wireshark/epan/dfilter/dfunctions.c

477 lines
13 KiB
C
Raw Normal View History

/*
* Wireshark - Network traffic analyzer
*
* Copyright 2006 Gilbert Ramirez <gram@alumni.rice.edu>
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include "config.h"
#include <glib.h>
#include "dfilter-int.h"
#include "dfunctions.h"
#include "sttype-field.h"
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
#include "semcheck.h"
#include <string.h>
#include <ftypes/ftypes.h>
#include <epan/exceptions.h>
2021-06-18 18:21:42 +00:00
#include <wsutil/ws_assert.h>
#define FAIL(dfw, node, ...) \
dfilter_fail_throw(dfw, stnode_location(node), __VA_ARGS__)
/* Convert an FT_STRING using a callback function */
static gboolean
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
string_walk(GSList *args, guint32 arg_count, GSList **retval, gchar(*conv_func)(gchar))
{
GSList *arg1;
fvalue_t *arg_fvalue;
fvalue_t *new_ft_string;
const wmem_strbuf_t *src;
wmem_strbuf_t *dst;
ws_assert(arg_count == 1);
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
arg1 = args->data;
if (arg1 == NULL)
return FALSE;
while (arg1) {
arg_fvalue = (fvalue_t *)arg1->data;
/* XXX - it would be nice to handle FT_TVBUFF, too */
if (IS_FT_STRING(fvalue_type_ftenum(arg_fvalue))) {
src = fvalue_get_strbuf(arg_fvalue);
dst = wmem_strbuf_sized_new(NULL, src->len, 0);
for (size_t i = 0; i < src->len; i++) {
wmem_strbuf_append_c(dst, conv_func(src->str[i]));
}
new_ft_string = fvalue_new(FT_STRING);
fvalue_set_strbuf(new_ft_string, dst);
*retval = g_slist_prepend(*retval, new_ft_string);
}
arg1 = arg1->next;
}
return TRUE;
}
/* dfilter function: lower() */
static gboolean
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
df_func_lower(GSList *args, guint32 arg_count, GSList **retval)
{
return string_walk(args, arg_count, retval, g_ascii_tolower);
}
/* dfilter function: upper() */
static gboolean
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
df_func_upper(GSList *args, guint32 arg_count, GSList **retval)
{
return string_walk(args, arg_count, retval, g_ascii_toupper);
}
/* dfilter function: count() */
static gboolean
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
df_func_count(GSList *args, guint32 arg_count, GSList **retval)
{
GSList *arg1;
fvalue_t *ft_ret;
guint32 num_items;
ws_assert(arg_count == 1);
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
arg1 = args->data;
if (arg1 == NULL)
return FALSE;
num_items = (guint32)g_slist_length(arg1);
ft_ret = fvalue_new(FT_UINT32);
fvalue_set_uinteger(ft_ret, num_items);
*retval = g_slist_prepend(*retval, ft_ret);
return TRUE;
}
/* dfilter function: string() */
static gboolean
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
df_func_string(GSList *args, guint32 arg_count, GSList **retval)
{
GSList *arg1;
fvalue_t *arg_fvalue;
fvalue_t *new_ft_string;
char *s;
ws_assert(arg_count == 1);
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
arg1 = args->data;
if (arg1 == NULL)
return FALSE;
while (arg1) {
arg_fvalue = (fvalue_t *)arg1->data;
switch (fvalue_type_ftenum(arg_fvalue))
{
case FT_UINT8:
case FT_UINT16:
case FT_UINT24:
case FT_UINT32:
case FT_UINT40:
case FT_UINT48:
case FT_UINT56:
case FT_UINT64:
case FT_INT8:
case FT_INT16:
case FT_INT32:
case FT_INT40:
case FT_INT48:
case FT_INT56:
case FT_INT64:
case FT_IPv4:
case FT_IPv6:
case FT_FLOAT:
case FT_DOUBLE:
case FT_ETHER:
case FT_FRAMENUM:
case FT_AX25:
case FT_IPXNET:
case FT_GUID:
case FT_OID:
case FT_EUI64:
case FT_VINES:
case FT_REL_OID:
case FT_SYSTEM_ID:
case FT_FCWWN:
case FT_IEEE_11073_SFLOAT:
case FT_IEEE_11073_FLOAT:
s = fvalue_to_string_repr(NULL, arg_fvalue, FTREPR_DFILTER, BASE_NONE);
/* Ensure we have an allocated string here */
if (!s)
s = wmem_strdup(NULL, "");
break;
default:
return TRUE;
