wireshark/epan/dissectors/packet-gsmtap.c

1326 lines
53 KiB
C
Raw Normal View History

/* packet-gsmtap.c
* Routines for GSMTAP captures
*
* (C) 2008-2013 by Harald Welte <laforge@gnumonks.org>
* (C) 2011 by Holger Hans Peter Freyther
* (C) 2020 by sysmocom s.f.m.c. GmbH <info@sysmocom.de>
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
/* GSMTAP is a generic header format for GSM protocol captures,
* it uses the IANA-assigned UDP port number 4729 and carries
* payload in various formats of GSM interfaces such as Um MAC
* blocks or Um bursts.
*
* It is defined by the gsmtap.h libosmocore header, in
*
* http://cgit.osmocom.org/libosmocore/tree/include/osmocom/core/gsmtap.h
*
* Example programs generating GSMTAP data are airprobe
* (http://git.gnumonks.org/cgit/airprobe/) or OsmocomBB (http://bb.osmocom.org/)
*
* It has also been used for Tetra by the OsmocomTETRA project.
* (http://tetra.osmocom.org/)
*
* GSMTAP also carries payload in various formats of WiMAX interfaces.
* It uses the wimax plugin to decode the WiMAX bursts.
*/
#include "config.h"
#include <epan/packet.h>
#include <epan/conversation.h>
#include <epan/dissectors/packet-gsm_rlcmac.h>
#include "packet-gsmtap.h"
#include "packet-lapdm.h"
#include "packet-tetra.h"
void proto_register_gsmtap(void);
void proto_reg_handoff_gsmtap(void);
static int proto_gsmtap = -1;
static int hf_gsmtap_version = -1;
static int hf_gsmtap_hdrlen = -1;
static int hf_gsmtap_type = -1;
static int hf_gsmtap_timeslot = -1;
static int hf_gsmtap_subslot = -1;
static int hf_gsmtap_arfcn = -1;
static int hf_gsmtap_uplink = -1;
static int hf_gsmtap_pcs = -1;
static int hf_gsmtap_signal_dbm = -1;
static int hf_gsmtap_snr_db = -1;
static int hf_gsmtap_frame_nr = -1;
static int hf_gsmtap_burst_type = -1;
static int hf_gsmtap_channel_type = -1;
static int hf_gsmtap_tetra_channel_type = -1;
static int hf_gsmtap_gmr1_channel_type = -1;
static int hf_gsmtap_rrc_sub_type = -1;
static int hf_gsmtap_e1t1_sub_type = -1;
static int hf_gsmtap_antenna = -1;
static int hf_sacch_l1h_power_lev = -1;
static int hf_sacch_l1h_fpc = -1;
static int hf_sacch_l1h_sro_srr = -1;
static int hf_sacch_l1h_ta = -1;
GSMTAP: implement dissecting of PTCCH/D messages According to 3GPP TS 45.002, section 3.3.4.2, PTCCH (Packet Timing advance control channel) is a packet dedicated channel, that is used for continuous Timing Advance control in (E)GPRS. There are two sub-types of that logical channel: - PTCCH/U (Uplink): used to transmit random Access Bursts to allow estimation of the Timing Advance for one MS in packet transfer mode. - PTCCH/D (Downlink): used by the network to transmit Timing Advance updates for several MS. As per 3GPP TS 45.003, section 5.2, the coding scheme used for PTCCH/U is the same as for PRACH as specified in subclause 5.3, while the coding scheme used for PTCCH/D is the same as for CS-1 as specified in subclause 5.1.1. The format of PTCCH/D messages can be described as follows: +--------------+--------------+-----+---------------+------------------+ | Octet 1 | Octet 2 | | Octet 16 | Octet 17 .. 