to support FlexRay as payload (e.g., TECMP) */
clear_address(&pinfo->net_src);
clear_address(&pinfo->dl_src);
clear_address(&pinfo->src);
clear_address(&pinfo->net_dst);
clear_address(&pinfo->dl_dst);
clear_address(&pinfo->dst);
col_add_fstr(pinfo->cinfo, COL_DEF_SRC, "%s", tmp->sender_name);
col_add_fstr(pinfo->cinfo, COL_DEF_DST, "%s", tmp->receiver_name);
return true;
}
return false;
}
guint32
flexray_calc_flexrayid(guint16 bus_id, guint8 channel, guint16 frame_id, guint8 cycle) {
/* Bus-ID 4bit->4bit | Channel 1bit->4bit | Frame ID 11bit->16bit | Cycle 6bit->8bit */
return (guint32)(bus_id & 0xf) << 28 |
(guint32)(channel & 0x0f) << 24 |
(guint32)(frame_id & 0xffff) << 8 |
(guint32)(cycle & 0xff);
}
guint32
flexray_flexrayinfo_to_flexrayid(flexray_info_t *flexray_info) {
return flexray_calc_flexrayid(flexray_info->bus_id, flexray_info->ch, flexray_info->id, flexray_info->cc);
}
gboolean
flexray_call_subdissectors(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, flexray_info_t *flexray_info, const gboolean use_heuristics_first) {
guint32 flexray_id = flexray_flexrayinfo_to_flexrayid(flexray_info);
/* lets try an exact match first */
if (dissector_try_uint_new(flexrayid_subdissector_table, flexray_id, tvb, pinfo, tree, TRUE, flexray_info)) {
return TRUE;
}
/* lets try with BUS-ID = 0 (any) */
if (dissector_try_uint_new(flexrayid_subdissector_table, flexray_id & ~FLEXRAY_ID_BUS_ID_MASK, tvb, pinfo, tree, TRUE, flexray_info)) {
return TRUE;
}
/* lets try with cycle = 0xff (any) */
if (dissector_try_uint_new(flexrayid_subdissector_table, flexray_id | FLEXRAY_ID_CYCLE_MASK, tvb, pinfo, tree, TRUE, flexray_info)) {
return TRUE;
}
/* lets try with BUS-ID = 0 (any) and cycle = 0xff (any) */
if (dissector_try_uint_new(flexrayid_subdissector_table, (flexray_id & ~FLEXRAY_ID_BUS_ID_MASK) | FLEXRAY_ID_CYCLE_MASK, tvb, pinfo, tree, TRUE, flexray_info)) {
return TRUE;
}
if (!use_heuristics_first) {
if (!dissector_try_payload_new(subdissector_table, tvb, pinfo, tree, FALSE, flexray_info)) {
if (!dissector_try_heuristic(heur_subdissector_list, tvb, pinfo, tree, &heur_dtbl_entry, flexray_info)) {
return FALSE;
}
}
} else {
if (!dissector_try_heuristic(heur_subdissector_list, tvb, pinfo, tree, &heur_dtbl_entry, flexray_info)) {
if (!dissector_try_payload_new(subdissector_table, tvb, pinfo, tree, FALSE, flexray_info)) {
return FALSE;
}
}
}
return TRUE;
}
static int
dissect_flexray(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_) {
proto_item *ti;
proto_tree *flexray_tree, *measurement_tree;
col_set_str(pinfo->cinfo, COL_PROTOCOL, "FLEXRAY");
col_clear(pinfo->cinfo, COL_INFO);
ti = proto_tree_add_item(tree, proto_flexray, tvb, 0, -1, ENC_NA);
flexray_tree = proto_item_add_subtree(ti, ett_flexray);
/* Measurement Header [1 Byte] */
ti = proto_tree_add_item(flexray_tree, hf_flexray_measurement_header_field, tvb, 0, 1, ENC_BIG_ENDIAN);
measurement_tree = proto_item_add_subtree(ti, ett_flexray_measurement_header);
gboolean flexray_channel_is_b;
proto_tree_add_item_ret_boolean(measurement_tree, hf_flexray_ch, tvb, 0, 1, ENC_BIG_ENDIAN, &flexray_channel_is_b);
guint32 frame_type;
proto_tree_add_item_ret_uint(measurement_tree, hf_flexray_ti, tvb, 0, 1, ENC_BIG_ENDIAN, &frame_type);
col_add_fstr(pinfo->cinfo, COL_INFO, "%s:", val_to_str(frame_type, flexray_type_names, "Unknown (0x%02x)"));
if (frame_type == FLEXRAY_FRAME) {
proto_tree *error_flags_tree, *flexray_frame_tree;