}
new_ft_string = fvalue_new(FT_STRING);
fvalue_set_string(new_ft_string, s);
wmem_free(NULL, s);
*retval = g_slist_prepend(*retval, new_ft_string);
arg1 = arg1->next;
}
return TRUE;
}
static gboolean
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
df_func_compare(GSList *args, guint32 arg_count, GSList **retval,
gboolean (*fv_cmp)(const fvalue_t *a, const fvalue_t *b))
{
fvalue_t *fv_ret = NULL;
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
GSList *l1, *l2;
guint32 i;
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
for (l1 = args, i = 0; i < arg_count; l1 = l1->next, i++) {
for (l2 = l1->data; l2 != NULL; l2 = l2->next) {
if (fv_ret == NULL || fv_cmp(l2->data, fv_ret)) {
fv_ret = l2->data;
}
}
}
if (fv_ret == NULL)
return FALSE;
*retval = g_slist_append(NULL, fvalue_dup(fv_ret));
return TRUE;
}
/* Find maximum value. */
static gboolean
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
df_func_max(GSList *args, guint32 arg_count, GSList **retval)
{
return df_func_compare(args, arg_count, retval, fvalue_gt);
}
/* Find minimum value. */
static gboolean
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
df_func_min(GSList *args, guint32 arg_count, GSList **retval)
{
return df_func_compare(args, arg_count, retval, fvalue_lt);
}
static gboolean
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
df_func_abs(GSList *args, guint32 arg_count, GSList **retval)
{
GSList *arg1;
fvalue_t *fv_arg, *new_fv;
char *err_msg = NULL;
GSList *result = NULL;
ws_assert(arg_count == 1);
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
arg1 = args->data;
if (arg1 == NULL)
return FALSE;
while (arg1) {
fv_arg = arg1->data;
if (fvalue_is_negative(fv_arg)) {
new_fv = fvalue_unary_minus(fv_arg, &err_msg);
if (new_fv == NULL) {
ws_debug("abs: %s", err_msg);
g_free(err_msg);
err_msg = NULL;
}
}
else {
new_fv = fvalue_dup(fv_arg);
}
result = g_slist_prepend(result, new_fv);
arg1 = arg1->next;
}
if (g_slist_length(result) == 0)
return FALSE;
*retval = result;
return TRUE;
}
/* For upper() and lower() checks that the parameter passed to
* it is an FT_STRING */
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
static ftenum_t
ul_semcheck_is_field_string(dfwork_t *dfw, const char *func_name, ftenum_t lhs_ftype _U_,
GSList *param_list, stloc_t *func_loc _U_)
{
header_field_info *hfinfo;
ws_assert(g_slist_length(param_list) == 1);
stnode_t *st_node = param_list->data;
if (stnode_type_id(st_node) == STTYPE_FIELD) {
hfinfo = sttype_field_hfinfo(st_node);
if (IS_FT_STRING(hfinfo->type)) {
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
return FT_STRING;
}
}
FAIL(dfw, st_node, "Only string type fields can be used as parameter for %s()", func_name);
}
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
static ftenum_t
ul_semcheck_is_field(dfwork_t *dfw, const char *func_name, ftenum_t lhs_ftype _U_,
GSList *param_list, stloc_t *func_loc _U_)
{
ws_assert(g_slist_length(param_list) == 1);
stnode_t *st_node = param_list->data;
if (stnode_type_id(st_node) == STTYPE_FIELD)
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
return FT_UINT32;
FAIL(dfw, st_node, "Only fields can be used as parameter for %s()", func_name);
}
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
static ftenum_t
ul_semcheck_string_param(dfwork_t *dfw, const char *func_name, ftenum_t lhs_ftype _U_,
GSList *param_list, stloc_t *func_loc _U_)
{
header_field_info *hfinfo;
ws_assert(g_slist_length(param_list) == 1);
stnode_t *st_node = param_list->data;
if (stnode_type_id(st_node) == STTYPE_FIELD) {
hfinfo = sttype_field_hfinfo(st_node);
switch (hfinfo->type) {
case FT_UINT8:
case FT_UINT16:
case FT_UINT24:
case FT_UINT32:
case FT_UINT40:
case FT_UINT48:
case FT_UINT56:
case FT_UINT64:
case FT_INT8:
case FT_INT16:
case FT_INT32:
case FT_INT40:
case FT_INT48:
case FT_INT56:
case FT_INT64:
case FT_IPv4:
case FT_IPv6:
case FT_FLOAT:
case FT_DOUBLE:
case FT_ETHER:
case FT_FRAMENUM:
case FT_AX25:
case FT_IPXNET:
case FT_GUID:
case FT_OID:
case FT_EUI64:
case FT_VINES:
case FT_REL_OID:
case FT_SYSTEM_ID:
case FT_FCWWN:
case FT_IEEE_11073_SFLOAT:
case FT_IEEE_11073_FLOAT:
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
return FT_STRING;
default:
break;
}
FAIL(dfw, st_node, "String conversion for field \"%s\" is not supported", hfinfo->abbrev);
}
FAIL(dfw, st_node, "Only fields can be used as parameter for %s()", func_name);
}
/* Check arguments are all the same type and they can be compared. */
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
static ftenum_t
ul_semcheck_compare(dfwork_t *dfw, const char *func_name, ftenum_t lhs_ftype,
GSList *param_list, stloc_t *func_loc _U_)
{
stnode_t *arg;
ftenum_t ftype, ft_arg;
GSList *l;
fvalue_t *fv;
arg = param_list->data;
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
if (stnode_type_id(arg) == STTYPE_ARITHMETIC) {
ftype = check_arithmetic_expr(dfw, arg, lhs_ftype);
}
else if (stnode_type_id(arg) == STTYPE_LITERAL && lhs_ftype != FT_NONE) {
fv = dfilter_fvalue_from_literal(dfw, lhs_ftype, arg, FALSE, NULL);
stnode_replace(arg, STTYPE_FVALUE, fv);
ftype = fvalue_type_ftenum(fv);
}
else if (stnode_type_id(arg) == STTYPE_FUNCTION) {
ftype = check_function(dfw, arg, lhs_ftype);
}
else {
ftype = sttype_field_ftenum(arg);
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
}
if (ftype == FT_NONE) {
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
FAIL(dfw, arg, "Argument '%s' (FT_NONE) is not valid for %s()",
stnode_todisplay(arg), func_name);
}
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
for (l = param_list->next; l != NULL; l = l->next) {
arg = l->data;
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
if (stnode_type_id(arg) == STTYPE_ARITHMETIC) {
ft_arg = check_arithmetic_expr(dfw, arg, ftype);
}
else if (stnode_type_id(arg) == STTYPE_LITERAL && ftype != FT_NONE) {
fv = dfilter_fvalue_from_literal(dfw, ftype, arg, FALSE, NULL);
stnode_replace(arg, STTYPE_FVALUE, fv);
ft_arg = fvalue_type_ftenum(fv);
}
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
else if (stnode_type_id(arg) == STTYPE_FUNCTION) {
ft_arg = check_function(dfw, arg, ftype);
}
else {
ft_arg = sttype_field_ftenum(arg);
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
}
if (ft_arg == FT_NONE) {
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
FAIL(dfw, arg, "Argument '%s' (FT_NONE) is not valid for %s()",
stnode_todisplay(arg), func_name);
}
if (ftype == FT_NONE) {
ftype = ft_arg;
}
if (ft_arg != ftype) {
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
FAIL(dfw, arg, "Arguments to '%s' must have the same type (expected %s, got %s)",
func_name, ftype_name(ftype), ftype_name(ft_arg));
}
if (!ftype_can_cmp(ft_arg)) {
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
FAIL(dfw, arg, "Argument '%s' to '%s' cannot be ordered",
stnode_todisplay(arg), func_name);
}
}
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
return ftype;
}
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
static ftenum_t
ul_semcheck_absolute_value(dfwork_t *dfw, const char *func_name, ftenum_t lhs_ftype,
GSList *param_list, stloc_t *func_loc _U_)
{
ws_assert(g_slist_length(param_list) == 1);
stnode_t *st_node;
ftenum_t ftype;
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
fvalue_t *fv;
st_node = param_list->data;
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
if (stnode_type_id(st_node) == STTYPE_ARITHMETIC) {
ftype = check_arithmetic_expr(dfw, st_node, lhs_ftype);
}
else if (stnode_type_id(st_node) == STTYPE_LITERAL && lhs_ftype != FT_NONE) {