23 | +---+----------+---+----------+-----+---+-----------+------------------+ | 0 | TA TAI=0 | 0 | TA TAI=1 | ... | 0 | TA TAI=15 | Padding 00101011 | +---+----------+---+----------+-----+---+-----------+------------------+ what gives us 16 Timing Advance values (7 bit each) for 16 different mobile stations identified by TAI (0..15). The remaining space is padding and shall be filled with constant value 0x2B. Bug: 16096 Change-Id: I0ce81d922a8a8c3981da2486baa3e1efcff46539 Reviewed-on: https://code.wireshark.org/review/34660 Reviewed-by: Pau Espin Pedrol <pespin@sysmocom.de> Petri-Dish: Anders Broman <a.broman58@gmail.com> Tested-by: Petri Dish Buildbot Reviewed-by: Anders Broman <a.broman58@gmail.com>
2019-09-30 15:17:23 +00:00
static int hf_ptcch_spare = -1;
static int hf_ptcch_ta_idx = -1;
static int hf_ptcch_ta_val = -1;
static int hf_ptcch_padding = -1;
static int hf_um_voice_type = -1;
static gint ett_gsmtap = -1;
enum {
GSMTAP_SUB_DATA = 0,
GSMTAP_SUB_UM,
GSMTAP_SUB_UM_LAPDM,
GSMTAP_SUB_UM_RLC_MAC_UL,
GSMTAP_SUB_UM_RLC_MAC_DL,
GSMTAP_SUB_LLC,
GSMTAP_SUB_SNDCP,
GSMTAP_SUB_ABIS,
/* WiMAX sub handles */
GSMTAP_SUB_CDMA_CODE,
GSMTAP_SUB_FCH,
GSMTAP_SUB_FFB,
GSMTAP_SUB_PDU,
GSMTAP_SUB_HACK,
GSMTAP_SUB_PHY_ATTRIBUTES,
GSMTAP_SUB_CBCH,
GSMTAP_SUB_SIM,
/* GMR-1 sub handles */
GSMTAP_SUB_GMR1_BCCH,
GSMTAP_SUB_GMR1_CCCH,
GSMTAP_SUB_GMR1_LAPSAT,
GSMTAP_SUB_GMR1_RACH,
/* UMTS */
GSMTAP_SUB_UMTS_RLC_MAC,
GSMTAP_SUB_UMTS_RRC,
/* LTE*/
GSMTAP_SUB_LTE_RRC,
GSMTAP_SUB_LTE_NAS,
GSMTAP_SUB_LAPD,
GSMTAP_SUB_FR,
GSMTAP_SUB_MAX
};
enum {
GSMTAP_RRC_SUB_DL_DCCH_Message = 0,
GSMTAP_RRC_SUB_UL_DCCH_Message,
GSMTAP_RRC_SUB_DL_CCCH_Message,
GSMTAP_RRC_SUB_UL_CCCH_Message,
GSMTAP_RRC_SUB_PCCH_Message,
GSMTAP_RRC_SUB_DL_SHCCH_Message,
GSMTAP_RRC_SUB_UL_SHCCH_Message,
GSMTAP_RRC_SUB_BCCH_FACH_Message,
GSMTAP_RRC_SUB_BCCH_BCH_Message,
GSMTAP_RRC_SUB_MCCH_Message,
GSMTAP_RRC_SUB_MSCH_Message,
GSMTAP_RRC_SUB_HandoverToUTRANCommand,
GSMTAP_RRC_SUB_InterRATHandoverInfo,
GSMTAP_RRC_SUB_SystemInformation_BCH,
GSMTAP_RRC_SUB_System_Information_Container,
GSMTAP_RRC_SUB_UE_RadioAccessCapabilityInfo,
GSMTAP_RRC_SUB_MasterInformationBlock,
GSMTAP_RRC_SUB_SysInfoType1,
GSMTAP_RRC_SUB_SysInfoType2,
GSMTAP_RRC_SUB_SysInfoType3,
GSMTAP_RRC_SUB_SysInfoType4,
GSMTAP_RRC_SUB_SysInfoType5,
GSMTAP_RRC_SUB_SysInfoType5bis,
