wireshark/wiretap/vwr.c

3445 lines
142 KiB
C
Raw Normal View History

/* vwr.c
* Copyright (c) 2011 by Tom Alexander <talexander@ixiacom.com>
*
* Wiretap Library
* Copyright (c) 1998 by Gilbert Ramirez <gram@alumni.rice.edu>
*
* SPDX-License-Identifier: GPL-2.0-or-later
*
*/
#include "config.h"
#include <errno.h>
#include <string.h>
#include "wtap-int.h"
#include "file_wrappers.h"
#include "vwr.h"
#include <wsutil/ws_assert.h>
/* platform-specific definitions for portability */
/* unsigned long long constants */
# define NS_IN_US G_GUINT64_CONSTANT(1000) /* nanoseconds-to-microseconds */
# define NS_IN_SEC G_GUINT64_CONSTANT(1000000000) /* nanoseconds-to-seconds */
# define US_IN_SEC G_GUINT64_CONSTANT(1000000) /* microseconds-to-seconds */
# define LL_ZERO G_GUINT64_CONSTANT(0) /* zero in unsigned long long */
/*
* Fetch a 64-bit value in "Corey-endian" form.
*/
#define pcoreytohll(p) ((guint64)*((const guint8 *)(p)+4)<<56| \
(guint64)*((const guint8 *)(p)+5)<<48| \
(guint64)*((const guint8 *)(p)+6)<<40| \
(guint64)*((const guint8 *)(p)+7)<<32| \
(guint64)*((const guint8 *)(p)+0)<<24| \
(guint64)*((const guint8 *)(p)+1)<<16| \
(guint64)*((const guint8 *)(p)+2)<<8| \
(guint64)*((const guint8 *)(p)+3)<<0)
/*
* Fetch a 48-bit value in "Corey-endian" form; it's stored as
* a 64-bit Corey-endian value, with the upper 16 bits ignored.
*/
#define pcorey48tohll(p) ((guint64)*((const guint8 *)(p)+6)<<40| \
(guint64)*((const guint8 *)(p)+7)<<32| \
(guint64)*((const guint8 *)(p)+0)<<24| \
(guint64)*((const guint8 *)(p)+1)<<16| \
(guint64)*((const guint8 *)(p)+2)<<8| \
(guint64)*((const guint8 *)(p)+3)<<0)
/* .vwr log file defines */
#define B_SIZE 32768 /* max var len message = 32 kB */
#define VT_FRAME 0 /* varlen msg is a frame */
#define VT_CPMSG 1 /* varlen msg is a CP<->PP msg */
#define VT_UNKNOWN -1 /* varlen msg is unknown */
#define MAX_TRACKED_CLIENTS 1024 /* track 1024 clients */
#define MAX_TRACKED_FLOWS 65536 /* and 64K flows */
/*
* The file consists of a sequence of records.
* A record begins with a 16-byte header, the first 8 bytes of which
* begin with a byte containing a command plus transmit-receive flags.
*
* Following that are two big-endian 32-bit quantities; for some records
* one or the other of them is the length of the rest of the record.
* Other records contain only the header.
*/
#define VW_RECORD_HEADER_LENGTH 16
/*
* Maximum number of bytes to read looking for a valid frame starting
* with a command byte to determine if this is our file type. Arbitrary.
*/
#define VW_BYTES_TO_CHECK 0x3FFFFFFFU
/* Command byte values */
#define COMMAND_RX 0x21
#define COMMAND_TX 0x31
#define COMMAND_RFN 0x30
#define COMMAND_RF 0x38
#define COMMAND_RFRX 0x39
/*
* The data in packet records begins with a sequence of metadata headers.
*
* For packet records from FPGA versions < 48:
*
* The first header is the IxVeriWave common header, and that's
* followed either by a WLAN metadata header or an Ethernet
* metadata header. The port type field indicates whether it's
* a WLAN packet or an Ethernet packet. Following that may, for
* WLAN, be 1 octet of information from the FPGA and 16 bytes of
* data including the PLCP header. After that comes the WLAN or
* Ethernet frame, beginning with the MAC header.
*
* For packet records from FPGA versions >= 48:
*
* The first header contains only a 1-octet port type value, which
* has a packet type value in the upper 4 bits and zero in the lower
* 4 bits. NOTE: this is indistinguishable from an old FPGA header
* if the packet type value is 0.
*
* If the packet type value isn't 3, the port type value is followed
* by a 1-octet FPGA version number, which is followed by a timestamp
* header.
*
* If the packet type value is 3 or 4, the next item is an RF metadata
* header. For type 3, that immediately follows the port number octet,
* otherwise it immediately follows the timestamp header.
*
* If the packet type isn't 3, the next item is a WLAN metadata header,
* in a format different from the WLAN metadata header for FPGA versions
* < 48. That is followed by a PLCP header, which is followed by a
* header giving additional layer 2 through 4 metadata.
*
* Following those headers is the WLAN or Ethernet frame, beginning with
* the MAC header.
*/
/*
* IxVeriWave common header:
*
* 1 octet - port type
* 1 octet - FPGA version, or 0
* 2 octets - length of the common header
* 2 octets - MSDU length
* 4 octets - flow ID
* 2 octets - VC ID
* 2 octets - flow sequence number
* 4 octets - latency or 0
* 4 octets - lower 32 bits of signature time stamp
* 8 octets - start time
* 8 octets - end time
* 4 octets - delta(?) time
*/
/* Size of the IxVeriWave common header */
#define STATS_COMMON_FIELDS_LEN (1+1+2+2+4+2+2+4+4+8+8+4)
/* Port type */
#define WLAN_PORT 0
#define ETHERNET_PORT 1
/* For VeriWave WLAN and Ethernet metadata headers vw_flags field */
#define VW_FLAGS_TXF 0x01 /* frame was transmitted */
#define VW_FLAGS_FCSERR 0x02 /* FCS error detected */
/*
* VeriWave WLAN metadata header:
*
* 2 octets - header length
* 2 octets - rflags
* 2 octets - channel flags
* 2 octets - PHY rate
* 1 octet - PLCP type
* 1 octet - MCS index
* 1 octet - number of spatial streams
* 1 octet - RSSI
* 1 octet - antenna b signal power, or 100 if missing
* 1 octet - antenna c signal power, or 100 if missing
* 1 octet - antenna d signal power, or 100 if missing
* 1 octet - padding
* 2 octets - VeriWave flags
* 2 octets - HT len
* 2 octets - info
* 2 octets - errors
*/
/* Size of the VeriWave WLAN metadata header */
#define EXT_WLAN_FIELDS_LEN (2+2+2+2+1+1+1+1+1+1+1+1+2+2+2+4)
/* Flags, for rflags field */
#define FLAGS_SHORTPRE 0x0002 /* sent/received with short preamble */
#define FLAGS_WEP 0x0004 /* sent/received with WEP encryption */
#define FLAGS_CHAN_HT 0x0040 /* In HT mode */
#define FLAGS_CHAN_VHT 0x0080 /* VHT Mode */
#define FLAGS_CHAN_SHORTGI 0x0100 /* Short guard interval */
#define FLAGS_CHAN_40MHZ 0x0200 /* 40 Mhz channel bandwidth */
#define FLAGS_CHAN_80MHZ 0x0400 /* 80 Mhz channel bandwidth */
#define FLAGS_CHAN_160MHZ 0x0800 /* 160 Mhz channel bandwidth */
/* Channel flags, for channel flags field */
#define CHAN_CCK 0x0020 /* CCK channel */
#define CHAN_OFDM 0x0040 /* OFDM channel */
/* For VeriWave WLAN metadata header vw_flags field */
#define VW_FLAGS_RETRERR 0x04 /* excess retry error detected */
#define VW_FLAGS_DCRERR 0x10 /* decrypt error detected (WLAN) */
#define VW_FLAGS_ENCMSK 0x60 /* encryption type mask */
/* 0 = none, 1 = WEP, 2 = TKIP, 3 = CCKM */
#define VW_FLAGS_IS_WEP 0x20 /* WEP */
#define VW_FLAGS_IS_TKIP 0x40 /* TKIP */
#define VW_FLAGS_IS_CCMP 0x60 /* CCMP */
/*
* VeriWave Ethernet metadata header:
*
* 2 octets - header length
* 2 octets - VeriWave flags
* 2 octets - info
* 4 octets - errors
* 4 octets - layer 4 ID
* 4 octets - pad
*
* Ethernet frame follows, beginning with the MAC header
*/
/* Size of the VeriWave Ethernet metadata header */
#define EXT_ETHERNET_FIELDS_LEN (2+2+2+4+4+4)
/*
* OCTO timestamp header.
*
* 4 octets - latency or 0
* 4 octets - lower 32 bits of signature time stamp
* 8 octets - start time
* 8 octets - end time
* 4 octets - delta(?) time
*/
/* Size of Timestamp header */
#define OCTO_TIMESTAMP_FIELDS_LEN (4+4+8+8+4+4)
/*
* OCTO layer 1-4 header:
*
* 2 octets - header length
* 1 octet - l1p_1
* 1 octet - number of spatial streams
* 2 octets - PHY rate
* 1 octet - l1p_2
* 1 octet - RSSI
* 1 octet - antenna b signal power, or 100 if missing
* 1 octet - antenna c signal power, or 100 if missing
* 1 octet - antenna d signal power, or 100 if missing
* 1 octet - signal bandwidth mask
* 1 octet - antenna port energy detect and VU_MASK
* 1 octet - L1InfoC or 0
* 2 octets - MSDU length
* 16 octets - PLCP?
* 4 octets - BM, BV, CV, BSSID and ClientID
* 2 octets - FV, QT, HT, L4V, TID and WLAN type
* 1 octets - flow sequence number
* 3 octets - flow ID
* 2 octets - layer 4 ID
* 4 octets - payload decode
* 3 octets - info
* 4 octets - errors
*/
2020-10-10 23:42:05 +00:00
/* Size of Layer-1, PLCP, and Layer-2/4 header in case of OCTO version FPGA */
#define OCTO_LAYER1TO4_LEN (2+14+16+23)
/*
* OCTO modified RF layer:
*
* 1 octet - RF ID
* 3 octets - unused (zero)
* 8 octets - noise for 4 ports
* 8 octets - signal/noise ration for 4 ports
* 8 octets - PFE for 4 ports
* 8 octets - EVM SIG data for 4 ports
* 8 octets - EVM SIG pilot for 4 ports
* 8 octets - EVM Data data for 4 ports
* 8 octets - EVM Data pilot for 4 ports
* 8 octets - EVM worst symbol for 4 ports
* 8 octets - CONTEXT_P for 4 ports
*
* Not supplied:
* 24 octets of additional data
*/
/* Size of RF header, if all fields were supplied */
#define OCTO_RF_MOD_ACTUAL_LEN 100 /* */
/* Size of RF header with the fields we do supply */
#define OCTO_MODIFIED_RF_LEN 76 /* 24 bytes of RF are not displayed*/
2020-10-10 23:42:05 +00:00
/*Offset of different parameters of RF header for port-1*/
#define RF_PORT_1_NOISE_OFF 4
#define RF_PORT_1_SNR_OFF 6
#define RF_PORT_1_PFE_OFF 8
#define RF_PORT_1_CONTEXT_OFF 10
#define RF_PORT_1_EVM_SD_SIG_OFF 12
#define RF_PORT_1_EVM_SP_SIG_OFF 14
#define RF_PORT_1_EVM_SD_DATA_OFF 16
#define RF_PORT_1_EVM_SP_DATA_OFF 18
#define RF_PORT_1_DSYMBOL_IDX_OFF 22
#define RF_INTER_PORT_GAP_OFF 24 /*As size of RF information per port is 24 bytes*/
#define RF_NUMBER_OF_PORTS 4
/* FPGA-generated frame buffer STATS block offsets and definitions */
/* definitions for v2.2 frames, Ethernet format */
#define v22_E_STATS_LEN 44 /* length of stats block trailer */
#define v22_E_VALID_OFF 0 /* bit 6 (0x40) is flow-is-valid flag */
#define v22_E_MTYPE_OFF 1 /* offset of modulation type */
#define v22_E_VCID_OFF 2 /* offset of VC ID */
#define v22_E_FLOWSEQ_OFF 4 /* offset of signature sequence number */
#define v22_E_FLOWID_OFF 5 /* offset of flow ID */
#define v22_E_OCTET_OFF 8 /* offset of octets */
#define v22_E_ERRORS_OFF 10 /* offset of error vector */
#define v22_E_PATN_OFF 12 /* offset of pattern match vector */
#define v22_E_L4ID_OFF 12
#define v22_E_IPLEN_OFF 14
#define v22_E_FRAME_TYPE_OFF 16 /* offset of frame type, 32 bits */
#define v22_E_RSSI_OFF 21 /* RSSI (NOTE: invalid for Ethernet) */
#define v22_E_STARTT_OFF 20 /* offset of start time, 64 bits */
#define v22_E_ENDT_OFF 28 /* offset of end time, 64 bits */
#define v22_E_LATVAL_OFF 36 /* offset of latency, 32 bits */
#define v22_E_INFO_OFF 40 /* NO INFO FIELD IN ETHERNET STATS! */
#define v22_E_DIFFERENTIATOR_OFF 0 /* offset to determine whether */
/* eth/802.11, 8 bits */
/* Media types */
#define v22_E_MT_10_HALF 0 /* 10 Mb/s half-duplex */
#define v22_E_MT_10_FULL 1 /* 10 Mb/s full-duplex */
#define v22_E_MT_100_HALF 2 /* 100 Mb/s half-duplex */
#define v22_E_MT_100_FULL 3 /* 100 Mb/s full-duplex */
#define v22_E_MT_1G_HALF 4 /* 1 Gb/s half-duplex */
#define v22_E_MT_1G_FULL 5 /* 1 Gb/s full-duplex */
/* Error flags */
#define v22_E_FCS_ERROR 0x0002 /* FCS error flag in error vector */
#define v22_E_CRYPTO_ERR 0x1f00 /* RX decrypt error flags (UNUSED) */
#define v22_E_SIG_ERR 0x0004 /* signature magic byte mismatch */
#define v22_E_PAYCHK_ERR 0x0008 /* payload checksum failure */
#define v22_E_RETRY_ERR 0x0400 /* excessive retries on TX fail (UNUSED)*/
/* Masks and defines */
#define v22_E_IS_RX 0x08 /* TX/RX bit in STATS block */
#define v22_E_MT_MASK 0x07 /* modulation type mask (UNUSED) */
#define v22_E_VCID_MASK 0x03ff /* VC ID is only 10 bits */
#define v22_E_FLOW_VALID 0x40 /* flow-is-valid flag (else force to 0) */
#define v22_E_DIFFERENTIATOR_MASK 0x3F /* mask to differentiate ethernet from */
/* Bits in FRAME_TYPE field */
#define v22_E_IS_TCP 0x00000040 /* TCP bit in FRAME_TYPE field */
#define v22_E_IS_UDP 0x00000010 /* UDP bit in FRAME_TYPE field */
#define v22_E_IS_ICMP 0x00000020 /* ICMP bit in FRAME_TYPE field */
#define v22_E_IS_IGMP 0x00000080 /* IGMP bit in FRAME_TYPE field */
/* Bits in MTYPE field (WLAN only) */
#define v22_E_IS_QOS 0x80 /* QoS bit in MTYPE field (WLAN only) */
#define v22_E_IS_VLAN 0x00200000
#define v22_E_RX_DECRYPTS 0x0007 /* RX-frame-was-decrypted (UNUSED) */
#define v22_E_TX_DECRYPTS 0x0007 /* TX-frame-was-decrypted (UNUSED) */
#define v22_E_FC_PROT_BIT 0x40 /* Protected Frame bit in FC1 of frame */
#define v22_E_IS_ETHERNET 0x00700000 /* bits set in frame type if ethernet */
#define v22_E_IS_80211 0x7F000000 /* bits set in frame type if 802.11 */
/* definitions for v2.2 frames, WLAN format for VW510006 FPGA*/
#define v22_W_STATS_LEN 64 /* length of stats block trailer */
#define v22_W_VALID_OFF 0 /* bit 6 (0x40) is flow-is-valid flag */
#define v22_W_MTYPE_OFF 1 /* offset of modulation type */
#define v22_W_VCID_OFF 2 /* offset of VC ID */
#define v22_W_FLOWSEQ_OFF 4 /* offset of signature sequence number */
#define v22_W_FLOWID_OFF 5 /* offset of flow ID */
#define v22_W_OCTET_OFF 8 /* offset of octets */
#define v22_W_ERRORS_OFF 10 /* offset of error vector */
#define v22_W_PATN_OFF 12
#define v22_W_L4ID_OFF 12
#define v22_W_IPLEN_OFF 14
#define v22_W_FRAME_TYPE_OFF 16 /* offset of frame type, 32 bits */
#define v22_W_RSSI_OFF 21 /* RSSI (NOTE: RSSI must be negated!) */
#define v22_W_STARTT_OFF 24 /* offset of start time, 64 bits */
#define v22_W_ENDT_OFF 32 /* offset of end time, 64 bits */
#define v22_W_LATVAL_OFF 40 /* offset of latency, 32 bits */
#define v22_W_INFO_OFF 54 /* offset of INFO field, 16 LSBs */
#define v22_W_DIFFERENTIATOR_OFF 20 /* offset to determine whether */
/* eth/802.11, 32 bits */
#define v22_W_PLCP_LENGTH_OFF 4 /* LENGTH field in the plcp header */
/* Modulation types */
#define v22_W_MT_CCKL 0 /* CCK modulation, long preamble */
#define v22_W_MT_CCKS 1 /* CCK modulation, short preamble */
#define v22_W_MT_OFDM 2 /* OFDM modulation */
/* Bits in FRAME_TYPE field */
#define v22_W_IS_TCP 0x00000040 /* TCP bit in FRAME_TYPE field */
#define v22_W_IS_UDP 0x00000010 /* UDP bit in FRAME_TYPE field */
#define v22_W_IS_ICMP 0x00000020 /* ICMP bit in FRAME_TYPE field */
#define v22_W_IS_IGMP 0x00000080 /* IGMP bit in FRAME_TYPE field */
/* Bits in MTYPE field (WLAN only) */
#define v22_W_IS_QOS 0x80 /* QoS */
/* Error flags */
#define v22_W_FCS_ERROR 0x0002 /* FCS error flag in error vector */
#define v22_W_CRYPTO_ERR 0x1f00 /* RX decrypt error flags */