gboolean call_subdissector = TRUE;
/* Error Flags [1 Byte] */
ti = proto_tree_add_bitmask(flexray_tree, tvb, 1, hf_flexray_error_flags_field, ett_flexray_error_flags, error_fields, ENC_BIG_ENDIAN);
error_flags_tree = proto_item_add_subtree(ti, ett_flexray_error_flags);
guint8 error_flags = tvb_get_guint8(tvb, 1) & 0x1f;
if (error_flags) {
expert_add_info(pinfo, error_flags_tree, &ei_flexray_error_flag);
call_subdissector = FALSE;
}
/* FlexRay Frame [5 Bytes + Payload]*/
gint flexray_frame_length = tvb_captured_length(tvb) - 2;
proto_item *ti_header = proto_tree_add_item(flexray_tree, hf_flexray_frame_header, tvb, 2, -1, ENC_NA);
flexray_frame_tree = proto_item_add_subtree(ti_header, ett_flexray_frame);
gboolean nfi, sfi, stfi;
proto_tree_add_item(flexray_frame_tree, hf_flexray_res, tvb, 2, 1, ENC_NA);
proto_tree_add_item(flexray_frame_tree, hf_flexray_ppi, tvb, 2, 1, ENC_NA);
proto_tree_add_item_ret_boolean(flexray_frame_tree, hf_flexray_nfi, tvb, 2, 1, ENC_NA, &nfi);
proto_tree_add_item_ret_boolean(flexray_frame_tree, hf_flexray_sfi, tvb, 2, 1, ENC_NA, &sfi);
proto_tree_add_item_ret_boolean(flexray_frame_tree, hf_flexray_stfi, tvb, 2, 1, ENC_NA, &stfi);
if (stfi && !sfi) {
expert_add_info(pinfo, flexray_frame_tree, &ei_flexray_stfi_flag);
call_subdissector = FALSE;
}
guint32 flexray_id;
proto_tree_add_item_ret_uint(flexray_frame_tree, hf_flexray_fid, tvb, 2, 2, ENC_BIG_ENDIAN, &flexray_id);
col_append_fstr(pinfo->cinfo, COL_INFO, " ID %4d", flexray_id);
if (flexray_id == 0) {
call_subdissector = FALSE;
}
guint32 flexray_pl;
proto_tree_add_item_ret_uint(flexray_frame_tree, hf_flexray_pl, tvb, 4, 1, ENC_BIG_ENDIAN, &flexray_pl);
gint flexray_reported_payload_length = 2 * flexray_pl;
gint flexray_current_payload_length = flexray_frame_length - FLEXRAY_HEADER_LENGTH;
gboolean payload_truncated = flexray_reported_payload_length > flexray_current_payload_length;
if (flexray_reported_payload_length < flexray_current_payload_length) {
flexray_current_payload_length = MAX(0, flexray_reported_payload_length);
}
proto_tree_add_item(flexray_frame_tree, hf_flexray_hcrc, tvb, 4, 3, ENC_BIG_ENDIAN);
guint32 flexray_cc;
proto_tree_add_item_ret_uint(flexray_frame_tree, hf_flexray_cc, tvb, 6, 1, ENC_BIG_ENDIAN, &flexray_cc);
col_append_fstr(pinfo->cinfo, COL_INFO, " CC %2d", flexray_cc);
if (nfi) {
if (payload_truncated) {
expert_add_info(pinfo, flexray_frame_tree, &ei_flexray_frame_payload_truncated);
call_subdissector = FALSE;
}
if (tvb != NULL && flexray_current_payload_length > 0) {
col_append_fstr(pinfo->cinfo, COL_INFO, " %s", tvb_bytes_to_str_punct(pinfo->pool, tvb, 7, flexray_current_payload_length, ' '));
}
} else {
call_subdissector = FALSE;
col_append_fstr(pinfo->cinfo, COL_INFO, " NF");
/* Payload is optional on Null Frames */
if (payload_truncated && flexray_current_payload_length != 0) {
expert_add_info(pinfo, flexray_frame_tree, &ei_flexray_frame_payload_truncated);
}
}
proto_item_set_end(ti_header, tvb, 2 + FLEXRAY_HEADER_LENGTH);
/* Only supporting single bus id right now */
flexray_info_t flexray_info = { .id = (guint16)flexray_id,
.cc = (guint8)flexray_cc,
.ch = flexray_channel_is_b ? 1 : 0,
.bus_id = 0};
ti = proto_tree_add_uint(flexray_frame_tree, hf_flexray_flexray_id, tvb, 0, 7, flexray_flexrayinfo_to_flexrayid(&flexray_info));
proto_item_set_hidden(ti);
flexray_set_source_and_destination_columns(pinfo, &flexray_info);