GSMTAP_RRC_SUB_SysInfoType6,
GSMTAP_RRC_SUB_SysInfoType7,
GSMTAP_RRC_SUB_SysInfoType8,
GSMTAP_RRC_SUB_SysInfoType9,
GSMTAP_RRC_SUB_SysInfoType10,
GSMTAP_RRC_SUB_SysInfoType11,
GSMTAP_RRC_SUB_SysInfoType11bis,
GSMTAP_RRC_SUB_SysInfoType12,
GSMTAP_RRC_SUB_SysInfoType13,
GSMTAP_RRC_SUB_SysInfoType13_1,
GSMTAP_RRC_SUB_SysInfoType13_2,
GSMTAP_RRC_SUB_SysInfoType13_3,
GSMTAP_RRC_SUB_SysInfoType13_4,
GSMTAP_RRC_SUB_SysInfoType14,
GSMTAP_RRC_SUB_SysInfoType15,
GSMTAP_RRC_SUB_SysInfoType15bis,
GSMTAP_RRC_SUB_SysInfoType15_1,
GSMTAP_RRC_SUB_SysInfoType15_1bis,
GSMTAP_RRC_SUB_SysInfoType15_2,
GSMTAP_RRC_SUB_SysInfoType15_2bis,
GSMTAP_RRC_SUB_SysInfoType15_2ter,
GSMTAP_RRC_SUB_SysInfoType15_3,
GSMTAP_RRC_SUB_SysInfoType15_3bis,
GSMTAP_RRC_SUB_SysInfoType15_4,
GSMTAP_RRC_SUB_SysInfoType15_5,
GSMTAP_RRC_SUB_SysInfoType15_6,
GSMTAP_RRC_SUB_SysInfoType15_7,
GSMTAP_RRC_SUB_SysInfoType15_8,
GSMTAP_RRC_SUB_SysInfoType16,
GSMTAP_RRC_SUB_SysInfoType17,
GSMTAP_RRC_SUB_SysInfoType18,
GSMTAP_RRC_SUB_SysInfoType19,
GSMTAP_RRC_SUB_SysInfoType20,
GSMTAP_RRC_SUB_SysInfoType21,
GSMTAP_RRC_SUB_SysInfoType22,
GSMTAP_RRC_SUB_SysInfoTypeSB1,
GSMTAP_RRC_SUB_SysInfoTypeSB2,
GSMTAP_RRC_SUB_ToTargetRNC_Container,
GSMTAP_RRC_SUB_TargetRNC_ToSourceRNC_Container,
GSMTAP_RRC_SUB_MAX
};
static const value_string rrc_sub_types[] = {
{ GSMTAP_RRC_SUB_DL_DCCH_Message, "RRC DL-DCCH" },
{ GSMTAP_RRC_SUB_UL_DCCH_Message, "RRC UL-DCCH" },
{ GSMTAP_RRC_SUB_DL_CCCH_Message, "RRC DL-CCCH" },
{ GSMTAP_RRC_SUB_UL_CCCH_Message, "RRC UL-CCCH" },
{ GSMTAP_RRC_SUB_PCCH_Message, "RRC PCCH" },
{ GSMTAP_RRC_SUB_DL_SHCCH_Message, "RRC DL-SHCCH" },
{ GSMTAP_RRC_SUB_UL_SHCCH_Message, "RRC UL-SHCCH" },
{ GSMTAP_RRC_SUB_BCCH_FACH_Message, "RRC BCCH-FACH" },
{ GSMTAP_RRC_SUB_BCCH_BCH_Message, "RRC BCCH-BCH" },
{ GSMTAP_RRC_SUB_MCCH_Message, "RRC MCCH" },
{ GSMTAP_RRC_SUB_MSCH_Message, "RRC MSCH" },
{ GSMTAP_RRC_SUB_HandoverToUTRANCommand, "RRC Handover To UTRAN Command" },
{ GSMTAP_RRC_SUB_InterRATHandoverInfo, "RRC Inter RAT Handover Info" },
{ GSMTAP_RRC_SUB_SystemInformation_BCH, "RRC System Information - BCH" },
{ GSMTAP_RRC_SUB_System_Information_Container, "RRC System Information Container" },
{ GSMTAP_RRC_SUB_UE_RadioAccessCapabilityInfo, "RRC UE Radio Access Capability Info" },
{ GSMTAP_RRC_SUB_MasterInformationBlock, "RRC Master Information Block" },
{ GSMTAP_RRC_SUB_SysInfoType1, "RRC System Information Type 1" },
{ GSMTAP_RRC_SUB_SysInfoType2, "RRC System Information Type 2" },
{ GSMTAP_RRC_SUB_SysInfoType3, "RRC System Information Type 3" },
{ GSMTAP_RRC_SUB_SysInfoType4, "RRC System Information Type 4" },
{ GSMTAP_RRC_SUB_SysInfoType5, "RRC System Information Type 5" },
{ GSMTAP_RRC_SUB_SysInfoType5bis, "RRC System Information Type 5bis" },