#define v22_W_SIG_ERR 0x0004 /* signature magic byte mismatch */
#define v22_W_PAYCHK_ERR 0x0008 /* payload checksum failure */
#define v22_W_RETRY_ERR 0x0400 /* excessive retries on TX failure */
/* Masks and defines */
#define v22_W_IS_RX 0x08 /* TX/RX bit in STATS block */
#define v22_W_MT_MASK 0x07 /* modulation type mask */
#define v22_W_VCID_MASK 0x01ff /* VC ID is only 9 bits */
#define v22_W_FLOW_VALID 0x40 /* flow-is-valid flag (else force to 0) */
#define v22_W_DIFFERENTIATOR_MASK 0xf0ff /* mask to differentiate ethernet from */
/* 802.11 capture */
#define v22_W_RX_DECRYPTS 0x0007 /* RX-frame-was-decrypted bits */
#define v22_W_TX_DECRYPTS 0x0007 /* TX-frame-was-decrypted bits */
/* Info bits */
#define v22_W_WEPTYPE 0x0001 /* WEP frame */
#define v22_W_TKIPTYPE 0x0002 /* TKIP frame */
#define v22_W_CCMPTYPE 0x0004 /* CCMP frame */
#define v22_W_MPDU_OF_A_MPDU 0x0400 /* MPDU of A-MPDU */
#define v22_W_FIRST_MPDU_OF_A_MPDU 0x0800 /* first MPDU of A-MPDU */
#define v22_W_LAST_MPDU_OF_A_MPDU 0x1000 /* last MPDU of A-MPDU */
#define v22_W_MSDU_OF_A_MSDU 0x2000 /* MSDU of A-MSDU */
#define v22_W_FIRST_MSDU_OF_A_MSDU 0x4000 /* first MSDU of A-MSDU */
#define v22_W_LAST_MSDU_OF_A_MSDU 0x8000 /* last MSDU of A-MSDU */
/* All aggregation flags */
#define v22_W_AGGREGATE_FLAGS \
(v22_W_MPDU_OF_A_MPDU | \
v22_W_FIRST_MPDU_OF_A_MPDU | \
v22_W_LAST_MPDU_OF_A_MPDU | \
v22_W_MSDU_OF_A_MSDU | \
v22_W_FIRST_MSDU_OF_A_MSDU | \
v22_W_LAST_MSDU_OF_A_MSDU)
#define v22_W_FC_PROT_BIT 0x40 /* Protected Frame bit in FC1 of frame */
#define v22_W_IS_ETHERNET 0x00100000 /* bits set in frame type if ethernet */
#define v22_W_IS_80211 0x7F000000 /* bits set in frame type if 802.11 */
/* definitions for VW510021 FPGA, WLAN format */
/* FORMAT:
16 BYTE header
8 bytes of stat block
plcp stuff (11 bytes plcp + 1 byte pad)
data
remaining 48 bytes of stat block
*/
/* offsets in the stats block */
#define vVW510021_W_STATS_HEADER_LEN 8 /* length of stats block header at beginning of record data */
#define vVW510021_W_STATS_TRAILER_LEN 48 /* length of stats block trailer after the plcp portion*/
#define vVW510021_W_STARTT_OFF 0 /* offset of start time, 64 bits */
#define vVW510021_W_ENDT_OFF 8 /* offset of end time, 64 bits */
#define vVW510021_W_ERRORS_OFF 16 /* offset of error vector */
#define vVW510021_W_VALID_OFF 20 /* 2 Bytes with different validity bits */
#define vVW510021_W_INFO_OFF 22 /* offset of INFO field, 16 LSBs */
#define vVW510021_W_FRAME_TYPE_OFF 24
#define vVW510021_W_L4ID_OFF 28
#define vVW510021_W_IPLEN_OFF 30 /* offset of IP Total Length field */
#define vVW510021_W_FLOWSEQ_OFF 32 /* offset of signature sequence number */
#define vVW510021_W_FLOWID_OFF 33 /* offset of flow ID */
#define vVW510021_W_LATVAL_OFF 36 /* offset of delay/flowtimestamp, 32b */
#define vVW510021_W_DEBUG_OFF 40 /* offset of debug, 16 bits */
#define S2_W_FPGA_VERSION_OFF 44 /* offset of fpga version, 16 bits */
#define vVW510021_W_MATCH_OFF 47 /* offset of pattern match vector */
/* offsets in the header block */
#define vVW510021_W_HEADER_LEN 16 /* length of FRAME header */
#define vVW510021_W_RXTX_OFF 0 /* rxtx offset, cmd byte of header */
#define vVW510021_W_HEADER_VERSION_OFF 9 /* version, 2bytes */
#define vVW510021_MSG_LENGTH_OFF 10 /* MSG LENGTH, 2bytes */
#define vVW510021_W_DEVICE_TYPE_OFF 8 /* version, 2bytes */
/* offsets that occur right after the header */
#define vVW510021_W_AFTERHEADER_LEN 8 /* length of STATs info directly after header */
#define vVW510021_W_L1P_1_OFF 0 /* offset of 1st byte of layer one info */
#define vVW510021_W_L1P_2_OFF 1 /* offset of 2nd byte of layer one info */
#define vVW510021_W_MTYPE_OFF vVW510021_W_L1P_2_OFF
#define vVW510021_W_PREAMBLE_OFF vVW510021_W_L1P_1_OFF
#define vVW510021_W_RSSI_TXPOWER_OFF 2 /* RSSI (NOTE: RSSI must be negated!) */
#define vVW510021_W_MSDU_LENGTH_OFF 3 /* 7:0 of length, next byte 11:8 in top 4 bits */
#define vVW510021_W_BVCV_VALID_OFF 4 /* BV,CV Determine validaity of bssid and txpower */
#define vVW510021_W_VCID_OFF 6 /* offset of VC (client) ID */
#define vVW510021_W_PLCP_LENGTH_OFF 12 /* LENGTH field in the plcp header */
/* Masks and defines */
#define vVW510021_W_IS_BV 0x04 /* BV bit in STATS block */
#define vVW510021_W_IS_CV 0x02 /* BV bit in STATS block */
#define vVW510021_W_FLOW_VALID 0x8000 /* valid_off flow-is-valid flag (else 0) */
#define vVW510021_W_QOS_VALID 0x4000
#define vVW510021_W_HT_VALID 0x2000
#define vVW510021_W_L4ID_VALID 0x1000
#define vVW510021_W_MCS_MASK 0x3f /* mcs index (a/b) type mask */
#define vVW510021_W_MOD_SCHEME_MASK 0x3f /* modulation type mask */
#define vVW510021_W_PLCPC_MASK 0x03 /* PLPCP type mask */
#define vVW510021_W_SEL_MASK 0x80
#define vVW510021_W_WEP_MASK 0x0001
#define vVW510021_W_CBW_MASK 0xC0
#define vVW510024_W_VCID_MASK 0x03ff /* VC ID is only 10 bits */
#define vVW510021_W_MT_SEL_LEGACY 0x00
#define vVW510021_W_IS_WEP 0x0001
/* L1p byte 1 info */
/* Common to Series II and Series III */
#define vVW510021_W_IS_LONGPREAMBLE 0x40 /* short/long preamble bit */
#define vVW510021_W_IS_LONGGI 0x40 /* short/long guard interval bit */
/* Series II */
/*
* Pre-HT - contains rate index.
*/
#define vVW510021_W_S2_RATE_INDEX(l1p_1) ((l1p_1) & 0x3f) /* rate index for pre-HT */
/*
* HT - contains MCS index.
*
* XXX - MCS indices for HT go up to 76, which doesn't fit in 6 bits;
* either the mask is wrong, or the hardware can't receive packets
* with an MCS of 64 through 76, or the hardware can but misreports
* the MCS.
*/
#define vVW510021_W_S2_MCS_INDEX_HT(l1p_1) ((l1p_1) & 0x3f)
/*
* VHT - contains MCS index and number of spatial streams.
* The number of spatial streams from the FPGA is zero-based, so we add
* 1 to it.
*/
#define vVW510021_W_S2_MCS_INDEX_VHT(l1p_1) ((l1p_1) & 0x0f) /* MCS index for VHT */
#define vVW510021_W_S2_NSS_VHT(l1p_1) (((l1p_1) >> 4) + 1) /* NSS */
/* Series III */
/*
* Pre-HT - contains rate index.
*/
#define vVW510021_W_S3_RATE_INDEX(l1p_1) ((l1p_1) & 0x3f)
/*
* HT - contains MCS index.
*
* XXX - MCS indices for HT go up to 76, which doesn't fit in 6 bits;
* either the mask is wrong, or the hardware can't receive packets
* with an MCS of 64 through 76, or the hardware can but misreports
* the MCS.
*/
#define vVW510021_W_S3_MCS_INDEX_HT(l1p_1) ((l1p_1) & 0x3f)
/*
* VHT - contains MCS index and number of spatial streams.
* The number of spatial streams from the FPGA is zero-based, so we add
* 1 to it.
*/
#define vVW510021_W_S3_MCS_INDEX_VHT(l1p_1) ((l1p_1) & 0x0f) /* MCS index */
#define vVW510021_W_S3_NSS_VHT(l1p_1) ((((l1p_1) >> 4) & 0x03) + 1) /* NSS */
/* L1p byte 2 info */
/* Common to Series II and Series III */
#define vVW510021_W_BANDWIDTH_VHT(l1p_2) (((l1p_2) >> 4) & 0xf)
/* 3 = 40 MHz, 4 = 80 MHz; what about 20 and 160 MHz? */
/* Series II */
#define vVW510021_W_S2_PLCP_TYPE(l1p_2) ((l1p_2) & 0x03) /* PLCP type */
/* Series III */
#define vVW510021_W_S3_PLCP_TYPE(l1p_2) ((l1p_2) & 0x0f) /* PLCP type */
/* PLCP types */
#define vVW510021_W_PLCP_LEGACY 0x00 /* pre-HT (11b/a/g) */
#define vVW510021_W_PLCP_MIXED 0x01 /* HT, mixed (11n) */
#define vVW510021_W_PLCP_GREENFIELD 0x02 /* HT, greenfield (11n) */
#define vVW510021_W_PLCP_VHT_MIXED 0x03 /* VHT (11ac) */
/* Bits in FRAME_TYPE field */
#define vVW510021_W_IS_TCP 0x01000000 /* TCP */
#define vVW510021_W_IS_UDP 0x00100000 /* UDP */
#define vVW510021_W_IS_ICMP 0x00001000 /* ICMP */
#define vVW510021_W_IS_IGMP 0x00010000 /* IGMP */
#define vVW510021_W_HEADER_VERSION 0x00
#define vVW510021_W_DEVICE_TYPE 0x15
#define vVW510021_W_11n_DEVICE_TYPE 0x20
#define S2_W_FPGA_VERSION 0x000C
#define vVW510021_W_11n_FPGA_VERSION 0x000D
/* Error flags */
#define vVW510021_W_FCS_ERROR 0x01
#define vVW510021_W_CRYPTO_ERROR 0x50000
#define vVW510021_W_WEPTYPE 0x0001 /* WEP frame */
#define vVW510021_W_TKIPTYPE 0x0002 /* TKIP frame */
#define vVW510021_W_CCMPTYPE 0x0004 /* CCMP frame */
/* definitions for VW510024 FPGA, wired ethernet format */
/* FORMAT:
16 BYTE header
52 bytes of stats block trailer
*/
/* offsets in the stats block */
#define vVW510024_E_STATS_LEN 48 /* length of stats block trailer */
#define vVW510024_E_MSDU_LENGTH_OFF 0 /* MSDU 16 BITS */
#define vVW510024_E_BMCV_VALID_OFF 2 /* BM,CV Determine validITY */
#define vVW510024_E_VCID_OFF 2 /* offset of VC (client) ID 13:8, */
/* 7:0 IN offset 7*/
#define vVW510024_E_STARTT_OFF 4 /* offset of start time, 64 bits */
#define vVW510024_E_ENDT_OFF 12 /* offset of end time, 64 bits */
#define vVW510024_E_ERRORS_OFF 22 /* offset of error vector */
#define vVW510024_E_VALID_OFF 24 /* 2 Bytes with different validity bits */
#define vVW510024_E_INFO_OFF 26 /* offset of INFO field, 16 LSBs */
#define vVW510024_E_FRAME_TYPE_OFF 28
#define vVW510024_E_L4ID_OFF 32
#define vVW510024_E_IPLEN_OFF 34
#define vVW510024_E_FLOWSEQ_OFF 36 /* offset of signature sequence number */
#define vVW510024_E_FLOWID_OFF 37 /* offset of flow ID */
#define vVW510024_E_LATVAL_OFF 40 /* offset of delay/flowtimestamp, 32 bits */
#define vVW510024_E_FPGA_VERSION_OFF 20 /* offset of fpga version, 16 bits */
#define vVW510024_E_MATCH_OFF 51 /* offset of pattern match vector */
/* offsets in the header block */
#define vVW510024_E_HEADER_LEN vVW510021_W_HEADER_LEN /* length of FRAME header */
#define vVW510024_E_RXTX_OFF vVW510021_W_RXTX_OFF /* rxtx offset, cmd byte */
#define vVW510024_E_HEADER_VERSION_OFF 16 /* version, 2bytes */
#define vVW510024_E_MSG_LENGTH_OFF vVW510021_MSG_LENGTH_OFF /* MSG LENGTH, 2bytes */
#define vVW510024_E_DEVICE_TYPE_OFF vVW510021_W_DEVICE_TYPE_OFF /* Device Type, 2bytes */
/* Masks and defines */
#define vVW510024_E_IS_BV 0x80 /* Bm bit in STATS block */
#define vVW510024_E_IS_CV 0x40 /* cV bit in STATS block */
#define vVW510024_E_FLOW_VALID 0x8000 /* valid_off flow-is-valid flag (else force to 0) */
#define vVW510024_E_QOS_VALID 0x0000 /** not valid for ethernet **/
#define vVW510024_E_L4ID_VALID 0x1000
#define vVW510024_E_CBW_MASK 0xC0
#define vVW510024_E_VCID_MASK 0x3FFF /* VCID is only 14 bits */
#define vVW510024_E_IS_TCP 0x01000000 /* TCP bit in FRAME_TYPE field */
#define vVW510024_E_IS_UDP 0x00100000 /* UDP bit in FRAME_TYPE field */
#define vVW510024_E_IS_ICMP 0x00001000 /* ICMP bit in FRAME_TYPE field */
#define vVW510024_E_IS_IGMP 0x00010000
#define vVW510024_E_IS_VLAN 0x00004000
#define vVW510024_E_HEADER_VERSION 0x00
#define vVW510024_E_DEVICE_TYPE 0x18
#define vVW510024_E_FPGA_VERSION 0x0001
#define FPGA_VER_NOT_APPLICABLE 0
#define UNKNOWN_FPGA 0
#define S2_W_FPGA 1
#define S1_W_FPGA 2
#define vVW510012_E_FPGA 3
#define vVW510024_E_FPGA 4
#define S3_W_FPGA 5
/* the flow signature is:
Byte Description
0 Magic Number (0xDD)
1 Chassis Number[7:0]
2 Slot Number[7:0]
3 Port Number[7:0]
4 Flow ID[7:0]
5 Flow ID[15:8]
6 Flow ID[23:16]
7 Flow Sequence Number[7:0]
8 Timestamp[7:0]
9 Timestamp[15:8]
10 Timestamp[23:16]
11 Timestamp[31:24]
12 Timestamp[39:32]
13 Timestamp[47:40]
14 CRC16
15 CRC16
*/
#define SIG_SIZE 16 /* size of signature field, bytes */
#define SIG_FID_OFF 4 /* offset of flow ID in signature */
#define SIG_FSQ_OFF 7 /* offset of flow seqnum in signature */
#define SIG_TS_OFF 8 /* offset of flow seqnum in signature */
/*--------------------------------------------------------------------------------------*/
/* Per-capture file private data structure */
typedef struct {
/* offsets in stats block; these are dependent on the frame type (Ethernet/WLAN) and */
/* version number of .vwr file, and are set up by setup_defaults() */
guint32 STATS_LEN; /* length of stats block trailer */
guint32 STATS_START_OFF; /* STATS OFF AFTER HEADER */
guint32 VALID_OFF; /* bit 6 (0x40) is flow-is-valid flag */
guint32 MTYPE_OFF; /* offset of modulation type */
guint32 VCID_OFF; /* offset of VC ID */
guint32 FLOWSEQ_OFF; /* offset of signature sequence number */
guint32 FLOWID_OFF; /* offset of flow ID */
guint32 OCTET_OFF; /* offset of octets */
guint32 ERRORS_OFF; /* offset of error vector */
guint32 PATN_OFF; /* offset of pattern match vector */
guint32 RSSI_OFF; /* RSSI (NOTE: RSSI must be negated!) */
guint32 STARTT_OFF; /* offset of start time, 64 bits */
guint32 ENDT_OFF; /* offset of end time, 64 bits */
guint32 LATVAL_OFF; /* offset of latency, 32 bits */
guint32 INFO_OFF; /* offset of INFO field, 16 bits */
guint32 L1P_1_OFF; /* offset 1ST Byte of l1params */
guint32 L1P_2_OFF; /* offset 2nd Byte of l1params */
guint32 L4ID_OFF; /* LAYER 4 id offset*/
guint32 IPLEN_OFF; /* */
guint32 PLCP_LENGTH_OFF; /* offset of length field in the PLCP header */
guint32 FPGA_VERSION_OFF; /* offset of fpga version field, 16 bits */
guint32 HEADER_VERSION_OFF; /* offset of header version, 16 bits */
guint32 RXTX_OFF; /* offset of CMD bit, rx or tx */
guint32 FRAME_TYPE_OFF;
/* other information about the file in question */
guint32 MT_10_HALF; /* 10 Mb/s half-duplex */
guint32 MT_10_FULL; /* 10 Mb/s full-duplex */
guint32 MT_100_HALF; /* 100 Mb/s half-duplex */
guint32 MT_100_FULL; /* 100 Mb/s full-duplex */
guint32 MT_1G_HALF; /* 1 Gb/s half-duplex */
guint32 MT_1G_FULL; /* 1 Gb/s full-duplex */
guint32 FCS_ERROR; /* FCS error in frame */
guint32 CRYPTO_ERR; /* RX decrypt error flags */
guint32 PAYCHK_ERR; /* payload checksum failure */
guint32 RETRY_ERR; /* excessive retries on TX failure */
guint8 IS_RX; /* TX/RX bit in STATS block */
guint8 MT_MASK; /* modulation type mask */
guint16 VCID_MASK; /* VC ID might not be a full 16 bits */
guint32 FLOW_VALID; /* flow-is-valid flag (else force to 0) */
guint16 QOS_VALID;
guint32 RX_DECRYPTS; /* RX-frame-was-decrypted bits */
guint32 TX_DECRYPTS; /* TX-frame-was-decrypted bits */
guint32 FC_PROT_BIT; /* Protected Frame bit in FC1 of frame */
guint32 MT_CCKL; /* CCK modulation, long preamble */
guint32 MT_CCKS; /* CCK modulation, short preamble */
guint32 MT_OFDM; /* OFDM modulation */
guint32 MCS_INDEX_MASK; /* mcs index type mask */
guint32 FPGA_VERSION;
guint32 WEPTYPE; /* frame is WEP */
guint32 TKIPTYPE; /* frame is TKIP */
guint32 CCMPTYPE; /* frame is CCMP */
guint32 IS_TCP;
guint32 IS_UDP;
guint32 IS_ICMP;
guint32 IS_IGMP;
guint16 IS_QOS;
guint32 IS_VLAN;
guint32 MPDU_OFF;
guint32 OCTO_VERSION;
} vwr_t;
/*
* NSS for various MCS values.