fv = dfilter_fvalue_from_literal(dfw, lhs_ftype, st_node, FALSE, NULL);
stnode_replace(st_node, STTYPE_FVALUE, fv);
ftype = fvalue_type_ftenum(fv);
}
else if (stnode_type_id(st_node) == STTYPE_FUNCTION) {
ftype = check_function(dfw, st_node, lhs_ftype);
}
else {
ftype = sttype_field_ftenum(st_node);
}
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
if (ftype == FT_NONE) {
FAIL(dfw, st_node, "Type %s is not valid for %s",
stnode_type_name(st_node), func_name);
}
if (!ftype_can_is_negative(ftype)) {
FAIL(dfw, st_node, "'%s' is not a valid argument to '%s'()",
stnode_todisplay(st_node), func_name);
}
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
return ftype;
}
/* The table of all display-filter functions */
static df_func_def_t
df_functions[] = {
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
{ "lower", df_func_lower, 1, 1, ul_semcheck_is_field_string },
{ "upper", df_func_upper, 1, 1, ul_semcheck_is_field_string },
/* Length function is implemented as a DFVM instruction. */
{ "len", NULL, 1, 1, ul_semcheck_is_field },
dfilter: Allow arithmetic expressions as function arguments This allows writing moderately complex expressions, for example a float epsilon test (#16483): Filter: {abs(_ws.ftypes.double - 1) / max(abs(_ws.ftypes.double), abs(1))} < 0.01 Syntax tree: 0 TEST_LT: 1 OP_DIVIDE: 2 FUNCTION(abs#1): 3 OP_SUBTRACT: 4 FIELD(_ws.ftypes.double) 4 FVALUE(1 <FT_DOUBLE>) 2 FUNCTION(max#2): 3 FUNCTION(abs#1): 4 FIELD(_ws.ftypes.double) 3 FUNCTION(abs#1): 4 FVALUE(1 <FT_DOUBLE>) 1 FVALUE(0.01 <FT_DOUBLE>) Instructions: 00000 READ_TREE _ws.ftypes.double -> reg#1 00001 IF_FALSE_GOTO 3 00002 SUBRACT reg#1 - 1 <FT_DOUBLE> -> reg#2 00003 STACK_PUSH reg#2 00004 CALL_FUNCTION abs(reg#2) -> reg#0 00005 STACK_POP 1 00006 IF_FALSE_GOTO 24 00007 READ_TREE _ws.ftypes.double -> reg#1 00008 IF_FALSE_GOTO 9 00009 STACK_PUSH reg#1 00010 CALL_FUNCTION abs(reg#1) -> reg#4 00011 STACK_POP 1 00012 IF_FALSE_GOTO 13 00013 STACK_PUSH reg#4 00014 STACK_PUSH 1 <FT_DOUBLE> 00015 CALL_FUNCTION abs(1 <FT_DOUBLE>) -> reg#5 00016 STACK_POP 1 00017 IF_FALSE_GOTO 18 00018 STACK_PUSH reg#5 00019 CALL_FUNCTION max(reg#5, reg#4) -> reg#3 00020 STACK_POP 2 00021 IF_FALSE_GOTO 24 00022 DIVIDE reg#0 / reg#3 -> reg#6 00023 ANY_LT reg#6 < 0.01 <FT_DOUBLE> 00024 RETURN We now use a stack to pass arguments to the function. The stack is implemented as a list of lists (list of registers). Arguments may still be non-existent to functions (this is a feature). Functions must check for nil arguments (NULL lists) and handle that case. It's somewhat complicated to allow literal values and test compatibility for different types, both because of lack of type information with unparsed/literal and also because it is an underdeveloped area in the code. In my limited testing it was good enough and useful, further enhancements are left for future work.
2022-04-16 01:42:20 +00:00
{ "count", df_func_count, 1, 1, ul_semcheck_is_field },
{ "string", df_func_string, 1, 1, ul_semcheck_string_param },
{ "max", df_func_max, 1, 0, ul_semcheck_compare },
{ "min", df_func_min, 1, 0, ul_semcheck_compare },
{ "abs", df_func_abs, 1, 1, ul_semcheck_absolute_value },
{ NULL, NULL, 0, 0, NULL }
};
/* Lookup a display filter function record by name */
df_func_def_t*
df_func_lookup(const char *name)
{
df_func_def_t *func_def;
func_def = df_functions;
while (func_def->name != NULL) {
if (strcmp(func_def->name, name) == 0) {
return func_def;
}
func_def++;
}
return NULL;
}
/*
* Editor modelines - https://www.wireshark.org/tools/modelines.html
*
* Local variables:
* c-basic-offset: 4
* tab-width: 8
* indent-tabs-mode: nil
* End:
*
* vi: set shiftwidth=4 tabstop=8 expandtab:
* :indentSize=4:tabSize=8:noTabs=true:
*/