if (flexray_current_payload_length > 0) {
tvbuff_t *next_tvb = tvb_new_subset_length(tvb, 7, flexray_current_payload_length);
if (!call_subdissector || !flexray_call_subdissectors(next_tvb, pinfo, tree, &flexray_info, prefvar_try_heuristic_first)) {
call_data_dissector(next_tvb, pinfo, tree);
}
}
} else if (frame_type == FLEXRAY_SYMBOL) {
/* FlexRay Symbol [1 Byte] */
expert_add_info(pinfo, flexray_tree, &ei_flexray_symbol_frame);
guint32 symbol_length;
proto_tree_add_item_ret_uint(flexray_tree, hf_flexray_sl, tvb, 1, 1, ENC_BIG_ENDIAN, &symbol_length);
col_append_fstr(pinfo->cinfo, COL_INFO, " SL %3d", symbol_length);
}
return tvb_captured_length(tvb);
}
void
proto_register_flexray(void) {
module_t *flexray_module;
expert_module_t *expert_flexray;
uat_t *sender_receiver_uat = NULL;
static hf_register_info hf[] = {
{ &hf_flexray_measurement_header_field, {
"Measurement Header", "flexray.mhf", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL } },
{ &hf_flexray_ti, {
"Type Index", "flexray.ti", FT_UINT8, BASE_HEX, VALS(flexray_type_names), 0x7f, NULL, HFILL } },
{ &hf_flexray_ch, {
"Channel", "flexray.ch", FT_BOOLEAN, 8, TFS(&flexray_channel_tfs), 0x80, NULL, HFILL } },
{ &hf_flexray_error_flags_field, {
"Error Flags", "flexray.eff", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL } },
{ &hf_flexray_fcrc_err, {
"Frame CRC error", "flexray.fcrc_err", FT_BOOLEAN, 8, NULL, 0x10, NULL, HFILL } },
{ &hf_flexray_hcrc_err, {
"Header CRC error", "flexray.hcrc_err", FT_BOOLEAN, 8, NULL, 0x08, NULL, HFILL } },
{ &hf_flexray_fes_err, {
"Frame End Sequence error", "flexray.fes_err", FT_BOOLEAN, 8, NULL, 0x04, NULL, HFILL } },
{ &hf_flexray_cod_err, {
"Coding error", "flexray.cod_err", FT_BOOLEAN, 8, NULL, 0x02, NULL, HFILL } },
{ &hf_flexray_tss_viol, {
"TSS violation", "flexray.tss_viol", FT_BOOLEAN, 8, NULL, 0x01, NULL, HFILL } },
{ &hf_flexray_frame_header, {
"FlexRay Frame Header", "flexray.frame_header", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } },
{ &hf_flexray_res, {
"Reserved", "flexray.res", FT_BOOLEAN, 8, NULL, 0x80, NULL, HFILL } },
{ &hf_flexray_ppi, {
"Payload Preamble Indicator", "flexray.ppi", FT_BOOLEAN, 8, NULL, 0x40, NULL, HFILL } },
{ &hf_flexray_nfi, {
"Null Frame Indicator", "flexray.nfi", FT_BOOLEAN, 8, TFS(&flexray_nfi_tfs), 0x20, NULL, HFILL } },
{ &hf_flexray_sfi, {
"Sync Frame Indicator", "flexray.sfi", FT_BOOLEAN, 8, NULL, 0x10, NULL, HFILL } },
{ &hf_flexray_stfi, {
"Startup Frame Indicator", "flexray.stfi", FT_BOOLEAN, 8, NULL, 0x08, NULL, HFILL } },
{ &hf_flexray_fid, {
"Frame ID", "flexray.fid", FT_UINT16, BASE_DEC, NULL, 0x07ff, NULL, HFILL } },
{ &hf_flexray_pl, {
"Payload length", "flexray.pl", FT_UINT8, BASE_DEC, NULL, 0xfe, NULL, HFILL } },
{ &hf_flexray_hcrc, {
"Header CRC", "flexray.hcrc", FT_UINT24, BASE_DEC, NULL, 0x01ffc0, NULL, HFILL } },
{ &hf_flexray_cc, {
"Cycle Counter", "flexray.cc", FT_UINT8, BASE_DEC, NULL, 0x3f, NULL, HFILL } },
{ &hf_flexray_sl, {
"Symbol length", "flexray.sl", FT_UINT8, BASE_DEC, NULL, 0x7f, NULL, HFILL } },
{ &hf_flexray_flexray_id, {
"FlexRay ID (combined)", "flexray.combined_id", FT_UINT32, BASE_HEX, NULL, 0, NULL, HFILL } },
};
static gint *ett[] = {
&ett_flexray,
&ett_flexray_measurement_header,
&ett_flexray_error_flags,
&ett_flexray_frame
};
static ei_register_info ei[] = {
{ &ei_flexray_frame_payload_truncated, {
"flexray.malformed_frame_payload_truncated", PI_MALFORMED, PI_ERROR, "Truncated Frame Payload", EXPFILL } },