*/
#define MAX_HT_MCS 76
static guint nss_for_mcs[MAX_HT_MCS+1] = {
1, 1, 1, 1, 1, 1, 1, 1, /* 0-7 */
2, 2, 2, 2, 2, 2, 2, 2, /* 8-15 */
3, 3, 3, 3, 3, 3, 3, 3, /* 16-23 */
4, 4, 4, 4, 4, 4, 4, 4, /* 24-31 */
1, /* 32 */
2, 2, 2, 2, 2, 2, /* 33-38 */
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, /* 39-52 */
4, 4, 4, 4, 4, 4, /* 53-58 */
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 /* 59-76 */
};
/* internal utility functions */
static int decode_msg(vwr_t *vwr, register guint8 *, int *, int *, int *);
static guint8 get_ofdm_rate(const guint8 *);
static guint8 get_cck_rate(const guint8 *plcp);
static void setup_defaults(vwr_t *, guint16);
static gboolean vwr_read(wtap *, wtap_rec *, Buffer *, int *,
gchar **, gint64 *);
static gboolean vwr_seek_read(wtap *, gint64, wtap_rec *,
Buffer *, int *, gchar **);
static gboolean vwr_read_rec_header(vwr_t *, FILE_T, int *, int *, int *, int *, gchar **);
static gboolean vwr_process_rec_data(FILE_T fh, int rec_size,
wtap_rec *record, Buffer *buf,
vwr_t *vwr, int IS_TX, int log_mode, int *err,
gchar **err_info);
static int vwr_get_fpga_version(wtap *, int *, gchar **);
static gboolean vwr_read_s1_W_rec(vwr_t *, wtap_rec *, Buffer *,
const guint8 *, int, int *, gchar **);
static gboolean vwr_read_s2_W_rec(vwr_t *, wtap_rec *, Buffer *,
const guint8 *, int, int, int *,
gchar **);
/* For FPGA version >= 48 (OCTO Platform), following function will be used */
static gboolean vwr_read_s3_W_rec(vwr_t *, wtap_rec *, Buffer *,
const guint8 *, int, int, int, int *,
gchar **);
static gboolean vwr_read_rec_data_ethernet(vwr_t *, wtap_rec *,
Buffer *, const guint8 *, int,
int, int *, gchar **);
static int find_signature(const guint8 *, int, int, register guint32, register guint8);
static guint64 get_signature_ts(const guint8 *, int, int);
static float get_legacy_rate(guint8);
static float get_ht_rate(guint8, guint16);
static float get_vht_rate(guint8, guint16, guint8);
static int vwr_80211_file_type_subtype = -1;
static int vwr_eth_file_type_subtype = -1;
void register_vwr(void);
/* Open a .vwr file for reading */
/* This does very little, except setting the wiretap header for a VWR file type */
/* and setting the timestamp precision to microseconds. */
wtap_open_return_val vwr_open(wtap *wth, int *err, gchar **err_info)
{
int fpgaVer;
vwr_t *vwr;
*err = 0;
fpgaVer = vwr_get_fpga_version(wth, err, err_info);
if (fpgaVer == -1) {
return WTAP_OPEN_ERROR; /* I/O error */
}
if (fpgaVer == UNKNOWN_FPGA) {
return WTAP_OPEN_NOT_MINE; /* not a VWR file */
}
/* This is a vwr file */
vwr = g_new0(vwr_t, 1);
wth->priv = (void *)vwr;
vwr->FPGA_VERSION = fpgaVer;
/* set the local module options first */
setup_defaults(vwr, fpgaVer);
wth->snapshot_length = 0;
wth->subtype_read = vwr_read;
wth->subtype_seek_read = vwr_seek_read;
wth->file_tsprec = WTAP_TSPREC_USEC;
wth->file_encap = WTAP_ENCAP_IXVERIWAVE;
if (fpgaVer == S2_W_FPGA || fpgaVer == S1_W_FPGA || fpgaVer == S3_W_FPGA)
wth->file_type_subtype = vwr_80211_file_type_subtype;
else if (fpgaVer == vVW510012_E_FPGA || fpgaVer == vVW510024_E_FPGA)
wth->file_type_subtype = vwr_eth_file_type_subtype;
/*
* Add an IDB; we don't know how many interfaces were
* involved, so we just say one interface, about which
* we only know the link-layer type, snapshot length,
* and time stamp resolution.
*/
wtap_add_generated_idb(wth);
return WTAP_OPEN_MINE;
}
/* Read the next packet */
/* Note that the VWR file format consists of a sequence of fixed 16-byte record headers of */
/* different types; some types, including frame record headers, are followed by */
/* variable-length data. */
/* A frame record consists of: the above 16-byte record header, a 1-16384 byte raw PLCP */
/* frame, and a 64-byte statistics block trailer. */
/* The PLCP frame consists of a 4-byte or 6-byte PLCP header, followed by the MAC frame */
static gboolean vwr_read(wtap *wth, wtap_rec *rec, Buffer *buf,
int *err, gchar **err_info, gint64 *data_offset)
{
vwr_t *vwr = (vwr_t *)wth->priv;
int rec_size = 0, IS_TX = 0, log_mode = 0;
/* read the next frame record header in the capture file; if no more frames, return */
if (!vwr_read_rec_header(vwr, wth->fh, &rec_size, &IS_TX, &log_mode, err, err_info))
return FALSE; /* Read error or EOF */
/*
* We're past the header; return the offset of the header, not of
* the data past the header.
*/
*data_offset = (file_tell(wth->fh) - VW_RECORD_HEADER_LENGTH);
/* got a frame record; read and process it */
if (!vwr_process_rec_data(wth->fh, rec_size, rec, buf, vwr, IS_TX,
log_mode, err, err_info))
return FALSE;
return TRUE;
}
/* read a random record in the middle of a file; the start of the record is @ seek_off */
static gboolean vwr_seek_read(wtap *wth, gint64 seek_off,
wtap_rec *record, Buffer *buf, int *err, gchar **err_info)
{
vwr_t *vwr = (vwr_t *)wth->priv;
int rec_size, IS_TX = 0, log_mode = 0;
/* first seek to the indicated record header */
if (file_seek(wth->random_fh, seek_off, SEEK_SET, err) == -1)
return FALSE;
/* read in the record header */
if (!vwr_read_rec_header(vwr, wth->random_fh, &rec_size, &IS_TX, &log_mode, err, err_info))
return FALSE; /* Read error or EOF */
return vwr_process_rec_data(wth->random_fh, rec_size, record, buf,
vwr, IS_TX, log_mode, err, err_info);
}
/* Scan down in the input capture file to find the next frame header. */
/* Decode and skip over all non-frame messages that are in the way. */
/* Return TRUE on success, FALSE on EOF or error. */
/* Also return the frame size in bytes and the "is transmitted frame" flag. */
static gboolean vwr_read_rec_header(vwr_t *vwr, FILE_T fh, int *rec_size, int *IS_TX, int *log_mode, int *err, gchar **err_info)
{
int f_len, v_type;
guint8 header[VW_RECORD_HEADER_LENGTH];
*rec_size = 0;
/* Read out the file data in 16-byte messages, stopping either after we find a frame, */
/* or if we run out of data. */
/* Each 16-byte message is decoded; if we run across a non-frame message followed by a */
/* variable-length item, we read the variable length item out and discard it. */
/* If we find a frame, we return (with the header in the passed buffer). */
while (1) {
if (!wtap_read_bytes_or_eof(fh, header, VW_RECORD_HEADER_LENGTH, err, err_info))
return FALSE;
/* Got a header; invoke decode-message function to parse and process it. */
/* If the function returns a length, then a frame or variable-length message */
/* follows the 16-byte message. */
/* If the variable length message is not a frame, simply skip over it. */
if ((f_len = decode_msg(vwr, header, &v_type, IS_TX, log_mode)) != 0) {
if (f_len > B_SIZE) {
*err = WTAP_ERR_BAD_FILE;
*err_info = ws_strdup_printf("vwr: Invalid message record length %d", f_len);
return FALSE;
}
else if (v_type != VT_FRAME) {
if (!wtap_read_bytes(fh, NULL, f_len, err, err_info))
return FALSE;
}
else {
*rec_size = f_len;
return TRUE;
}
}
}
}
/* Figure out the FPGA version (and also see whether this is a VWR file type. */
/* Return FPGA version if it's a known version, UNKNOWN_FPGA if it's not, */
/* and -1 on an I/O error. */
static int vwr_get_fpga_version(wtap *wth, int *err, gchar **err_info)
{
guint8 *rec; /* local buffer (holds input record) */
guint8 header[VW_RECORD_HEADER_LENGTH];
int rec_size = 0;
guint8 i;
guint8 *s_510006_ptr = NULL;
guint8 *s_510024_ptr = NULL;
guint8 *s_510012_ptr = NULL; /* stats pointers */
gint64 filePos = -1;
guint64 bytes_read = 0;
guint32 frame_type = 0;
int f_len, v_type;
guint16 data_length = 0;
guint16 fpga_version;
gboolean valid_but_empty_file = FALSE;
filePos = file_tell(wth->fh);
if (filePos == -1) {
*err = file_error(wth->fh, err_info);
return -1;
}
fpga_version = 1000;
rec = (guint8*)g_malloc(B_SIZE);
/* Got a frame record; see if it is vwr */
/* If we don't get it all, then declare an error, we can't process the frame. */
/* Read out the file data in 16-byte messages, stopping either after we find a frame, */
/* or if we run out of data. */
/* Each 16-byte message is decoded; if we run across a non-frame message followed by a */
/* variable-length item, we read the variable length item out and discard it. */
/* If we find a frame, we return (with the header in the passed buffer). */
while (wtap_read_bytes(wth->fh, header, VW_RECORD_HEADER_LENGTH, err, err_info)) {
/* Got a header; invoke decode-message function to parse and process it. */
/* If the function returns a length, then a frame or variable-length message */
/* follows the 16-byte message. */
/* If the variable length message is not a frame, simply skip over it. */
if ((f_len = decode_msg(NULL, header, &v_type, NULL, NULL)) != 0) {
if (f_len > B_SIZE) {
g_free(rec);
/* Treat this here as an indication that the file probably */
/* isn't a vwr file. */
return UNKNOWN_FPGA;
}
else if (v_type != VT_FRAME) {
if (!wtap_read_bytes(wth->fh, NULL, f_len, err, err_info)) {
g_free(rec);
if (*err == WTAP_ERR_SHORT_READ)
return UNKNOWN_FPGA; /* short read - not a vwr file */
return -1;
}
else if (v_type == VT_CPMSG)
valid_but_empty_file = TRUE;
}
else {
rec_size = f_len;
/* Got a frame record; read over entire record (frame + trailer) into a local buffer */
/* If we don't get it all, assume this isn't a vwr file */
if (!wtap_read_bytes(wth->fh, rec, rec_size, err, err_info)) {
g_free(rec);
if (*err == WTAP_ERR_SHORT_READ)
return UNKNOWN_FPGA; /* short read - not a vwr file */
return -1;
}
/* I'll grab the bytes where the Ethernet "octets" field should be and the bytes where */
/* the 802.11 "octets" field should be. Then if I do rec_size - octets - */
/* size_of_stats_block and it's 0, I can select the correct type. */
/* octets + stats_len = rec_size only when octets have been incremented to nearest */
/* number divisible by 4. */
/* First check for series I WLAN since the check is more rigorous. */
if (rec_size > v22_W_STATS_LEN) {
s_510006_ptr = &(rec[rec_size - v22_W_STATS_LEN]); /* point to 510006 WLAN */
/* stats block */
data_length = pntoh16(&s_510006_ptr[v22_W_OCTET_OFF]);
i = 0;
while (((data_length + i) % 4) != 0)
i = i + 1;
frame_type = pntoh32(&s_510006_ptr[v22_W_FRAME_TYPE_OFF]);
if (rec_size == (data_length + v22_W_STATS_LEN + i) && (frame_type & v22_W_IS_80211) == 0x1000000) {
fpga_version = S1_W_FPGA;
}
}
/* Next for the series I Ethernet */
if ((rec_size > v22_E_STATS_LEN) && (fpga_version == 1000)) {
s_510012_ptr = &(rec[rec_size - v22_E_STATS_LEN]); /* point to 510012 enet */
/* stats block */
data_length = pntoh16(&s_510012_ptr[v22_E_OCTET_OFF]);
i = 0;
while (((data_length + i) % 4) != 0)
i = i + 1;
if (rec_size == (data_length + v22_E_STATS_LEN + i))
fpga_version = vVW510012_E_FPGA;
}
/* Next the series II WLAN */
if ((rec_size > vVW510021_W_STATS_TRAILER_LEN) && (fpga_version == 1000)) {
/* stats block */
if ((header[8] == 48) || (header[8] == 61) || (header[8] == 68))
fpga_version = S3_W_FPGA;
else {
data_length = (256 * (rec[vVW510021_W_MSDU_LENGTH_OFF + 1] & 0x1f)) + rec[vVW510021_W_MSDU_LENGTH_OFF];
i = 0;
while (((data_length + i) % 4) != 0)
i = i + 1;
/*the 12 is from the 12 bytes of plcp header */
if (rec_size == (data_length + vVW510021_W_STATS_TRAILER_LEN +vVW510021_W_AFTERHEADER_LEN+12+i))
fpga_version = S2_W_FPGA;
}
}
/* Finally the Series II Ethernet */
if ((rec_size > vVW510024_E_STATS_LEN) && (fpga_version == 1000)) {
s_510024_ptr = &(rec[rec_size - vVW510024_E_STATS_LEN]); /* point to 510024 ENET */
data_length = pntoh16(&s_510024_ptr[vVW510024_E_MSDU_LENGTH_OFF]);
i = 0;
while (((data_length + i) % 4) != 0)
i = i + 1;
if (rec_size == (data_length + vVW510024_E_STATS_LEN + i))
fpga_version = vVW510024_E_FPGA;
}
if (fpga_version != 1000)
{
/* reset the file position offset */
if (file_seek (wth->fh, filePos, SEEK_SET, err) == -1) {
g_free(rec);
return (-1);
}
/* We found an FPGA that works */
g_free(rec);
return fpga_version;
}
}
}
bytes_read += VW_RECORD_HEADER_LENGTH;
if (bytes_read > VW_BYTES_TO_CHECK) {
/* no frame found in VW_BYTES_TO_CHECK - not a vwr file */
g_free(rec);
return UNKNOWN_FPGA;
}
}
/* Is this a valid but empty file? If so, claim it's the S3_W_FPGA FPGA. */
if (valid_but_empty_file) {
g_free(rec);
return(S3_W_FPGA);
}
if (*err == WTAP_ERR_SHORT_READ) {
g_free(rec);
return UNKNOWN_FPGA; /* short read - not a vwr file */
}
/*
* Read error.
*/
g_free(rec);
return -1;
}
/* Copy the actual packet data from the capture file into the target data block. */
/* The packet is constructed as a 38-byte VeriWave metadata header plus the raw */
/* MAC octets. */
static gboolean vwr_read_s1_W_rec(vwr_t *vwr, wtap_rec *record,
Buffer *buf, const guint8 *rec, int rec_size,
int *err, gchar **err_info)
{
guint8 *data_ptr;
int bytes_written = 0; /* bytes output to buf so far */
const guint8 *s_ptr, *m_ptr; /* stats pointer */
guint16 msdu_length, actual_octets; /* octets in frame */
guint16 plcp_hdr_len; /* PLCP header length */
guint16 rflags;
guint8 m_type; /* mod type (CCK-L/CCK-S/OFDM), seqnum */
guint flow_seq;
guint64 s_time = LL_ZERO, e_time = LL_ZERO; /* start/end */
/* times, nsec */
guint32 latency;
guint64 start_time, s_sec, s_usec = LL_ZERO; /* start time, sec + usec */
guint64 end_time; /* end time */
guint32 info; /* INFO/ERRORS fields in stats blk */
gint8 rssi; /* RSSI, signed 8-bit number */
int f_tx; /* flag: if set, is a TX frame */
guint8 rate_index; /* pre-HT only */
guint16 vc_id, ht_len=0; /* VC ID, total ip length */
guint flow_id; /* flow ID */
guint32 d_time, errors; /* packet duration & errors */
int sig_off, pay_off; /* MAC+SNAP header len, signature offset */
guint64 sig_ts; /* 32 LSBs of timestamp in signature */
guint16 phyRate;
guint16 vw_flags; /* VeriWave-specific packet flags */
/*
* The record data must be large enough to hold the statistics trailer.
*/
if (rec_size < v22_W_STATS_LEN) {
*err_info = ws_strdup_printf("vwr: Invalid record length %d (must be at least %u)",
rec_size, v22_W_STATS_LEN);
*err = WTAP_ERR_BAD_FILE;
return FALSE;
}
/* Calculate the start of the statistics block in the buffer */
/* Also get a bunch of fields from the stats block */
s_ptr = &(rec[rec_size - v22_W_STATS_LEN]); /* point to it */
m_type = s_ptr[v22_W_MTYPE_OFF] & v22_E_MT_MASK;
f_tx = !(s_ptr[v22_W_MTYPE_OFF] & v22_E_IS_RX);
actual_octets = pntoh16(&s_ptr[v22_W_OCTET_OFF]);
vc_id = pntoh16(&s_ptr[v22_W_VCID_OFF]) & v22_E_VCID_MASK;
flow_seq = s_ptr[v22_W_FLOWSEQ_OFF];
latency = (guint32)pcorey48tohll(&s_ptr[v22_W_LATVAL_OFF]);
flow_id = pntoh16(&s_ptr[v22_W_FLOWID_OFF+1]); /* only 16 LSBs kept */
errors = pntoh16(&s_ptr[v22_W_ERRORS_OFF]);
info = pntoh16(&s_ptr[v22_W_INFO_OFF]);
rssi = (s_ptr[v22_W_RSSI_OFF] & 0x80) ? (-1 * (s_ptr[v22_W_RSSI_OFF] & 0x7f)) : s_ptr[v22_W_RSSI_OFF];
/*
* Sanity check the octets field to determine if it's greater than
* the packet data available in the record - i.e., the record size
* minus the length of the statistics block.
*
* Report an error if it is.
*/
if (actual_octets > rec_size - v22_W_STATS_LEN) {
*err_info = ws_strdup_printf("vwr: Invalid data length %u (runs past the end of the record)",
actual_octets);
*err = WTAP_ERR_BAD_FILE;
return FALSE;
}
/* Decode OFDM or CCK PLCP header and determine rate and short preamble flag. */
/* The SIGNAL byte is always the first byte of the PLCP header in the frame. */
if (m_type == vwr->MT_OFDM)
rate_index = get_ofdm_rate(rec);
else if ((m_type == vwr->MT_CCKL) || (m_type == vwr->MT_CCKS))
rate_index = get_cck_rate(rec);
else
rate_index = 1;
rflags = (m_type == vwr->MT_CCKS) ? FLAGS_SHORTPRE : 0;
/* Calculate the MPDU size/ptr stuff; MPDU starts at 4 or 6 depending on OFDM/CCK. */
/* Note that the number of octets in the frame also varies depending on OFDM/CCK, */
/* because the PLCP header is prepended to the actual MPDU. */
plcp_hdr_len = (m_type == vwr->MT_OFDM) ? 4 : 6;
if (actual_octets >= plcp_hdr_len)
actual_octets -= plcp_hdr_len;
else {
*err_info = ws_strdup_printf("vwr: Invalid data length %u (too short to include %u-byte PLCP header)",
actual_octets, plcp_hdr_len);
*err = WTAP_ERR_BAD_FILE;
return FALSE;
}
m_ptr = &rec[plcp_hdr_len];
msdu_length = actual_octets;
/*
* The MSDU length includes the FCS.
*
* The packet data does *not* include the FCS - it's just 4 bytes
* of junk - so we have to remove it.
*
* We'll be stripping off that junk, so make sure we have at least
* 4 octets worth of packet data.
*
* There seems to be a special case of a length of 0.
*/
if (actual_octets < 4) {
if (actual_octets != 0) {
*err_info = ws_strdup_printf("vwr: Invalid data length %u (too short to include %u-byte PLCP header and 4 bytes of FCS)",
actual_octets, plcp_hdr_len);
*err = WTAP_ERR_BAD_FILE;
return FALSE;
}
} else {
actual_octets -= 4;
}
/* Calculate start & end times (in sec/usec), converting 64-bit times to usec. */
/* 64-bit times are "Corey-endian" */
s_time = pcoreytohll(&s_ptr[v22_W_STARTT_OFF]);
e_time = pcoreytohll(&s_ptr[v22_W_ENDT_OFF]);
/* find the packet duration (difference between start and end times) */
d_time = (guint32)((e_time - s_time) / NS_IN_US); /* find diff, converting to usec */
/* also convert the packet start time to seconds and microseconds */
start_time = s_time / NS_IN_US; /* convert to microseconds first */
s_sec = (start_time / US_IN_SEC); /* get the number of seconds */
s_usec = start_time - (s_sec * US_IN_SEC); /* get the number of microseconds */
/* also convert the packet end time to seconds and microseconds */
end_time = e_time / NS_IN_US; /* convert to microseconds first */
/* extract the 32 LSBs of the signature timestamp field from the data block*/
pay_off = 42; /* 24 (MAC) + 8 (SNAP) + IP */
sig_off = find_signature(m_ptr, rec_size - 6, pay_off, flow_id, flow_seq);
if (m_ptr[sig_off] == 0xdd)
sig_ts = get_signature_ts(m_ptr, sig_off, rec_size - v22_W_STATS_LEN);
else
sig_ts = 0;
/*
* Fill up the per-packet header.
*
* We include the length of the metadata headers in the packet lengths.
*
* The maximum value of actual_octets is 8191, which, even after
* adding the lengths of the metadata headers, is less than
* WTAP_MAX_PACKET_SIZE_STANDARD will ever be, so we don't need to check it.
*/
record->rec_header.packet_header.len = STATS_COMMON_FIELDS_LEN + EXT_WLAN_FIELDS_LEN + actual_octets;
record->rec_header.packet_header.caplen = STATS_COMMON_FIELDS_LEN + EXT_WLAN_FIELDS_LEN + actual_octets;
record->ts.secs = (time_t)s_sec;
record->ts.nsecs = (int)(s_usec * 1000);
record->rec_header.packet_header.pkt_encap = WTAP_ENCAP_IXVERIWAVE;
record->rec_type = REC_TYPE_PACKET;
record->block = wtap_block_create(WTAP_BLOCK_PACKET);
record->presence_flags = WTAP_HAS_TS;
ws_buffer_assure_space(buf, record->rec_header.packet_header.caplen);
data_ptr = ws_buffer_start_ptr(buf);
/*
* Generate and copy out the common metadata headers,
* set the port type to 0 (WLAN).
*
* All values are copied out in little-endian byte order.
*/
/* 1st octet of record for port_type and command (command is 0, hence RX) */
phtole8(&data_ptr[bytes_written], WLAN_PORT);
bytes_written += 1;
/* 2nd octet of record for fpga version (0, hence pre-OCTO) */
phtole8(&data_ptr[bytes_written], 0);
bytes_written += 1;
phtoles(&data_ptr[bytes_written], STATS_COMMON_FIELDS_LEN); /* it_len */
bytes_written += 2;
phtoles(&data_ptr[bytes_written], msdu_length);
bytes_written += 2;
phtolel(&data_ptr[bytes_written], flow_id);
bytes_written += 4;
phtoles(&data_ptr[bytes_written], vc_id);
bytes_written += 2;
phtoles(&data_ptr[bytes_written], flow_seq);
bytes_written += 2;
if (!f_tx && sig_ts != 0) {
phtolel(&data_ptr[bytes_written], latency);
} else {
phtolel(&data_ptr[bytes_written], 0);
}
bytes_written += 4;
phtolel(&data_ptr[bytes_written], sig_ts); /* 32 LSBs of signature timestamp (nsec) */
bytes_written += 4;
phtolell(&data_ptr[bytes_written], start_time); /* record start & end times of frame */
bytes_written += 8;
phtolell(&data_ptr[bytes_written], end_time);
bytes_written += 8;
phtolel(&data_ptr[bytes_written], d_time);
bytes_written += 4;
/*
* Generate and copy out the WLAN metadata headers.
*
* All values are copied out in little-endian byte order.
*/
phtoles(&data_ptr[bytes_written], EXT_WLAN_FIELDS_LEN);
bytes_written += 2;
phtoles(&data_ptr[bytes_written], rflags);
bytes_written += 2;
if (m_type == vwr->MT_OFDM) {
phtoles(&data_ptr[bytes_written], CHAN_OFDM);
} else {
phtoles(&data_ptr[bytes_written], CHAN_CCK);
}
bytes_written += 2;
phyRate = (guint16)(get_legacy_rate(rate_index) * 10);
phtoles(&data_ptr[bytes_written], phyRate);
bytes_written += 2;
data_ptr[bytes_written] = vVW510021_W_PLCP_LEGACY; /* pre-HT */
bytes_written += 1;
data_ptr[bytes_written] = rate_index;
bytes_written += 1;
data_ptr[bytes_written] = 1; /* pre-VHT, so NSS = 1 */
bytes_written += 1;
data_ptr[bytes_written] = rssi;
bytes_written += 1;
/* antennae b, c, d signal power */
data_ptr[bytes_written] = 100;
bytes_written += 1;
data_ptr[bytes_written] = 100;
bytes_written += 1;
data_ptr[bytes_written] = 100;
bytes_written += 1;
/* padding */
data_ptr[bytes_written] = 0;
bytes_written += 1;
/* fill in the VeriWave flags field */
vw_flags = 0;
if (f_tx)
vw_flags |= VW_FLAGS_TXF;
if (errors & vwr->FCS_ERROR)
vw_flags |= VW_FLAGS_FCSERR;
if (!f_tx && (errors & vwr->CRYPTO_ERR))
vw_flags |= VW_FLAGS_DCRERR;
if (!f_tx && (errors & vwr->RETRY_ERR))
vw_flags |= VW_FLAGS_RETRERR;
if (info & vwr->WEPTYPE)
vw_flags |= VW_FLAGS_IS_WEP;
else if (info & vwr->TKIPTYPE)
vw_flags |= VW_FLAGS_IS_TKIP;
else if (info & vwr->CCMPTYPE)
vw_flags |= VW_FLAGS_IS_CCMP;
phtoles(&data_ptr[bytes_written], vw_flags);
bytes_written += 2;
phtoles(&data_ptr[bytes_written], ht_len);
bytes_written += 2;
phtoles(&data_ptr[bytes_written], info);
bytes_written += 2;
phtolel(&data_ptr[bytes_written], errors);
bytes_written += 4;
/*
* Finally, copy the whole MAC frame to the packet buffer as-is.
* This does not include the PLCP; the MPDU starts at 4 or 6
* depending on OFDM/CCK.
* This also does not include the last 4 bytes, as those don't
* contain an FCS, they just contain junk.
*/
memcpy(&data_ptr[bytes_written], &rec[plcp_hdr_len], actual_octets);
return TRUE;
}
static gboolean vwr_read_s2_W_rec(vwr_t *vwr, wtap_rec *record,
Buffer *buf, const guint8 *rec, int rec_size,
int IS_TX, int *err, gchar **err_info)
{
guint8 *data_ptr;
int bytes_written = 0; /* bytes output to buf so far */
const guint8 *s_start_ptr,*s_trail_ptr, *plcp_ptr, *m_ptr; /* stats & MPDU ptr */
guint32 msdu_length, actual_octets; /* octets in frame */
guint8 l1p_1, l1p_2, plcp_type, rate_mcs_index, nss; /* mod (CCK-L/CCK-S/OFDM) */
guint flow_seq;
guint64 s_time = LL_ZERO, e_time = LL_ZERO; /* start/end */
/* times, nsec */
guint64 latency = LL_ZERO;
guint64 start_time, s_sec, s_usec = LL_ZERO; /* start time, sec + usec */
guint64 end_time; /* end time */
guint16 info; /* INFO/ERRORS fields in stats blk */
guint32 errors;
gint8 rssi[] = {0,0,0,0}; /* RSSI, signed 8-bit number */
int f_tx; /* flag: if set, is a TX frame */
guint16 vc_id, ht_len=0; /* VC ID , total ip length*/
guint32 flow_id, d_time; /* flow ID, packet duration*/
int sig_off, pay_off; /* MAC+SNAP header len, signature offset */
guint64 sig_ts, tsid; /* 32 LSBs of timestamp in signature */
guint16 chanflags = 0; /* channel flags for WLAN metadata header */
guint16 radioflags = 0; /* flags for WLAN metadata header */
guint64 delta_b; /* Used for calculating latency */
float rate;
guint16 phyRate;
guint16 vw_flags; /* VeriWave-specific packet flags */
/*
* The record data must be large enough to hold the statistics header,
* the PLCP, and the statistics trailer.
*/
if ((guint)rec_size < vwr->MPDU_OFF + vVW510021_W_STATS_TRAILER_LEN) {
*err_info = ws_strdup_printf("vwr: Invalid record length %d (must be at least %u)",
rec_size,
vwr->MPDU_OFF + vVW510021_W_STATS_TRAILER_LEN);
*err = WTAP_ERR_BAD_FILE;
return FALSE;
}
/* Calculate the start of the statistics blocks in the buffer */
/* Also get a bunch of fields from the stats blocks */
s_start_ptr = &(rec[0]); /* point to stats header */
s_trail_ptr = &(rec[rec_size - vVW510021_W_STATS_TRAILER_LEN]); /* point to stats trailer */
l1p_1 = s_start_ptr[vVW510021_W_L1P_1_OFF];
l1p_2 = s_start_ptr[vVW510021_W_L1P_2_OFF];
plcp_type = vVW510021_W_S2_PLCP_TYPE(l1p_2);
/* we do the range checks at the end before copying the values
into the wtap header */
msdu_length = ((s_start_ptr[vVW510021_W_MSDU_LENGTH_OFF+1] & 0x1f) << 8)
+ s_start_ptr[vVW510021_W_MSDU_LENGTH_OFF];
vc_id = pntoh16(&s_start_ptr[vVW510021_W_VCID_OFF]);
if (IS_TX)
{
rssi[0] = (s_start_ptr[vVW510021_W_RSSI_TXPOWER_OFF] & 0x80) ?
-1 * (s_start_ptr[vVW510021_W_RSSI_TXPOWER_OFF] & 0x7f) :
s_start_ptr[vVW510021_W_RSSI_TXPOWER_OFF] & 0x7f;
}
else
{
rssi[0] = (s_start_ptr[vVW510021_W_RSSI_TXPOWER_OFF] & 0x80) ?
(s_start_ptr[vVW510021_W_RSSI_TXPOWER_OFF]- 256) :
s_start_ptr[vVW510021_W_RSSI_TXPOWER_OFF];
}
rssi[1] = 100;
rssi[2] = 100;
rssi[3] = 100;
plcp_ptr = &(rec[8]);
actual_octets = msdu_length;
/*
* Sanity check the octets field to determine if it's greater than
* the packet data available in the record - i.e., the record size
* minus the sum of (length of statistics header + PLCP) and
* (length of statistics trailer).
*
* Report an error if it is.
*/
if (actual_octets > rec_size - (vwr->MPDU_OFF + vVW510021_W_STATS_TRAILER_LEN)) {
*err_info = ws_strdup_printf("vwr: Invalid data length %u (runs past the end of the record)",
actual_octets);
*err = WTAP_ERR_BAD_FILE;
return FALSE;
}
f_tx = IS_TX;
flow_seq = s_trail_ptr[vVW510021_W_FLOWSEQ_OFF];
latency = 0x00000000; /* clear latency */
flow_id = pntoh24(&s_trail_ptr[vVW510021_W_FLOWID_OFF]); /* all 24 bits valid */
/* For tx latency is duration, for rx latency is timestamp */
/* Get 48-bit latency value */
tsid = pcorey48tohll(&s_trail_ptr[vVW510021_W_LATVAL_OFF]);
errors = pntoh32(&s_trail_ptr[vVW510021_W_ERRORS_OFF]);
info = pntoh16(&s_trail_ptr[vVW510021_W_INFO_OFF]);
if ((info & v22_W_AGGREGATE_FLAGS) != 0)
/* this length includes the Start_Spacing + Delimiter + MPDU + Padding for each piece of the aggregate*/
ht_len = pletoh16(&s_start_ptr[vwr->PLCP_LENGTH_OFF]);
/* decode OFDM or CCK PLCP header and determine rate and short preamble flag */
/* the SIGNAL byte is always the first byte of the PLCP header in the frame */
switch (plcp_type)
{
case vVW510021_W_PLCP_LEGACY:
/*
* From IEEE Std 802.11-2012:
*
* According to section 17.2.2 "PPDU format", the PLCP header
* for the High Rate DSSS PHY (11b) has a SIGNAL field that's
* 8 bits, followed by a SERVICE field that's 8 bits, followed
* by a LENGTH field that's 16 bits, followed by a CRC field
* that's 16 bits. The PSDU follows it. Section 17.2.3 "PPDU
* field definitions" describes those fields.
*
* According to sections 18.3.2 "PLCP frame format" and 18.3.4
* "SIGNAL field", the PLCP for the OFDM PHY (11a) has a SIGNAL
* field that's 24 bits, followed by a service field that's
* 16 bits, followed by the PSDU. Section 18.3.5.2 "SERVICE
* field" describes the SERVICE field.
*
* According to section 19.3.2 "PPDU format", the frames for the
* Extended Rate PHY (11g) either extend the 11b format, using
* additional bits in the SERVICE field, or extend the 11a
* format.
*/
rate_mcs_index = vVW510021_W_S2_RATE_INDEX(l1p_1);
if (rate_mcs_index < 4) {
chanflags |= CHAN_CCK;
}
else {
chanflags |= CHAN_OFDM;
}
rate = get_legacy_rate(rate_mcs_index);
nss = 0;
break;
case vVW510021_W_PLCP_MIXED:
/*
* According to section 20.3.2 "PPDU format", the HT-mixed
* PLCP header has a "Non-HT SIGNAL field" (L-SIG), which
* looks like an 11a SIGNAL field, followed by an HT SIGNAL
* field (HT-SIG) described in section 20.3.9.4.3 "HT-SIG
* definition".
*
* This means that the first octet of HT-SIG is at
* plcp_ptr[3], skipping the 3 octets of the L-SIG field.
*
* 0x80 is the CBW 20/40 bit of HT-SIG.
*/
/* set the appropriate flags to indicate HT mode and CB */
rate_mcs_index = vVW510021_W_S2_MCS_INDEX_HT(l1p_1);
radioflags |= FLAGS_CHAN_HT | ((plcp_ptr[3] & 0x80) ? FLAGS_CHAN_40MHZ : 0) |
((l1p_1 & vVW510021_W_IS_LONGGI) ? 0 : FLAGS_CHAN_SHORTGI);
chanflags |= CHAN_OFDM;
nss = (rate_mcs_index < MAX_HT_MCS) ? nss_for_mcs[rate_mcs_index] : 0;
rate = get_ht_rate(rate_mcs_index, radioflags);
break;
case vVW510021_W_PLCP_GREENFIELD:
/*
* According to section 20.3.2 "PPDU format", the HT-greenfield
* PLCP header just has the HT SIGNAL field (HT-SIG) above, with
* no L-SIG field.
*
* This means that the first octet of HT-SIG is at
* plcp_ptr[0], as there's no L-SIG field to skip.
*
* 0x80 is the CBW 20/40 bit of HT-SIG.
*/
/* set the appropriate flags to indicate HT mode and CB */
rate_mcs_index = vVW510021_W_S2_MCS_INDEX_HT(l1p_1);
radioflags |= FLAGS_CHAN_HT | ((plcp_ptr[0] & 0x80) ? FLAGS_CHAN_40MHZ : 0) |
((l1p_1 & vVW510021_W_IS_LONGGI) ? 0 : FLAGS_CHAN_SHORTGI);
chanflags |= CHAN_OFDM;
nss = (rate_mcs_index < MAX_HT_MCS) ? nss_for_mcs[rate_mcs_index] : 0;
rate = get_ht_rate(rate_mcs_index, radioflags);
break;
case vVW510021_W_PLCP_VHT_MIXED:
/*
* According to section 22.3.2 "VHT PPDU format" of IEEE Std
* 802.11ac-2013, the VHT PLCP header has a "non-HT SIGNAL field"
* (L-SIG), which looks like an 11a SIGNAL field, followed by
* a VHT Signal A field (VHT-SIG-A) described in section
* 22.3.8.3.3 "VHT-SIG-A definition", with training fields
* between it and a VHT Signal B field (VHT-SIG-B) described
* in section 22.3.8.3.6 "VHT-SIG-B definition", followed by
* the PSDU.
*/
{
guint8 SBW = vVW510021_W_BANDWIDTH_VHT(l1p_2);
rate_mcs_index = vVW510021_W_S2_MCS_INDEX_VHT(l1p_1);
radioflags |= FLAGS_CHAN_VHT | ((l1p_1 & vVW510021_W_IS_LONGGI) ? 0 : FLAGS_CHAN_SHORTGI);
chanflags |= CHAN_OFDM;
if (SBW == 3)
radioflags |= FLAGS_CHAN_40MHZ;
else if (SBW == 4)
radioflags |= FLAGS_CHAN_80MHZ;
nss = vVW510021_W_S2_NSS_VHT(l1p_1);
rate = get_vht_rate(rate_mcs_index, radioflags, nss);
}
break;
default:
rate_mcs_index = 0;
nss = 0;
rate = 0.0f;
break;
}
/*
* The MSDU length includes the FCS.
*
* The packet data does *not* include the FCS - it's just 4 bytes
* of junk - so we have to remove it.
*
* We'll be stripping off that junk, so make sure we have at least
* 4 octets worth of packet data.
*
* There seems to be a special case of a length of 0.