{ &ei_flexray_symbol_frame, {
"flexray.symbol_frame", PI_SEQUENCE, PI_CHAT, "Packet is a Symbol Frame", EXPFILL } },
{ &ei_flexray_error_flag, {
"flexray.error_flag", PI_PROTOCOL, PI_WARN, "One or more Error Flags set", EXPFILL } },
{ &ei_flexray_stfi_flag, {
"flexray.stfi_flag", PI_PROTOCOL, PI_WARN, "A startup frame must always be a sync frame", EXPFILL } }
};
proto_flexray = proto_register_protocol("FlexRay Protocol", "FLEXRAY", "flexray");
flexray_module = prefs_register_protocol(proto_flexray, NULL);
proto_register_field_array(proto_flexray, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));
expert_flexray = expert_register_protocol(proto_flexray);
expert_register_field_array(expert_flexray, ei, array_length(ei));
flexray_handle = register_dissector("flexray", dissect_flexray, proto_flexray);
prefs_register_bool_preference(flexray_module, "try_heuristic_first", "Try heuristic sub-dissectors first",
"Try to decode a packet using an heuristic sub-dissector before using a sub-dissector registered to \"decode as\"",
&prefvar_try_heuristic_first
);
static uat_field_t sender_receiver_mapping_uat_fields[] = {
UAT_FLD_HEX(sender_receiver_configs, bus_id, "Bus ID", "Bus ID of the Interface with 0 meaning any(hex uint16 without leading 0x)."),
UAT_FLD_HEX(sender_receiver_configs, channel, "Channel", "Channel (8bit hex without leading 0x)"),
UAT_FLD_HEX(sender_receiver_configs, cycle, "Cycle", "Cycle (8bit hex without leading 0x)"),
UAT_FLD_HEX(sender_receiver_configs, frame_id, "Frame ID", "Frame ID (16bit hex without leading 0x)"),
UAT_FLD_CSTRING(sender_receiver_configs, sender_name, "Sender Name", "Name of Sender(s)"),
UAT_FLD_CSTRING(sender_receiver_configs, receiver_name, "Receiver Name", "Name of Receiver(s)"),
UAT_END_FIELDS
};
sender_receiver_uat = uat_new("Sender Receiver Config",
sizeof(sender_receiver_config_t), /* record size */
DATAFILE_FR_SENDER_RECEIVER, /* filename */
TRUE, /* from profile */
(void**)&sender_receiver_configs, /* data_ptr */
&sender_receiver_config_num, /* numitems_ptr */
UAT_AFFECTS_DISSECTION, /* but not fields */
NULL, /* help */
copy_sender_receiver_config_cb, /* copy callback */
update_sender_receiver_config, /* update callback */
free_sender_receiver_config_cb, /* free callback */
post_update_sender_receiver_cb, /* post update callback */
NULL, /* reset callback */
sender_receiver_mapping_uat_fields /* UAT field definitions */
);
prefs_register_uat_preference(flexray_module, "_sender_receiver_config", "Sender Receiver Config",
"A table to define the mapping between Bus ID and CAN ID to Sender and Receiver.", sender_receiver_uat);
subdissector_table = register_decode_as_next_proto(proto_flexray, "flexray.subdissector", "FLEXRAY next level dissector", NULL);
flexrayid_subdissector_table = register_dissector_table("flexray.combined_id", "FlexRay ID (combined)", proto_flexray, FT_UINT32, BASE_HEX);
heur_subdissector_list = register_heur_dissector_list_with_description("flexray", "FlexRay info", proto_flexray);
}
void
proto_reg_handoff_flexray(void) {
dissector_add_uint("wtap_encap", WTAP_ENCAP_FLEXRAY, flexray_handle);
}
/*
* Editor modelines - https://www.wireshark.org/tools/modelines.html
*
* Local variables:
* c-basic-offset: 4
* tab-width: 8
* indent-tabs-mode: nil
* End:
*
* vi: set shiftwidth=4 tabstop=8 expandtab:
* :indentSize=4:tabSize=8:noTabs=true:
*/