*/
if (actual_octets < 4) {
if (actual_octets != 0) {
*err_info = ws_strdup_printf("vwr: Invalid data length %u (too short to include 4 bytes of FCS)",
actual_octets);
*err = WTAP_ERR_BAD_FILE;
return FALSE;
}
} else {
actual_octets -= 4;
}
/* Calculate start & end times (in sec/usec), converting 64-bit times to usec. */
/* 64-bit times are "Corey-endian" */
s_time = pcoreytohll(&s_trail_ptr[vVW510021_W_STARTT_OFF]);
e_time = pcoreytohll(&s_trail_ptr[vVW510021_W_ENDT_OFF]);
/* find the packet duration (difference between start and end times) */
d_time = (guint32)((e_time - s_time) / NS_IN_US); /* find diff, converting to usec */
/* also convert the packet start time to seconds and microseconds */
start_time = s_time / NS_IN_US; /* convert to microseconds first */
s_sec = (start_time / US_IN_SEC); /* get the number of seconds */
s_usec = start_time - (s_sec * US_IN_SEC); /* get the number of microseconds */
/* also convert the packet end time to seconds and microseconds */
end_time = e_time / NS_IN_US; /* convert to microseconds first */
/* extract the 32 LSBs of the signature timestamp field */
m_ptr = &(rec[8+12]);
pay_off = 42; /* 24 (MAC) + 8 (SNAP) + IP */
sig_off = find_signature(m_ptr, rec_size - 20, pay_off, flow_id, flow_seq);
if (m_ptr[sig_off] == 0xdd)
sig_ts = get_signature_ts(m_ptr, sig_off, rec_size - vVW510021_W_STATS_TRAILER_LEN);
else
sig_ts = 0;
/* Set latency based on rx/tx and signature timestamp */
if (!IS_TX) {
if (tsid < s_time) {
latency = s_time - tsid;
} else {
/* Account for the rollover case. Since we cannot use 0x100000000 - l_time + s_time */
/* we look for a large difference between l_time and s_time. */
delta_b = tsid - s_time;
if (delta_b > 0x10000000)
latency = 0;
else
latency = delta_b;
}
}
/*
* Fill up the per-packet header.
*
* We include the length of the metadata headers in the packet lengths.
*
* The maximum value of actual_octets is 8191, which, even after
* adding the lengths of the metadata headers, is less than
* WTAP_MAX_PACKET_SIZE_STANDARD will ever be, so we don't need to check it.
*/
record->rec_header.packet_header.len = STATS_COMMON_FIELDS_LEN + EXT_WLAN_FIELDS_LEN + actual_octets;
record->rec_header.packet_header.caplen = STATS_COMMON_FIELDS_LEN + EXT_WLAN_FIELDS_LEN + actual_octets;
record->ts.secs = (time_t)s_sec;
record->ts.nsecs = (int)(s_usec * 1000);
record->rec_type = REC_TYPE_PACKET;
record->block = wtap_block_create(WTAP_BLOCK_PACKET);
record->presence_flags = WTAP_HAS_TS;
ws_buffer_assure_space(buf, record->rec_header.packet_header.caplen);
data_ptr = ws_buffer_start_ptr(buf);
/*
* Generate and copy out the common metadata headers,
* set the port type to 0 (WLAN).
*
* All values are copied out in little-endian byte order.
*/
/*** msdu_length = msdu_length + 16; ***/
/* 1st octet of record for port_type and command (command is 0, hence RX) */
phtole8(&data_ptr[bytes_written], WLAN_PORT);
bytes_written += 1;
/* 2nd octet of record for fpga version (0, hence pre-OCTO) */
phtole8(&data_ptr[bytes_written], 0);
bytes_written += 1;
phtoles(&data_ptr[bytes_written], STATS_COMMON_FIELDS_LEN); /* it_len */
bytes_written += 2;
phtoles(&data_ptr[bytes_written], msdu_length);
bytes_written += 2;
phtolel(&data_ptr[bytes_written], flow_id);
bytes_written += 4;
phtoles(&data_ptr[bytes_written], vc_id);
bytes_written += 2;
phtoles(&data_ptr[bytes_written], flow_seq);
bytes_written += 2;
if (!f_tx && sig_ts != 0) {
phtolel(&data_ptr[bytes_written], latency);
} else {
phtolel(&data_ptr[bytes_written], 0);
}
bytes_written += 4;
phtolel(&data_ptr[bytes_written], sig_ts); /* 32 LSBs of signature timestamp (nsec) */
bytes_written += 4;
phtolell(&data_ptr[bytes_written], start_time); /* record start & end times of frame */
bytes_written += 8;
phtolell(&data_ptr[bytes_written], end_time);
bytes_written += 8;
phtolel(&data_ptr[bytes_written], d_time);
bytes_written += 4;
/*
* Generate and copy out the WLAN metadata headers.
*
* All values are copied out in little-endian byte order.
*/
phtoles(&data_ptr[bytes_written], EXT_WLAN_FIELDS_LEN);
bytes_written += 2;
if (info & vVW510021_W_IS_WEP)
radioflags |= FLAGS_WEP;
if (!(l1p_1 & vVW510021_W_IS_LONGPREAMBLE) && (plcp_type == vVW510021_W_PLCP_LEGACY))
radioflags |= FLAGS_SHORTPRE;
phtoles(&data_ptr[bytes_written], radioflags);
bytes_written += 2;
phtoles(&data_ptr[bytes_written], chanflags);
bytes_written += 2;
phyRate = (guint16)(rate * 10);
phtoles(&data_ptr[bytes_written], phyRate);
bytes_written += 2;
data_ptr[bytes_written] = plcp_type;
bytes_written += 1;
data_ptr[bytes_written] = rate_mcs_index;
bytes_written += 1;
data_ptr[bytes_written] = nss;
bytes_written += 1;
data_ptr[bytes_written] = rssi[0];
bytes_written += 1;
data_ptr[bytes_written] = rssi[1];
bytes_written += 1;
data_ptr[bytes_written] = rssi[2];
bytes_written += 1;
data_ptr[bytes_written] = rssi[3];
bytes_written += 1;
/* padding */
data_ptr[bytes_written] = 0;
bytes_written += 1;
/* fill in the VeriWave flags field */
vw_flags = 0;
if (f_tx)
vw_flags |= VW_FLAGS_TXF;
if (errors & 0x1f) /* If any error is flagged, then set the FCS error bit */
vw_flags |= VW_FLAGS_FCSERR;
if (!f_tx && (errors & vwr->CRYPTO_ERR))
vw_flags |= VW_FLAGS_DCRERR;
if (!f_tx && (errors & vwr->RETRY_ERR))
vw_flags |= VW_FLAGS_RETRERR;
if (info & vwr->WEPTYPE)
vw_flags |= VW_FLAGS_IS_WEP;
else if (info & vwr->TKIPTYPE)
vw_flags |= VW_FLAGS_IS_TKIP;
else if (info & vwr->CCMPTYPE)
vw_flags |= VW_FLAGS_IS_CCMP;
phtoles(&data_ptr[bytes_written], vw_flags);
bytes_written += 2;
phtoles(&data_ptr[bytes_written], ht_len);
bytes_written += 2;
phtoles(&data_ptr[bytes_written], info);
bytes_written += 2;
phtolel(&data_ptr[bytes_written], errors);
bytes_written += 4;
/* Finally, copy the whole MAC frame to the packet buffer as-is.
* This does not include the stats header or the PLCP.
* This also does not include the last 4 bytes, as those don't
* contain an FCS, they just contain junk.
*/
memcpy(&data_ptr[bytes_written], &rec[vwr->MPDU_OFF], actual_octets);
return TRUE;
}
static gboolean vwr_read_s3_W_rec(vwr_t *vwr, wtap_rec *record,
Buffer *buf, const guint8 *rec, int rec_size,
int IS_TX, int log_mode, int *err,
gchar **err_info)
{
guint8 *data_ptr;
int bytes_written = 0; /* bytes output to buf so far */
int i;
int stats_offset = 0;
const guint8 *s_start_ptr = NULL,*s_trail_ptr = NULL, *plcp_ptr, *m_ptr; /* stats & MPDU ptr */
guint32 msdu_length = 0, actual_octets = 0; /* octets in frame */
guint8 l1p_1 = 0,l1p_2 = 0, plcp_type, rate_mcs_index, nss; /* mod (CCK-L/CCK-S/OFDM) */
guint64 s_time = LL_ZERO, e_time = LL_ZERO; /* start/end */
/* times, nsec */
guint64 latency = LL_ZERO;
guint64 start_time = 0, s_sec = 0, s_usec = LL_ZERO; /* start time, sec + usec */
guint64 end_time = 0; /* end time */
guint16 info = 0; /* INFO/ERRORS fields in stats blk */
guint32 errors = 0;
gint8 info_2nd = 0,rssi[] = {0,0,0,0}; /* RSSI, signed 8-bit number */
int frame_size;
guint32 d_time = 0, flow_id = 0; /* packet duration, Flow Signature ID*/
int sig_off, pay_off; /* MAC+SNAP header len, signature offset */
guint64 sig_ts = 0, tsid; /* 32 LSBs of timestamp in signature */
guint64 delta_b; /* Used for calculating latency */
guint8 L1InfoC = 0, port_type, ver_fpga = 0;
guint8 flow_seq =0,plcp_hdr_flag = 0,rf_id = 0; /* indicates plcp hdr info */
const guint8 *rf_ptr = NULL;
float rate;
guint16 phyRate;
/*
* The record data must be large enough to hold the statistics header,
* the PLCP, and the statistics trailer.
*/
if (IS_TX == 3) { /*IS_TX =3, i.e., command type is RF Modified*/
if ((guint)rec_size < OCTO_MODIFIED_RF_LEN) {
*err_info = ws_strdup_printf("vwr: Invalid record length %d (must be at least %u)",
rec_size,
OCTO_MODIFIED_RF_LEN);
*err = WTAP_ERR_BAD_FILE;
return FALSE;
}
rf_ptr = &(rec[0]);
rf_id = rf_ptr[0];
/*
* Fill up the per-packet header.
*
* We include the length of the metadata headers in the packet lengths.
*
* OCTO_MODIFIED_RF_LEN + 1 is less than WTAP_MAX_PACKET_SIZE_STANDARD will
* ever be, so we don't need to check it.
*/
record->rec_header.packet_header.len = OCTO_MODIFIED_RF_LEN + 1; /* 1st octet is reserved for detecting type of frame while displaying in wireshark */
record->rec_header.packet_header.caplen = OCTO_MODIFIED_RF_LEN + 1;
record->ts.secs = (time_t)s_sec;
record->ts.nsecs = (int)(s_usec * 1000);
record->rec_type = REC_TYPE_PACKET;
record->block = wtap_block_create(WTAP_BLOCK_PACKET);
record->presence_flags = WTAP_HAS_TS;
ws_buffer_assure_space(buf, record->rec_header.packet_header.caplen);
data_ptr = ws_buffer_start_ptr(buf);
port_type = IS_TX << 4;
nss = 0;
phyRate = 0;
}
else {
/* Calculate the start of the statistics blocks in the buffer */
/* Also get a bunch of fields from the stats blocks */
/* 'stats_offset' variable is use to locate the exact offset.
* When a RX frame contrains RF,
2020-10-10 23:42:05 +00:00
* the position of Stats, Layer 1-4, PLCP parameters are shifted to
* + OCTO_RF_MOD_ACTUAL_LEN bytes
*/
if (IS_TX == 4) /*IS_TX =4, i.e., command type is RF-RX Modified*/
{
stats_offset = OCTO_RF_MOD_ACTUAL_LEN;
if ((guint)rec_size < stats_offset + vwr->MPDU_OFF + vVW510021_W_STATS_TRAILER_LEN) {
*err_info = ws_strdup_printf("vwr: Invalid record length %d (must be at least %u)",
rec_size,
stats_offset + vwr->MPDU_OFF + vVW510021_W_STATS_TRAILER_LEN);
*err = WTAP_ERR_BAD_FILE;
return FALSE;
}
rf_ptr = &(rec[0]);
rf_id = rf_ptr[0];
}
else
{
stats_offset = 0;
if ((guint)rec_size < vwr->MPDU_OFF + vVW510021_W_STATS_TRAILER_LEN) {
*err_info = ws_strdup_printf("vwr: Invalid record length %d (must be at least %u)",
rec_size,
vwr->MPDU_OFF + vVW510021_W_STATS_TRAILER_LEN);
*err = WTAP_ERR_BAD_FILE;
return FALSE;
}
}
s_start_ptr = &(rec[stats_offset]); /* point to stats header */
s_trail_ptr = &(rec[rec_size - vVW510021_W_STATS_TRAILER_LEN] ); /* point to stats trailer */
l1p_1 = s_start_ptr[vVW510021_W_L1P_1_OFF];
l1p_2 = s_start_ptr[vVW510021_W_L1P_2_OFF];
plcp_type = vVW510021_W_S3_PLCP_TYPE(l1p_2);
switch (plcp_type)
{
case vVW510021_W_PLCP_LEGACY:
/* pre-HT */
rate_mcs_index = vVW510021_W_S3_RATE_INDEX(l1p_1);
nss = 0;
break;
case vVW510021_W_PLCP_MIXED:
case vVW510021_W_PLCP_GREENFIELD:
rate_mcs_index = vVW510021_W_S3_MCS_INDEX_HT(l1p_1);
nss = (rate_mcs_index < MAX_HT_MCS) ? nss_for_mcs[rate_mcs_index] : 0;
break;
case vVW510021_W_PLCP_VHT_MIXED:
rate_mcs_index = vVW510021_W_S3_MCS_INDEX_VHT(l1p_1);
nss = vVW510021_W_S3_NSS_VHT(l1p_1);
plcp_hdr_flag = 1;
break;
default:
rate_mcs_index = 0;
nss = 0;
plcp_hdr_flag = 0;
break;
}
for (i = 0; i < 4; i++)
{
if (IS_TX == 1)
{
rssi[i] = (s_start_ptr[4+i] & 0x80) ? -1 * (s_start_ptr[4+i] & 0x7f) : s_start_ptr[4+i] & 0x7f;
}
else
{
rssi[i] = (s_start_ptr[4+i] >= 128) ? (s_start_ptr[4+i] - 256) : s_start_ptr[4+i];
}
}
if (IS_TX == 0 || IS_TX == 4){
L1InfoC = s_start_ptr[8];
}
msdu_length = pntoh24(&s_start_ptr[9]);
/*** 16 bytes of PLCP header + 1 byte of L1P for user position ***/
plcp_ptr = &(rec[stats_offset+16]);
/*** Add the PLCP length for S3_W_FPGA version VHT frames for Beamforming decode ***/
if (log_mode == 3) {
frame_size = rec_size - (stats_offset + vwr->MPDU_OFF + vVW510021_W_STATS_TRAILER_LEN);
if (frame_size > ((int) msdu_length))
actual_octets = msdu_length;
else {
/*
* XXX - does this mean "the packet was cut short during
* capture" or "this is a malformed record"?
*/
actual_octets = frame_size;
}
}
else
{
actual_octets = msdu_length;
}
/*
* Sanity check the octets field to determine if it's greater than
* the packet data available in the record - i.e., the record size
* minus the sum of (length of statistics header + PLCP) and
* (length of statistics trailer).
*
* Report an error if it is.
*/
if (actual_octets > rec_size - (stats_offset + vwr->MPDU_OFF + vVW510021_W_STATS_TRAILER_LEN)) {
*err_info = ws_strdup_printf("vwr: Invalid data length %u (runs past the end of the record)",
actual_octets);
*err = WTAP_ERR_BAD_FILE;
return FALSE;
}
flow_seq = s_trail_ptr[vVW510021_W_FLOWSEQ_OFF];
latency = 0x00000000; /* clear latency */
flow_id = pntoh24(&s_trail_ptr[vVW510021_W_FLOWID_OFF]); /* all 24 bits valid */
/* For tx latency is duration, for rx latency is timestamp */
/* Get 48-bit latency value */
tsid = pcorey48tohll(&s_trail_ptr[vVW510021_W_LATVAL_OFF]);
errors = pntoh32(&s_trail_ptr[vVW510021_W_ERRORS_OFF]);
info = pntoh16(&s_trail_ptr[vVW510021_W_INFO_OFF]);
if (IS_TX == 0 || IS_TX == 4)
info_2nd = s_trail_ptr[41];
/*** Calculate Data rate based on
* PLCP type, MCS index and number of spatial stream
* radioflags is temporarily calculated, which is used in
* get_ht_rate() and get_vht_rate().
**/
switch (plcp_type)
{
case vVW510021_W_PLCP_LEGACY:
rate = get_legacy_rate(rate_mcs_index);
break;
case vVW510021_W_PLCP_MIXED:
/*
* According to section 20.3.2 "PPDU format", the HT-mixed
* PLCP header has a "Non-HT SIGNAL field" (L-SIG), which
* looks like an 11a SIGNAL field, followed by an HT SIGNAL
* field (HT-SIG) described in section 20.3.9.4.3 "HT-SIG
* definition".
*
* This means that the first octet of HT-SIG is at
* plcp_ptr[3], skipping the 3 octets of the L-SIG field.
*
* 0x80 is the CBW 20/40 bit of HT-SIG.
*/
{
/* set the appropriate flags to indicate HT mode and CB */
guint16 radioflags = FLAGS_CHAN_HT | ((plcp_ptr[3] & 0x80) ? FLAGS_CHAN_40MHZ : 0) |
((l1p_1 & vVW510021_W_IS_LONGGI) ? 0 : FLAGS_CHAN_SHORTGI);
rate = get_ht_rate(rate_mcs_index, radioflags);
}
break;
case vVW510021_W_PLCP_GREENFIELD:
/*
* According to section 20.3.2 "PPDU format", the HT-greenfield
* PLCP header just has the HT SIGNAL field (HT-SIG) above, with
* no L-SIG field.
*
* This means that the first octet of HT-SIG is at
* plcp_ptr[0], as there's no L-SIG field to skip.
*
* 0x80 is the CBW 20/40 bit of HT-SIG.
*/
{
/* set the appropriate flags to indicate HT mode and CB */
guint16 radioflags = FLAGS_CHAN_HT | ((plcp_ptr[0] & 0x80) ? FLAGS_CHAN_40MHZ : 0) |
((l1p_1 & vVW510021_W_IS_LONGGI) ? 0 : FLAGS_CHAN_SHORTGI);
rate = get_ht_rate(rate_mcs_index, radioflags);
}
break;
case vVW510021_W_PLCP_VHT_MIXED:
/*
* According to section 22.3.2 "VHT PPDU format" of IEEE Std
* 802.11ac-2013, the VHT PLCP header has a "non-HT SIGNAL field"
* (L-SIG), which looks like an 11a SIGNAL field, followed by
* a VHT Signal A field (VHT-SIG-A) described in section
* 22.3.8.3.3 "VHT-SIG-A definition", with training fields
* between it and a VHT Signal B field (VHT-SIG-B) described
* in section 22.3.8.3.6 "VHT-SIG-B definition", followed by
* the PSDU.
*/
{
guint8 SBW = vVW510021_W_BANDWIDTH_VHT(l1p_2);
guint16 radioflags = FLAGS_CHAN_VHT | ((l1p_1 & vVW510021_W_IS_LONGGI) ? 0 : FLAGS_CHAN_SHORTGI);
if (SBW == 3)
radioflags |= FLAGS_CHAN_40MHZ;
else if (SBW == 4)
radioflags |= FLAGS_CHAN_80MHZ;
rate = get_vht_rate(rate_mcs_index, radioflags, nss);
}
break;
default:
rate = 0.0f;
break;
}
phyRate = (guint16)(rate * 10);
/* Calculation of Data rate ends*/
/* 'ver_fpga' is the 2nd Octet of each frame.
* msb/lsb nibble indicates log mode/fpga version respectively.
* where log mode = 0 is normal capture and 1 is reduced capture,
* lsb nibble is set to 1 always as this function is applicable for only FPGA version >= 48
*/
if (log_mode == 3) {
if (frame_size >= (int) msdu_length) {
/*
* The MSDU length includes the FCS.
*
* The packet data does *not* include the FCS - it's just 4
* bytes of junk - so we have to remove it.
*
* We'll be stripping off that junk, so make sure we have at
* least 4 octets worth of packet data.
*
* XXX - is the FCS actually present here, as it appears to be
* if log_mode isn't 3?
*
* There seems to be a special case of a length of 0.
*/
if (actual_octets < 4) {
if (actual_octets != 0) {
*err_info = ws_strdup_printf("vwr: Invalid data length %u (too short to include 4 bytes of FCS)",
actual_octets);
*err = WTAP_ERR_BAD_FILE;
return FALSE;
}
} else {
actual_octets -= 4;
}
}
ver_fpga = 0x11;
} else {
ver_fpga = 0x01;
}
/* Calculate start & end times (in sec/usec), converting 64-bit times to usec. */
/* 64-bit times are "Corey-endian" */
s_time = pcoreytohll(&s_trail_ptr[vVW510021_W_STARTT_OFF]);
e_time = pcoreytohll(&s_trail_ptr[vVW510021_W_ENDT_OFF]);
/* find the packet duration (difference between start and end times) */
d_time = (guint32)((e_time - s_time) / NS_IN_US); /* find diff, converting to usec */
/* also convert the packet start time to seconds and microseconds */
start_time = s_time / NS_IN_US; /* convert to microseconds first */
s_sec = (start_time / US_IN_SEC); /* get the number of seconds */
s_usec = start_time - (s_sec * US_IN_SEC); /* get the number of microseconds */
/* also convert the packet end time to seconds and microseconds */
end_time = e_time / NS_IN_US; /* convert to microseconds first */
/* extract the 32 LSBs of the signature timestamp field */
int m_ptr_offset = stats_offset + 8 + 12;
m_ptr = rec + m_ptr_offset;
pay_off = 42; /* 24 (MAC) + 8 (SNAP) + IP */
sig_off = find_signature(m_ptr, rec_size - m_ptr_offset, pay_off, flow_id, flow_seq);
if (m_ptr[sig_off] == 0xdd)
sig_ts = get_signature_ts(m_ptr, sig_off, rec_size - vVW510021_W_STATS_TRAILER_LEN);
else
sig_ts = 0;
/* Set latency based on rx/tx and signature timestamp */
if (IS_TX == 0 || IS_TX == 4) {
if (tsid < s_time) {
latency = s_time - tsid;
} else {
/* Account for the rollover case. Since we cannot use 0x100000000 - l_time + s_time */
/* we look for a large difference between l_time and s_time. */
delta_b = tsid - s_time;
if (delta_b > 0x10000000)
latency = 0;
else
latency = delta_b;
}
}
port_type = IS_TX << 4;
/*
* Fill up the per-packet header.
*
* We include the length of the metadata headers in the packet lengths.
*/
if (IS_TX == 4) {
record->rec_header.packet_header.len = OCTO_MODIFIED_RF_LEN + OCTO_TIMESTAMP_FIELDS_LEN + OCTO_LAYER1TO4_LEN + actual_octets;
record->rec_header.packet_header.caplen = OCTO_MODIFIED_RF_LEN + OCTO_TIMESTAMP_FIELDS_LEN + OCTO_LAYER1TO4_LEN + actual_octets;
} else {
record->rec_header.packet_header.len = OCTO_TIMESTAMP_FIELDS_LEN + OCTO_LAYER1TO4_LEN + actual_octets;
record->rec_header.packet_header.caplen = OCTO_TIMESTAMP_FIELDS_LEN + OCTO_LAYER1TO4_LEN + actual_octets;
}
if (record->rec_header.packet_header.caplen > WTAP_MAX_PACKET_SIZE_STANDARD) {
/*
* Probably a corrupt capture file; return an error,
* so that our caller doesn't blow up trying to allocate
* space for an immensely-large packet.
*/
*err_info = ws_strdup_printf("vwr: File has %u-byte packet, bigger than maximum of %u",
record->rec_header.packet_header.caplen, WTAP_MAX_PACKET_SIZE_STANDARD);
*err = WTAP_ERR_BAD_FILE;
return FALSE;
}
record->ts.secs = (time_t)s_sec;
record->ts.nsecs = (int)(s_usec * 1000);
record->rec_type = REC_TYPE_PACKET;
record->block = wtap_block_create(WTAP_BLOCK_PACKET);
record->presence_flags = WTAP_HAS_TS;
ws_buffer_assure_space(buf, record->rec_header.packet_header.caplen);
data_ptr = ws_buffer_start_ptr(buf);
}
/*
* Generate and copy out the common metadata headers,
* set the port type to port_type (XXX).
*
* All values are copied out in little-endian byte order.
*/
/*** msdu_length = msdu_length + 16; ***/
/* 1st octet of record for port_type and other crud */
phtole8(&data_ptr[bytes_written], port_type);
bytes_written += 1;
if (IS_TX != 3) {
phtole8(&data_ptr[bytes_written], ver_fpga); /* 2nd octet of record for FPGA version*/
bytes_written += 1;
phtoles(&data_ptr[bytes_written], OCTO_TIMESTAMP_FIELDS_LEN); /* it_len */
bytes_written += 2;
/*** Time Collapsible header started***/
if (IS_TX == 1 && sig_ts != 0) {
phtolel(&data_ptr[bytes_written], latency);
} else {
phtolel(&data_ptr[bytes_written], 0);
}
bytes_written += 4;
phtolel(&data_ptr[bytes_written], sig_ts); /* 32 LSBs of signature timestamp (nsec) */
bytes_written += 4;
phtolell(&data_ptr[bytes_written], start_time); /* record start & end times of frame */
bytes_written += 8;
phtolell(&data_ptr[bytes_written], end_time);
bytes_written += 8;
phtolel(&data_ptr[bytes_written], d_time);
bytes_written += 4;
/*** Time Collapsible header ends ***/
}
2020-10-10 23:42:05 +00:00
/*** RF Collapsible header starts***/
if (IS_TX == 3 || IS_TX == 4) {
phtole8(&data_ptr[bytes_written], rf_id);
bytes_written += 1;
data_ptr[bytes_written] = 0;
bytes_written += 1;
data_ptr[bytes_written] = 0;
bytes_written += 1;
data_ptr[bytes_written] = 0;
bytes_written += 1;
/*** NOISE for all 4 Ports ***/
for (i = 0; i < RF_NUMBER_OF_PORTS; i++)
{
if (pntoh16(&rf_ptr[RF_PORT_1_NOISE_OFF+i*RF_INTER_PORT_GAP_OFF]) == 0) {
phtoles(&data_ptr[bytes_written], 0);
bytes_written += 2;
} else {
data_ptr[bytes_written] = rf_ptr[RF_PORT_1_NOISE_OFF+i*RF_INTER_PORT_GAP_OFF];
bytes_written += 1;
data_ptr[bytes_written] = rf_ptr[RF_PORT_1_NOISE_OFF+1+i*RF_INTER_PORT_GAP_OFF];
bytes_written += 1;
}
}
/*** SNR for all 4 Ports ***/
for (i = 0; i < RF_NUMBER_OF_PORTS; i++)
{
if (pntoh16(&rf_ptr[RF_PORT_1_SNR_OFF+i*RF_INTER_PORT_GAP_OFF]) == 0) {
phtoles(&data_ptr[bytes_written], 0);
bytes_written += 2;
} else {
data_ptr[bytes_written] = rf_ptr[RF_PORT_1_SNR_OFF+i*RF_INTER_PORT_GAP_OFF];
bytes_written += 1;
data_ptr[bytes_written] = rf_ptr[RF_PORT_1_SNR_OFF+1+i*RF_INTER_PORT_GAP_OFF];
bytes_written += 1;
}
}
/*** PFE for all 4 Ports ***/
for (i = 0; i < RF_NUMBER_OF_PORTS; i++)
{
if (pntoh16(&rf_ptr[RF_PORT_1_PFE_OFF+i*RF_INTER_PORT_GAP_OFF]) == 0) {
phtoles(&data_ptr[bytes_written], 0);
bytes_written += 2;
} else {
data_ptr[bytes_written] = rf_ptr[RF_PORT_1_PFE_OFF+i*RF_INTER_PORT_GAP_OFF];
bytes_written += 1;
data_ptr[bytes_written] = rf_ptr[RF_PORT_1_PFE_OFF+1+i*RF_INTER_PORT_GAP_OFF];
bytes_written += 1;
}
}
/*** EVM SIG Data for all 4 Ports ***/
for (i = 0; i < RF_NUMBER_OF_PORTS; i++)
{
if (pntoh16(&rf_ptr[RF_PORT_1_EVM_SD_SIG_OFF+i*RF_INTER_PORT_GAP_OFF]) == 0) {
phtoles(&data_ptr[bytes_written], 0);
bytes_written += 2;
} else {
data_ptr[bytes_written] = rf_ptr[RF_PORT_1_EVM_SD_SIG_OFF+i*RF_INTER_PORT_GAP_OFF];
bytes_written += 1;
data_ptr[bytes_written] = rf_ptr[RF_PORT_1_EVM_SD_SIG_OFF+1+i*RF_INTER_PORT_GAP_OFF];
bytes_written += 1;
}
}
/*** EVM SIG PILOT for all 4 Ports ***/
for (i = 0; i < RF_NUMBER_OF_PORTS; i++)
{
if (pntoh16(&rf_ptr[RF_PORT_1_EVM_SP_SIG_OFF+i*RF_INTER_PORT_GAP_OFF]) == 0) {
phtoles(&data_ptr[bytes_written], 0);
bytes_written += 2;
} else {
data_ptr[bytes_written] = rf_ptr[RF_PORT_1_EVM_SP_SIG_OFF+i*RF_INTER_PORT_GAP_OFF];
bytes_written += 1;
data_ptr[bytes_written] = rf_ptr[RF_PORT_1_EVM_SP_SIG_OFF+1+i*RF_INTER_PORT_GAP_OFF];
bytes_written += 1;
}
}
/*** EVM Data Data for all 4 Ports ***/
for (i = 0; i < RF_NUMBER_OF_PORTS; i++)
{
if (pntoh16(&rf_ptr[RF_PORT_1_EVM_SD_DATA_OFF+i*RF_INTER_PORT_GAP_OFF]) == 0) {
phtoles(&data_ptr[bytes_written], 0);
bytes_written += 2;
} else {
data_ptr[bytes_written] = rf_ptr[RF_PORT_1_EVM_SD_DATA_OFF+i*RF_INTER_PORT_GAP_OFF];
bytes_written += 1;
data_ptr[bytes_written] = rf_ptr[RF_PORT_1_EVM_SD_DATA_OFF+1+i*RF_INTER_PORT_GAP_OFF];
bytes_written += 1;
}
}
/*** EVM Data PILOT for all 4 Ports ***/
for (i = 0; i < RF_NUMBER_OF_PORTS; i++)
{
if (pntoh16(&rf_ptr[RF_PORT_1_EVM_SP_DATA_OFF+i*RF_INTER_PORT_GAP_OFF]) == 0) {
phtoles(&data_ptr[bytes_written], 0);
bytes_written += 2;
} else {
data_ptr[bytes_written] = rf_ptr[RF_PORT_1_EVM_SP_DATA_OFF+i*RF_INTER_PORT_GAP_OFF];
bytes_written += 1;
data_ptr[bytes_written] = rf_ptr[RF_PORT_1_EVM_SP_DATA_OFF+1+i*RF_INTER_PORT_GAP_OFF];
bytes_written += 1;
}
}
/*** EVM WORST SYMBOL for all 4 Ports ***/
for (i = 0; i < RF_NUMBER_OF_PORTS; i++)
{
if (pntoh16(&rf_ptr[RF_PORT_1_DSYMBOL_IDX_OFF+i*RF_INTER_PORT_GAP_OFF]) == 0) {
phtoles(&data_ptr[bytes_written], 0);
bytes_written += 2;
} else {
data_ptr[bytes_written] = rf_ptr[RF_PORT_1_DSYMBOL_IDX_OFF+i*RF_INTER_PORT_GAP_OFF];
bytes_written += 1;
data_ptr[bytes_written] = rf_ptr[RF_PORT_1_DSYMBOL_IDX_OFF+1+i*RF_INTER_PORT_GAP_OFF];
bytes_written += 1;
}
}
/*** CONTEXT_P for all 4 Ports ***/
for (i = 0; i < RF_NUMBER_OF_PORTS; i++)
{
if (pntoh16(&rf_ptr[RF_PORT_1_CONTEXT_OFF+i*RF_INTER_PORT_GAP_OFF]) == 0) {
phtoles(&data_ptr[bytes_written], 0);
bytes_written += 2;
} else {
data_ptr[bytes_written] = rf_ptr[RF_PORT_1_CONTEXT_OFF+i*RF_INTER_PORT_GAP_OFF];
bytes_written += 1;
data_ptr[bytes_written] = rf_ptr[RF_PORT_1_CONTEXT_OFF+1+i*RF_INTER_PORT_GAP_OFF];
bytes_written += 1;
}
}
/*** FOR rest 24 RF data bytes are commented for future use ***/
/***
for (i = 0; i < RF_NUMBER_OF_PORTS; i++)
{
if (pntoh16(&rf_ptr[20+i*RF_INTER_PORT_GAP_OFF]) == 0) {
phtoles(&data_ptr[bytes_written], 0);
bytes_written += 2;
} else {
data_ptr[bytes_written] = rf_ptr[20+i*RF_INTER_PORT_GAP_OFF];
bytes_written += 1;
data_ptr[bytes_written] = rf_ptr[21+i*RF_INTER_PORT_GAP_OFF];
bytes_written += 1;
}
}
for (i = 0; i < RF_NUMBER_OF_PORTS; i++)
{
if (pntoh16(&rf_ptr[24+i*RF_INTER_PORT_GAP_OFF]) == 0) {
phtoles(&data_ptr[bytes_written], 0);
bytes_written += 2;
} else {
data_ptr[bytes_written] = rf_ptr[24+i*RF_INTER_PORT_GAP_OFF];
bytes_written += 1;
data_ptr[bytes_written] = rf_ptr[25+i*RF_INTER_PORT_GAP_OFF];
bytes_written += 1;
}
}
for (i = 0; i < RF_NUMBER_OF_PORTS; i++)
{
if (pntoh16(&rf_ptr[26+i*RF_INTER_PORT_GAP_OFF]) == 0) {
phtoles(&data_ptr[bytes_written], 0);
bytes_written += 2;
} else {
data_ptr[bytes_written] = rf_ptr[26+i*RF_INTER_PORT_GAP_OFF];
bytes_written += 1;
data_ptr[bytes_written] = rf_ptr[27+i*RF_INTER_PORT_GAP_OFF];
bytes_written += 1;
}
}
***/
}
2020-10-10 23:42:05 +00:00
/*** RF Collapsible header ends***/
if (IS_TX != 3) {
/*
* Generate and copy out the WLAN metadata headers.
*
* All values are copied out in little-endian byte order.
*/
phtoles(&data_ptr[bytes_written], OCTO_LAYER1TO4_LEN);
bytes_written += 2;
/*** Layer-1 Collapsible header started***/
data_ptr[bytes_written] = l1p_1;
bytes_written += 1;
data_ptr[bytes_written] = (nss << 4) | IS_TX;
bytes_written += 1;
phtoles(&data_ptr[bytes_written], phyRate); /* To dosplay Data rate based on the PLCP type & MCS*/
bytes_written += 2;
data_ptr[bytes_written] = l1p_2;
bytes_written += 1;
data_ptr[bytes_written] = rssi[0];
bytes_written += 1;
data_ptr[bytes_written] = rssi[1];
bytes_written += 1;
data_ptr[bytes_written] = rssi[2];
bytes_written += 1;
data_ptr[bytes_written] = rssi[3];
bytes_written += 1;
/* padding may not be required for S3_W*/
data_ptr[bytes_written] = s_start_ptr[2]; /*** For Signal Bandwidth Mask ***/
bytes_written += 1;
data_ptr[bytes_written] = s_start_ptr[3]; /*** For Antenna Port Energy Detect and MU_MASK ***/
bytes_written += 1;
if (plcp_hdr_flag == 1 && (IS_TX == 0 || IS_TX == 4)) {
data_ptr[bytes_written] = L1InfoC; /*** For Other plcp type = VHT ***/
} else {
data_ptr[bytes_written] = 0; /*** For Other plcp type, this offset is set to 0***/
}
bytes_written += 1;
phtoles(&data_ptr[bytes_written], msdu_length);
bytes_written += 2;
/*** Layer-1 Collapsible header Ends ***/
/*** PLCP Collapsible header Starts ***/
memcpy(&data_ptr[bytes_written], &rec[stats_offset+16], 16);
bytes_written += 16;
/*** PLCP Collapsible header Ends ***/
/*** Layer 2-4 Collapsible header Starts ***/
phtolel(&data_ptr[bytes_written], pntoh32(&s_start_ptr[12])); /*** This 4 bytes includes BM,BV,CV,BSSID and ClientID ***/
bytes_written += 4;
phtoles(&data_ptr[bytes_written], pntoh16(&s_trail_ptr[20])); /*** 2 bytes includes FV,QT,HT,L4V,TID and WLAN type ***/
bytes_written += 2;
data_ptr[bytes_written] = flow_seq;
bytes_written += 1;
phtole24(&data_ptr[bytes_written], flow_id);
bytes_written += 3;
phtoles(&data_ptr[bytes_written], pntoh16(&s_trail_ptr[28])); /*** 2 bytes for Layer 4 ID ***/
bytes_written += 2;
phtolel(&data_ptr[bytes_written], pntoh32(&s_trail_ptr[24])); /*** 4 bytes for Payload Decode ***/
bytes_written += 4;
2020-10-10 23:42:05 +00:00
/*** In case of RX, Info has 3 bytes of data, whereas for TX, 2 bytes ***/
if (IS_TX == 0 || IS_TX == 4) {
phtoles(&data_ptr[bytes_written], info);
bytes_written += 2;
data_ptr[bytes_written] = info_2nd;
bytes_written += 1;
}
else {
phtoles(&data_ptr[bytes_written], info);
bytes_written += 2;
data_ptr[bytes_written] = 0;
bytes_written += 1;
}
phtolel(&data_ptr[bytes_written], errors);
bytes_written += 4;
/*** Layer 2-4 Collapsible header Ends ***/
/* Finally, copy the whole MAC frame to the packet buffer as-is.
* This does not include the stats header or the PLCP.
* This also does not include the last 4 bytes, as those don't
* contain an FCS, they just contain junk.
*/
memcpy(&data_ptr[bytes_written], &rec[stats_offset+(vwr->MPDU_OFF)], actual_octets);
}
return TRUE;
}
/* read an Ethernet packet */
/* Copy the actual packet data from the capture file into the target data block. */
/* The packet is constructed as a 38-byte VeriWave-extended Radiotap header plus the raw */
/* MAC octets. */
static gboolean vwr_read_rec_data_ethernet(vwr_t *vwr, wtap_rec *record,
Buffer *buf, const guint8 *rec,
int rec_size, int IS_TX, int *err,
gchar **err_info)
{
guint8 *data_ptr;
int bytes_written = 0; /* bytes output to buf so far */
const guint8 *s_ptr, *m_ptr; /* stats and MPDU pointers */
guint16 msdu_length, actual_octets; /* octets in frame */
guint flow_seq; /* seqnum */
guint64 s_time = LL_ZERO, e_time = LL_ZERO; /* start/end */
/* times, nsec */
guint32 latency = 0;
guint64 start_time, s_sec = LL_ZERO, s_usec = LL_ZERO; /* start time, sec + usec */
guint64 end_time; /* end time */
guint l4id;
guint16 info, validityBits; /* INFO/ERRORS fields in stats */
guint32 errors;
guint16 vc_id; /* VC ID, total (incl of aggregates) */
guint32 flow_id, d_time; /* packet duration */
int f_flow; /* flags: flow valid */
guint32 frame_type; /* frame type field */
int mac_len, sig_off, pay_off; /* MAC header len, signature offset */
/* XXX - the code here fetched tsid, but never used it! */
guint64 sig_ts/*, tsid*/; /* 32 LSBs of timestamp in signature */
guint64 delta_b; /* Used for calculating latency */
guint16 vw_flags; /* VeriWave-specific packet flags */
if ((guint)rec_size < vwr->STATS_LEN) {
*err_info = ws_strdup_printf("vwr: Invalid record length %d (must be at least %u)", rec_size, vwr->STATS_LEN);
*err = WTAP_ERR_BAD_FILE;
return FALSE;
}
/* Calculate the start of the statistics block in the buffer. */
/* Also get a bunch of fields from the stats block. */
m_ptr = &(rec[0]); /* point to the data block */
s_ptr = &(rec[rec_size - vwr->STATS_LEN]); /* point to the stats block */
msdu_length = pntoh16(&s_ptr[vwr->OCTET_OFF]);
actual_octets = msdu_length;
/*
* Sanity check the octets field to determine if it's greater than
* the packet data available in the record - i.e., the record size
* minus the length of the statistics block.
*
* Report an error if it is.
*/
if (actual_octets > rec_size - vwr->STATS_LEN) {
*err_info = ws_strdup_printf("vwr: Invalid data length %u (runs past the end of the record)",
actual_octets);
*err = WTAP_ERR_BAD_FILE;
return FALSE;
}
vc_id = pntoh16(&s_ptr[vwr->VCID_OFF]) & vwr->VCID_MASK;
flow_seq = s_ptr[vwr->FLOWSEQ_OFF];
frame_type = pntoh32(&s_ptr[vwr->FRAME_TYPE_OFF]);
if (vwr->FPGA_VERSION == vVW510024_E_FPGA) {
validityBits = pntoh16(&s_ptr[vwr->VALID_OFF]);
f_flow = validityBits & vwr->FLOW_VALID;
mac_len = (validityBits & vwr->IS_VLAN) ? 16 : 14; /* MAC hdr length based on VLAN tag */
errors = pntoh16(&s_ptr[vwr->ERRORS_OFF]);
}
else {
f_flow = s_ptr[vwr->VALID_OFF] & vwr->FLOW_VALID;
mac_len = (frame_type & vwr->IS_VLAN) ? 16 : 14; /* MAC hdr length based on VLAN tag */
/* for older fpga errors is only represented by 16 bits) */
errors = pntoh16(&s_ptr[vwr->ERRORS_OFF]);
}
info = pntoh16(&s_ptr[vwr->INFO_OFF]);
/* 24 LSBs */
flow_id = pntoh24(&s_ptr[vwr->FLOWID_OFF]);
#if 0
/* For tx latency is duration, for rx latency is timestamp. */
/* Get 64-bit latency value. */
tsid = pcorey48tohll(&s_ptr[vwr->LATVAL_OFF]);
#endif
l4id = pntoh16(&s_ptr[vwr->L4ID_OFF]);
/*
* The MSDU length includes the FCS.
*
* The packet data does *not* include the FCS - it's just 4 bytes
* of junk - so we have to remove it.
*
* We'll be stripping off that junk, so make sure we have at least
* 4 octets worth of packet data.
*
* There seems to be a special case of a length of 0.
*/
if (actual_octets < 4) {
if (actual_octets != 0) {
*err_info = ws_strdup_printf("vwr: Invalid data length %u (too short to include 4 bytes of FCS)",
actual_octets);
*err = WTAP_ERR_BAD_FILE;
return FALSE;
}
} else {
actual_octets -= 4;
}
/* Calculate start & end times (in sec/usec), converting 64-bit times to usec. */
/* 64-bit times are "Corey-endian" */
s_time = pcoreytohll(&s_ptr[vwr->STARTT_OFF]);
e_time = pcoreytohll(&s_ptr[vwr->ENDT_OFF]);
/* find the packet duration (difference between start and end times) */
d_time = (guint32)((e_time - s_time)); /* find diff, leaving in nsec for Ethernet */
/* also convert the packet start time to seconds and microseconds */
start_time = s_time / NS_IN_US; /* convert to microseconds first */
s_sec = (start_time / US_IN_SEC); /* get the number of seconds */
s_usec = start_time - (s_sec * US_IN_SEC); /* get the number of microseconds */
/* also convert the packet end time to seconds and microseconds */
end_time = e_time / NS_IN_US; /* convert to microseconds first */
if (frame_type & vwr->IS_TCP) /* signature offset for TCP frame */
{
pay_off = mac_len + 40;
}
else if (frame_type & vwr->IS_UDP) /* signature offset for UDP frame */
{
pay_off = mac_len + 28;
}
else if (frame_type & vwr->IS_ICMP) /* signature offset for ICMP frame */
{
pay_off = mac_len + 24;
}
else if (frame_type & vwr->IS_IGMP) /* signature offset for IGMPv2 frame */
{
pay_off = mac_len + 28;
}
else /* signature offset for raw IP frame */
{
pay_off = mac_len + 20;
}
sig_off = find_signature(m_ptr, rec_size, pay_off, flow_id, flow_seq);
if ((m_ptr[sig_off] == 0xdd) && (f_flow != 0))
sig_ts = get_signature_ts(m_ptr, sig_off, msdu_length);
else
sig_ts = 0;
/* Set latency based on rx/tx and signature timestamp */
if (!IS_TX) {
if (sig_ts < s_time) {
latency = (guint32)(s_time - sig_ts);
} else {
/* Account for the rollover case. Since we cannot use 0x100000000 - l_time + s_time */
/* we look for a large difference between l_time and s_time. */
delta_b = sig_ts - s_time;
if (delta_b > 0x10000000) {
latency = 0;
} else
latency = (guint32)delta_b;
}
}
/*
* Fill up the per-packet header.
*
* We include the length of the metadata headers in the packet lengths.
*
* The maximum value of actual_octets is 65535, which, even after
* adding the lengths of the metadata headers, is less than
* WTAP_MAX_PACKET_SIZE_STANDARD will ever be, so we don't need to check it.
*/
record->rec_header.packet_header.len = STATS_COMMON_FIELDS_LEN + EXT_ETHERNET_FIELDS_LEN + actual_octets;
record->rec_header.packet_header.caplen = STATS_COMMON_FIELDS_LEN + EXT_ETHERNET_FIELDS_LEN + actual_octets;
record->ts.secs = (time_t)s_sec;
record->ts.nsecs = (int)(s_usec * 1000);
record->rec_type = REC_TYPE_PACKET;
record->block = wtap_block_create(WTAP_BLOCK_PACKET);
record->presence_flags = WTAP_HAS_TS;
/*etap_hdr.vw_ip_length = (guint16)ip_len;*/
ws_buffer_assure_space(buf, record->rec_header.packet_header.caplen);
data_ptr = ws_buffer_start_ptr(buf);
/*
* Generate and copy out the common metadata headers,
* set the port type to 1 (Ethernet).
*
* All values are copied out in little-endian byte order.
*/
/* 1st octet of record for port_type and command (command is 0, hence RX) */
phtole8(&data_ptr[bytes_written], ETHERNET_PORT);
bytes_written += 1;
/* 2nd octet of record for fpga version (Ethernet, hence non-OCTO) */
phtole8(&data_ptr[bytes_written], 0);
bytes_written += 1;
phtoles(&data_ptr[bytes_written], STATS_COMMON_FIELDS_LEN);
bytes_written += 2;
phtoles(&data_ptr[bytes_written], msdu_length);
bytes_written += 2;
phtolel(&data_ptr[bytes_written], flow_id);
bytes_written += 4;
phtoles(&data_ptr[bytes_written], vc_id);
bytes_written += 2;
phtoles(&data_ptr[bytes_written], flow_seq);
bytes_written += 2;
if (!IS_TX && (sig_ts != 0)) {
phtolel(&data_ptr[bytes_written], latency);
} else {
phtolel(&data_ptr[bytes_written], 0);
}
bytes_written += 4;
phtolel(&data_ptr[bytes_written], sig_ts);
bytes_written += 4;
phtolell(&data_ptr[bytes_written], start_time) /* record start & end times of frame */
bytes_written += 8;
phtolell(&data_ptr[bytes_written], end_time);
bytes_written += 8;
phtolel(&data_ptr[bytes_written], d_time);
bytes_written += 4;
/*
* Generate and copy out the Ethernet metadata headers.
*
* All values are copied out in little-endian byte order.
*/
phtoles(&data_ptr[bytes_written], EXT_ETHERNET_FIELDS_LEN);
bytes_written += 2;
vw_flags = 0;
if (IS_TX)
vw_flags |= VW_FLAGS_TXF;
if (errors & vwr->FCS_ERROR)
vw_flags |= VW_FLAGS_FCSERR;
phtoles(&data_ptr[bytes_written], vw_flags);
bytes_written += 2;
phtoles(&data_ptr[bytes_written], info);
bytes_written += 2;
phtolel(&data_ptr[bytes_written], errors);
bytes_written += 4;
phtolel(&data_ptr[bytes_written], l4id);
bytes_written += 4;
/* Add in pad */
phtolel(&data_ptr[bytes_written], 0);
bytes_written += 4;
/*
* Finally, copy the whole MAC frame to the packet buffer as-is.
* This also does not include the last 4 bytes, as those don't
* contain an FCS, they just contain junk.
*/
memcpy(&data_ptr[bytes_written], m_ptr, actual_octets);
return TRUE;
}
/*--------------------------------------------------------------------------------------*/
/* utility to split up and decode a 16-byte message record */
static int decode_msg(vwr_t *vwr, guint8 *rec, int *v_type, int *IS_TX, int *log_mode)
{
guint8 cmd,fpga_log_mode; /* components of message */
guint32 wd2, wd3;
int v_size; /* size of var-len message */
/* break up the message record into its pieces */
cmd = rec[0];
fpga_log_mode = rec[1];
fpga_log_mode = ((fpga_log_mode & 0x30) >> 4);
wd2 = pntoh32(&rec[8]);
wd3 = pntoh32(&rec[12]);
if (vwr != NULL)
*log_mode = fpga_log_mode; /* Log mode = 3, when MPDU data is reduced */
/* now decode based on the command byte */
switch (cmd) {
case COMMAND_RX:
if (vwr != NULL) {
*IS_TX = 0;
}
v_size = (int)(wd2 & 0xffff);
*v_type = VT_FRAME;
break;
case COMMAND_TX:
if (vwr != NULL) {
*IS_TX = 1;
}
v_size = (int)(wd2 & 0xffff);
*v_type = VT_FRAME;
break;
/*
case COMMAND_RFN:
if (vwr != NULL) {
*IS_TX = 3;
}
v_size = (int)(wd2 & 0xffff);
*v_type = VT_FRAME;
break;
*/
case COMMAND_RF: /* For RF Modified only */
if (vwr != NULL) {
*IS_TX = 3;
}
v_size = (int)(wd2 & 0xffff);
*v_type = VT_FRAME;
break;
case COMMAND_RFRX: /* For RF_RX Modified only */
if (vwr != NULL) {
*IS_TX = 4;
}
v_size = (int)(wd2 & 0xffff);
*v_type = VT_FRAME;
break;
case 0xc1:
case 0x8b:
case 0xbb:
if (vwr != NULL) {
*IS_TX = 2;
}
v_size = (int)(wd2 & 0xffff);
*v_type = VT_CPMSG;
break;
case 0xfe:
if (vwr != NULL) {
*IS_TX = 2;
}
v_size = (int)(wd3 & 0xffff);
*v_type = VT_CPMSG;
break;
default:
if (vwr != NULL) {
*IS_TX = 2;
}
v_size = 0;
*v_type = VT_UNKNOWN;
break;
}
return v_size;
}
/*---------------------------------------------------------------------------------------*/
/* Utilities to extract and decode the PHY bit rate from 802.11 PLCP headers (OFDM/CCK). */
/* They are passed a pointer to 4 or 6 consecutive bytes of PLCP header. */
/* The integer returned by the get_xxx_rate() functions is in units of 0.5 Mb/s. */
/* The string returned by the decode_xxx_rate() functions is 3 characters wide. */
static guint8 get_ofdm_rate(const guint8 *plcp)
{
/* extract the RATE field (LS nibble of first byte) then convert it to the MCS index used by the L1p fields */
switch (plcp[0] & 0x0f) {
case 0x0b: return 4;
case 0x0f: return 5;
case 0x0a: return 6;
case 0x0e: return 7;
case 0x09: return 8;
case 0x0d: return 9;
case 0x08: return 10;
case 0x0c: return 11;
default: return 0;
}
}
static guint8 get_cck_rate(const guint8 *plcp)
{
/* extract rate from the SIGNAL field then convert it to the MCS index used by the L1p fields */
switch (plcp[0]) {
case 0x0a: return 0;
case 0x14: return 1;
case 0x37: return 2;
case 0x6e: return 3;
default: return 0;
}
}
/*--------------------------------------------------------------------------------------*/
/* utility to set up offsets and bitmasks for decoding the stats blocks */
static void setup_defaults(vwr_t *vwr, guint16 fpga)
{
switch (fpga) {
/* WLAN frames */
case S2_W_FPGA:
vwr->STATS_LEN = vVW510021_W_STATS_TRAILER_LEN;
vwr->VALID_OFF = vVW510021_W_VALID_OFF;
vwr->MTYPE_OFF = vVW510021_W_MTYPE_OFF;
vwr->VCID_OFF = vVW510021_W_VCID_OFF;
vwr->FLOWSEQ_OFF = vVW510021_W_FLOWSEQ_OFF;
vwr->FLOWID_OFF = vVW510021_W_FLOWID_OFF;
/*vwr->OCTET_OFF = v22_W_OCTET_OFF;*/
vwr->ERRORS_OFF = vVW510021_W_ERRORS_OFF;
vwr->PATN_OFF = vVW510021_W_MATCH_OFF;
vwr->RSSI_OFF = vVW510021_W_RSSI_TXPOWER_OFF;
vwr->STARTT_OFF = vVW510021_W_STARTT_OFF;
vwr->ENDT_OFF = vVW510021_W_ENDT_OFF;
vwr->LATVAL_OFF = vVW510021_W_LATVAL_OFF;
vwr->INFO_OFF = vVW510021_W_INFO_OFF;
vwr->FPGA_VERSION_OFF = S2_W_FPGA_VERSION_OFF;
vwr->HEADER_VERSION_OFF = vVW510021_W_HEADER_VERSION_OFF;
vwr->OCTET_OFF = vVW510021_W_MSDU_LENGTH_OFF;
vwr->L1P_1_OFF = vVW510021_W_L1P_1_OFF;
vwr->L1P_2_OFF = vVW510021_W_L1P_2_OFF;
vwr->L4ID_OFF = vVW510021_W_L4ID_OFF;
vwr->IPLEN_OFF = vVW510021_W_IPLEN_OFF;
vwr->PLCP_LENGTH_OFF = vVW510021_W_PLCP_LENGTH_OFF;
vwr->MT_MASK = vVW510021_W_SEL_MASK;
vwr->MCS_INDEX_MASK = vVW510021_W_MCS_MASK;
vwr->VCID_MASK = 0xffff;
vwr->FLOW_VALID = vVW510021_W_FLOW_VALID;
vwr->STATS_START_OFF = vVW510021_W_HEADER_LEN;
vwr->FCS_ERROR = vVW510021_W_FCS_ERROR;
vwr->CRYPTO_ERR = v22_W_CRYPTO_ERR;
vwr->RETRY_ERR = v22_W_RETRY_ERR;
/*vwr->STATS_START_OFF = 0;*/
vwr->RXTX_OFF = vVW510021_W_RXTX_OFF;
vwr->MT_10_HALF = 0;
vwr->MT_10_FULL = 0;
vwr->MT_100_HALF = 0;
vwr->MT_100_FULL = 0;
vwr->MT_1G_HALF = 0;
vwr->MT_1G_FULL = 0;
vwr->MT_CCKL = v22_W_MT_CCKL;
vwr->MT_CCKS = v22_W_MT_CCKS;
/*vwr->MT_OFDM = vVW510021_W_MT_OFDM;*/
vwr->WEPTYPE = vVW510021_W_WEPTYPE;
vwr->TKIPTYPE = vVW510021_W_TKIPTYPE;
vwr->CCMPTYPE = vVW510021_W_CCMPTYPE;
vwr->FRAME_TYPE_OFF = vVW510021_W_FRAME_TYPE_OFF;
vwr->IS_TCP = vVW510021_W_IS_TCP;
vwr->IS_UDP = vVW510021_W_IS_UDP;
vwr->IS_ICMP = vVW510021_W_IS_ICMP;
vwr->IS_IGMP = vVW510021_W_IS_IGMP;
vwr->IS_QOS = vVW510021_W_QOS_VALID;
/*
* vVW510021_W_STATS_HEADER_LEN = 8 is:
*
* 2 bytes of l1p_1/l1p_2;
* 1 byte of RSSI;
* 2 bytes of MSDU length + other bits
* 1 byte of XXX;
* 2 bytes of VCID.
*
* The 12 is for 11 bytes of PLCP and 1 byte of pad
* before the data.
*/
vwr->MPDU_OFF = vVW510021_W_STATS_HEADER_LEN + 12;
break;
case S3_W_FPGA:
vwr->STATS_LEN = vVW510021_W_STATS_TRAILER_LEN;
vwr->PLCP_LENGTH_OFF = 16;
/*
* The 16 + 16 is:
*
* 2 bytes of l1p_1/l1p_2;
* 1 byte of signal bandwidth mask;
* 1 byte of antenna port energy;
* 4 bytes of per-antenna RSSI;
* 1 byte of L1InfoC;
* 3 bytes of MSDU length;
* 4 bytes of something;
* 16 bytes of PLCP.
*/
vwr->MPDU_OFF = 16 + 16;
break;
case vVW510012_E_FPGA:
vwr->STATS_LEN = v22_E_STATS_LEN;
vwr->VALID_OFF = v22_E_VALID_OFF;
vwr->MTYPE_OFF = v22_E_MTYPE_OFF;
vwr->VCID_OFF = v22_E_VCID_OFF;
vwr->FLOWSEQ_OFF = v22_E_FLOWSEQ_OFF;
vwr->FLOWID_OFF = v22_E_FLOWID_OFF;
vwr->OCTET_OFF = v22_E_OCTET_OFF;
vwr->ERRORS_OFF = v22_E_ERRORS_OFF;
vwr->PATN_OFF = v22_E_PATN_OFF;
vwr->RSSI_OFF = v22_E_RSSI_OFF;
vwr->STARTT_OFF = v22_E_STARTT_OFF;
vwr->ENDT_OFF = v22_E_ENDT_OFF;
vwr->LATVAL_OFF = v22_E_LATVAL_OFF;
vwr->INFO_OFF = v22_E_INFO_OFF;
vwr->L4ID_OFF = v22_E_L4ID_OFF;
vwr->IS_RX = v22_E_IS_RX;
vwr->MT_MASK = v22_E_MT_MASK;
vwr->VCID_MASK = v22_E_VCID_MASK;
vwr->FLOW_VALID = v22_E_FLOW_VALID;
vwr->FCS_ERROR = v22_E_FCS_ERROR;
vwr->RX_DECRYPTS = v22_E_RX_DECRYPTS;
vwr->TX_DECRYPTS = v22_E_TX_DECRYPTS;
vwr->FC_PROT_BIT = v22_E_FC_PROT_BIT;
vwr->MT_10_HALF = v22_E_MT_10_HALF;
vwr->MT_10_FULL = v22_E_MT_10_FULL;
vwr->MT_100_HALF = v22_E_MT_100_HALF;
vwr->MT_100_FULL = v22_E_MT_100_FULL;
vwr->MT_1G_HALF = v22_E_MT_1G_HALF;
vwr->MT_1G_FULL = v22_E_MT_1G_FULL;
vwr->MT_CCKL = 0;
vwr->MT_CCKS = 0;
vwr->MT_OFDM = 0;
vwr->FRAME_TYPE_OFF = v22_E_FRAME_TYPE_OFF;
vwr->IS_TCP = v22_E_IS_TCP;
vwr->IS_UDP = v22_E_IS_UDP;
vwr->IS_ICMP = v22_E_IS_ICMP;
vwr->IS_IGMP = v22_E_IS_IGMP;
vwr->IS_QOS = v22_E_IS_QOS;
vwr->IS_VLAN = v22_E_IS_VLAN;
break;
/* WLAN frames */
case S1_W_FPGA:
vwr->STATS_LEN = v22_W_STATS_LEN;
vwr->MTYPE_OFF = v22_W_MTYPE_OFF;
vwr->VALID_OFF = v22_W_VALID_OFF;
vwr->VCID_OFF = v22_W_VCID_OFF;
vwr->FLOWSEQ_OFF = v22_W_FLOWSEQ_OFF;
vwr->FLOWID_OFF = v22_W_FLOWID_OFF;
vwr->OCTET_OFF = v22_W_OCTET_OFF;
vwr->ERRORS_OFF = v22_W_ERRORS_OFF;
vwr->PATN_OFF = v22_W_PATN_OFF;
vwr->RSSI_OFF = v22_W_RSSI_OFF;
vwr->STARTT_OFF = v22_W_STARTT_OFF;
vwr->ENDT_OFF = v22_W_ENDT_OFF;
vwr->LATVAL_OFF = v22_W_LATVAL_OFF;
vwr->INFO_OFF = v22_W_INFO_OFF;
vwr->L4ID_OFF = v22_W_L4ID_OFF;
vwr->IPLEN_OFF = v22_W_IPLEN_OFF;
vwr->PLCP_LENGTH_OFF = v22_W_PLCP_LENGTH_OFF;
vwr->FCS_ERROR = v22_W_FCS_ERROR;
vwr->CRYPTO_ERR = v22_W_CRYPTO_ERR;
vwr->PAYCHK_ERR = v22_W_PAYCHK_ERR;
vwr->RETRY_ERR = v22_W_RETRY_ERR;
vwr->IS_RX = v22_W_IS_RX;
vwr->MT_MASK = v22_W_MT_MASK;
vwr->VCID_MASK = v22_W_VCID_MASK;
vwr->FLOW_VALID = v22_W_FLOW_VALID;
vwr->RX_DECRYPTS = v22_W_RX_DECRYPTS;
vwr->TX_DECRYPTS = v22_W_TX_DECRYPTS;
vwr->FC_PROT_BIT = v22_W_FC_PROT_BIT;
vwr->MT_10_HALF = 0;
vwr->MT_10_FULL = 0;
vwr->MT_100_HALF = 0;
vwr->MT_100_FULL = 0;
vwr->MT_1G_HALF = 0;
vwr->MT_1G_FULL = 0;
vwr->MT_CCKL = v22_W_MT_CCKL;
vwr->MT_CCKS = v22_W_MT_CCKS;
vwr->MT_OFDM = v22_W_MT_OFDM;
vwr->WEPTYPE = v22_W_WEPTYPE;
vwr->TKIPTYPE = v22_W_TKIPTYPE;
vwr->CCMPTYPE = v22_W_CCMPTYPE;
vwr->FRAME_TYPE_OFF = v22_W_FRAME_TYPE_OFF;
vwr->IS_TCP = v22_W_IS_TCP;
vwr->IS_UDP = v22_W_IS_UDP;
vwr->IS_ICMP = v22_W_IS_ICMP;
vwr->IS_IGMP = v22_W_IS_IGMP;
vwr->IS_QOS = v22_W_IS_QOS;
break;
/* Ethernet frames */
case vVW510024_E_FPGA:
vwr->STATS_LEN = vVW510024_E_STATS_LEN;
vwr->VALID_OFF = vVW510024_E_VALID_OFF;
vwr->VCID_OFF = vVW510024_E_VCID_OFF;
vwr->FLOWSEQ_OFF = vVW510024_E_FLOWSEQ_OFF;
vwr->FLOWID_OFF = vVW510024_E_FLOWID_OFF;
vwr->OCTET_OFF = vVW510024_E_MSDU_LENGTH_OFF;
vwr->ERRORS_OFF = vVW510024_E_ERRORS_OFF;
vwr->PATN_OFF = vVW510024_E_MATCH_OFF;
vwr->STARTT_OFF = vVW510024_E_STARTT_OFF;
vwr->ENDT_OFF = vVW510024_E_ENDT_OFF;
vwr->LATVAL_OFF = vVW510024_E_LATVAL_OFF;
vwr->INFO_OFF = vVW510024_E_INFO_OFF;
vwr->L4ID_OFF = vVW510024_E_L4ID_OFF;
vwr->IPLEN_OFF = vVW510024_E_IPLEN_OFF;
vwr->FPGA_VERSION_OFF = vVW510024_E_FPGA_VERSION_OFF;
vwr->HEADER_VERSION_OFF = vVW510024_E_HEADER_VERSION_OFF;
vwr->VCID_MASK = vVW510024_E_VCID_MASK;
vwr->FLOW_VALID = vVW510024_E_FLOW_VALID;
vwr->FCS_ERROR = v22_E_FCS_ERROR;
vwr->FRAME_TYPE_OFF = vVW510024_E_FRAME_TYPE_OFF;
vwr->IS_TCP = vVW510024_E_IS_TCP;
vwr->IS_UDP = vVW510024_E_IS_UDP;
vwr->IS_ICMP = vVW510024_E_IS_ICMP;
vwr->IS_IGMP = vVW510024_E_IS_IGMP;
vwr->IS_QOS = vVW510024_E_QOS_VALID;
vwr->IS_VLAN = vVW510024_E_IS_VLAN;
break;
}
}
#define SIG_SCAN_RANGE 64 /* range of signature scanning region */
/* Utility routine: check that signature is at specified location; scan for it if not. */
/* If we can't find a signature at all, then simply return the originally supplied offset. */
int find_signature(const guint8 *m_ptr, int rec_size, int pay_off, guint32 flow_id, guint8 flow_seq)
{
int tgt; /* temps */
guint32 fid;
/* initial check is very simple: look for a '0xdd' at the target location */
if (m_ptr[pay_off] == 0xdd) /* if magic byte is present */
return pay_off; /* got right offset, return it */
/* Hmmm, signature magic byte is not where it is supposed to be; scan from start of */
/* payload until maximum scan range exhausted to see if we can find it. */
/* The scanning process consists of looking for a '0xdd', then checking for the correct */
/* flow ID and sequence number at the appropriate offsets. */
for (tgt = pay_off; tgt < (rec_size); tgt++) {
if (m_ptr[tgt] == 0xdd) { /* found magic byte? check fields */
if ((tgt + 15 < rec_size) && (m_ptr[tgt + 15] == 0xe2)) {
if (m_ptr[tgt + 4] != flow_seq)
continue;
fid = pletoh24(&m_ptr[tgt + 1]);
if (fid != flow_id)
continue;
return (tgt);
}
else if (tgt + SIG_FSQ_OFF < rec_size)
{ /* out which one... */
if (m_ptr[tgt + SIG_FSQ_OFF] != flow_seq) /* check sequence number */
continue; /* if failed, keep scanning */
fid = pletoh24(&m_ptr[tgt + SIG_FID_OFF]); /* assemble flow ID from signature */
if (fid != flow_id) /* check flow ID against expected */
continue; /* if failed, keep scanning */
/* matched magic byte, sequence number, flow ID; found the signature */
return (tgt); /* return offset of signature */
}
}
}
/* failed to find the signature, return the original offset as default */
return pay_off;
}
/* utility routine: harvest the signature time stamp from the data frame */
guint64 get_signature_ts(const guint8 *m_ptr,int sig_off, int sig_max)
{
int ts_offset;
guint64 sig_ts;
if (sig_off + 15 >= sig_max)
return 0;
if (m_ptr[sig_off + 15] == 0xe2)
ts_offset = 5;
else
ts_offset = 8;
sig_ts = pletoh32(&m_ptr[sig_off + ts_offset]);
return (sig_ts & 0xffffffff);
}
static float
get_legacy_rate(guint8 rate_index)
{
/* Rate conversion data */
static const float canonical_rate_legacy[] = {1.0f, 2.0f, 5.5f, 11.0f, 6.0f, 9.0f, 12.0f, 18.0f, 24.0f, 36.0f, 48.0f, 54.0f};
float bitrate = 0.0f;
if (rate_index < G_N_ELEMENTS(canonical_rate_legacy))
bitrate = canonical_rate_legacy[rate_index];
return bitrate;
}
static float
get_ht_rate(guint8 mcs_index, guint16 rflags)
{
/* Rate conversion data */
static const int canonical_ndbps_20_ht[8] = {26, 52, 78, 104, 156, 208, 234, 260};
static const int canonical_ndbps_40_ht[8] = {54, 108, 162, 216, 324, 432, 486, 540};
float symbol_tx_time, bitrate;
int ndbps;
if (rflags & FLAGS_CHAN_SHORTGI)
symbol_tx_time = 3.6f;
else
symbol_tx_time = 4.0f;
if (rflags & FLAGS_CHAN_40MHZ)
ndbps = canonical_ndbps_40_ht[mcs_index - 8*(int)(mcs_index/8)];
else
ndbps = canonical_ndbps_20_ht[mcs_index - 8*(int)(mcs_index/8)];
bitrate = (ndbps * (((int)(mcs_index >> 3) + 1))) / symbol_tx_time;
return bitrate;
}
static float
get_vht_rate(guint8 mcs_index, guint16 rflags, guint8 nss)
{
/* Rate conversion data */
static const int canonical_ndbps_20_vht[9] = {26, 52, 78, 104, 156, 208, 234, 260, 312};
static const int canonical_ndbps_40_vht[10] = {54, 108, 162, 216, 324, 432, 486, 540, 648, 720};
static const int canonical_ndbps_80_vht[10] = {117, 234, 351, 468, 702, 936, 1053, 1170, 1404, 1560};
float symbol_tx_time, bitrate;
if (rflags & FLAGS_CHAN_SHORTGI)
symbol_tx_time = 3.6f;
else
symbol_tx_time = 4.0f;
/*
* Check for the out of range mcs_index.
* Should never happen, but if mcs index is greater than 9 just
* return 0.
*/
if (mcs_index > 9)
return 0.0f;
if (rflags & FLAGS_CHAN_40MHZ)
bitrate = (canonical_ndbps_40_vht[mcs_index] * nss) / symbol_tx_time;
else if (rflags & FLAGS_CHAN_80MHZ)
bitrate = (canonical_ndbps_80_vht[mcs_index] * nss) / symbol_tx_time;
else
{
if (mcs_index == 9)
{
/* This is a special case for 20 MHz. */
if (nss == 3)
bitrate = 1040 / symbol_tx_time;
else if (nss == 6)
bitrate = 2080 / symbol_tx_time;
else
bitrate = 0.0f;
}
else
bitrate = (canonical_ndbps_20_vht[mcs_index] * nss) / symbol_tx_time;
}
return bitrate;
}
static gboolean
vwr_process_rec_data(FILE_T fh, int rec_size,
wtap_rec *record, Buffer *buf, vwr_t *vwr,
int IS_TX, int log_mode, int *err, gchar **err_info)
{
guint8* rec; /* local buffer (holds input record) */
gboolean ret = FALSE;
rec = (guint8*)g_malloc(B_SIZE);
/* Read over the entire record (frame + trailer) into a local buffer. */
/* If we don't get it all, then declare an error, we can't process the frame. */
if (!wtap_read_bytes(fh, rec, rec_size, err, err_info))
{
g_free(rec);
return FALSE;
}
/* now format up the frame data */
switch (vwr->FPGA_VERSION)
{
case S1_W_FPGA:
ret = vwr_read_s1_W_rec(vwr, record, buf, rec, rec_size, err, err_info);
break;
case S2_W_FPGA:
ret = vwr_read_s2_W_rec(vwr, record, buf, rec, rec_size, IS_TX, err, err_info);
break;
case S3_W_FPGA:
ret = vwr_read_s3_W_rec(vwr, record, buf, rec, rec_size, IS_TX, log_mode, err, err_info);
break;
case vVW510012_E_FPGA:
case vVW510024_E_FPGA:
ret = vwr_read_rec_data_ethernet(vwr, record, buf, rec, rec_size, IS_TX, err, err_info);
break;
default:
g_free(rec);
ws_assert_not_reached();
return ret;
}
g_free(rec);
return ret;
}
static const struct supported_block_type vwr_80211_blocks_supported[] = {
/*
* We support packet blocks, with no comments or other options.
*/
{ WTAP_BLOCK_PACKET, MULTIPLE_BLOCKS_SUPPORTED, NO_OPTIONS_SUPPORTED }
};
static const struct file_type_subtype_info vwr_80211_info = {
"Ixia IxVeriWave .vwr Raw 802.11 Capture", "vwr80211", "vwr", NULL,
FALSE, BLOCKS_SUPPORTED(vwr_80211_blocks_supported),
NULL, NULL, NULL
};
static const struct supported_block_type vwr_eth_blocks_supported[] = {
/*
* We support packet blocks, with no comments or other options.
*/
{ WTAP_BLOCK_PACKET, MULTIPLE_BLOCKS_SUPPORTED, NO_OPTIONS_SUPPORTED }
};
static const struct file_type_subtype_info vwr_eth_info = {
"Ixia IxVeriWave .vwr Raw Ethernet Capture", "vwreth", "vwr", NULL,
FALSE, BLOCKS_SUPPORTED(vwr_eth_blocks_supported),
NULL, NULL, NULL
};
void register_vwr(void)
{
vwr_80211_file_type_subtype = wtap_register_file_type_subtype(&vwr_80211_info);
vwr_eth_file_type_subtype = wtap_register_file_type_subtype(&vwr_eth_info);
wiretap: more work on file type/subtypes. Provide a wiretap routine to get an array of all savable file type/subtypes, sorted with pcap and pcapng at the top, followed by the other types, sorted either by the name or the description. Use that routine to list options for the -F flag for various commands Rename wtap_get_savable_file_types_subtypes() to wtap_get_savable_file_types_subtypes_for_file(), to indicate that it provides an array of all file type/subtypes in which a given file can be saved. Have it sort all types, other than the default type/subtype and, if there is one, the "other" type (both of which are put at the top), by the name or the description. Don't allow wtap_register_file_type_subtypes() to override any existing registrations; have them always register a new type. In that routine, if there are any emply slots in the table, due to an entry being unregistered, use it rather than allocating a new slot. Don't allow unregistration of built-in types. Rename the "dump open table" to the "file type/subtype table", as it has entries for all types/subtypes, even if we can't write them. Initialize that table in a routine that pre-allocates the GArray before filling it with built-in types/subtypes, so it doesn't keep getting reallocated. Get rid of wtap_num_file_types_subtypes - it's just a copy of the size of the GArray. Don't have wtap_file_type_subtype_description() crash if handed an file type/subtype that isn't a valid array index - just return NULL, as we do with wtap_file_type_subtype_name(). In wtap_name_to_file_type_subtype(), don't use WTAP_FILE_TYPE_SUBTYPE_ names for the backwards-compatibility names - map those names to the current names, and then look them up. This reduces the number of uses of hardwired WTAP_FILE_TYPE_SUBTYPE_ values. Clean up the type of wtap_module_count - it has no need to be a gulong. Have built-in wiretap file handlers register names to be used for their file type/subtypes, rather than building the table in init.lua. Add a new Lua C function get_wtap_filetypes() to construct the wtap_filetypes table, based on the registered names, and use it in init.lua. Add a #define WSLUA_INTERNAL_FUNCTION to register functions intended only for internal use in init.lua, so they can be made available from Lua without being documented. Get rid of WTAP_NUM_FILE_TYPES_SUBTYPES - most code has no need to use it, as it can just request arrays of types, and the space of type/subtype codes can be sparse due to registration in any case, so code has to be careful using it. wtap_get_num_file_types_subtypes() is no longer used, so remove it. It returns the number of elements in the file type/subtype array, which is not necessarily the name of known file type/subtypes, as there may have been some deregistered types, and those types do *not* get removed from the array, they just get cleared so that they're available for future allocation (we don't want the indices of any registered types to changes if another type is deregistered, as those indicates are the type/subtype values, so we can't shrink the array). Clean up white space and remove some comments that shouldn't have been added.
2021-02-17 06:24:47 +00:00
/*
* Register names for backwards compatibility with the
* wtap_filetypes table in Lua.
*/
wtap_register_backwards_compatibility_lua_name("VWR_80211",
vwr_80211_file_type_subtype);
wtap_register_backwards_compatibility_lua_name("VWR_ETH",
vwr_eth_file_type_subtype);
}
/*
* Editor modelines - https://www.wireshark.org/tools/modelines.html
*
* Local variables:
* c-basic-offset: 4
* tab-width: 8
* indent-tabs-mode: nil
* End:
*
* vi: set shiftwidth=4 tabstop=8 expandtab:
* :indentSize=4:tabSize=8:noTabs=true:
*/