{ GSMTAP_RRC_SUB_SysInfoType6, "RRC System Information Type 6" },
{ GSMTAP_RRC_SUB_SysInfoType7, "RRC System Information Type 7" },
{ GSMTAP_RRC_SUB_SysInfoType8, "RRC System Information Type 8" },
{ GSMTAP_RRC_SUB_SysInfoType9, "RRC System Information Type 9" },
{ GSMTAP_RRC_SUB_SysInfoType10, "RRC System Information Type 10" },
{ GSMTAP_RRC_SUB_SysInfoType11, "RRC System Information Type 11" },
{ GSMTAP_RRC_SUB_SysInfoType11bis, "RRC System Information Type 11bis" },
{ GSMTAP_RRC_SUB_SysInfoType12, "RRC System Information Type 12" },
{ GSMTAP_RRC_SUB_SysInfoType13, "RRC System Information Type 13" },
{ GSMTAP_RRC_SUB_SysInfoType13_1, "RRC System Information Type 13.1" },
{ GSMTAP_RRC_SUB_SysInfoType13_2, "RRC System Information Type 13.2" },
{ GSMTAP_RRC_SUB_SysInfoType13_3, "RRC System Information Type 13.3" },
{ GSMTAP_RRC_SUB_SysInfoType13_4, "RRC System Information Type 13.4" },
{ GSMTAP_RRC_SUB_SysInfoType14, "RRC System Information Type 14" },
{ GSMTAP_RRC_SUB_SysInfoType15, "RRC System Information Type 15" },
{ GSMTAP_RRC_SUB_SysInfoType15bis, "RRC System Information Type 15bis" },
{ GSMTAP_RRC_SUB_SysInfoType15_1, "RRC System Information Type 15.1" },
{ GSMTAP_RRC_SUB_SysInfoType15_1bis, "RRC System Information Type 15.1bis" },
{ GSMTAP_RRC_SUB_SysInfoType15_2, "RRC System Information Type 15.1" },
{ GSMTAP_RRC_SUB_SysInfoType15_2bis, "RRC System Information Type 15.2bis" },
{ GSMTAP_RRC_SUB_SysInfoType15_2ter, "RRC System Information Type 15.2ter" },
{ GSMTAP_RRC_SUB_SysInfoType15_3, "RRC System Information Type 15.3" },
{ GSMTAP_RRC_SUB_SysInfoType15_3bis, "RRC System Information Type 15.3bis" },
{ GSMTAP_RRC_SUB_SysInfoType15_4, "RRC System Information Type 15.4" },
{ GSMTAP_RRC_SUB_SysInfoType15_5, "RRC System Information Type 15.5" },
{ GSMTAP_RRC_SUB_SysInfoType15_6, "RRC System Information Type 15.6" },
{ GSMTAP_RRC_SUB_SysInfoType15_7, "RRC System Information Type 15.7 "},
{ GSMTAP_RRC_SUB_SysInfoType15_8, "RRC System Information Type 15.8" },
{ GSMTAP_RRC_SUB_SysInfoType16, "RRC System Information Type 16" },
{ GSMTAP_RRC_SUB_SysInfoType17, "RRC System Information Type 17" },
{ GSMTAP_RRC_SUB_SysInfoType18, "RRC System Information Type 18" },
{ GSMTAP_RRC_SUB_SysInfoType19, "RRC System Information Type 19" },
{ GSMTAP_RRC_SUB_SysInfoType20, "RRC System Information Type 20" },
{ GSMTAP_RRC_SUB_SysInfoType21, "RRC System Information Type 21" },
{ GSMTAP_RRC_SUB_SysInfoType22, "RRC System Information Type 22" },
{ GSMTAP_RRC_SUB_SysInfoTypeSB1, "RRC System Information Type SB 1" },
{ GSMTAP_RRC_SUB_SysInfoTypeSB2, "RRC System Information Type SB 2" },
{ GSMTAP_RRC_SUB_ToTargetRNC_Container, "RRC To Target RNC Container" },
{ GSMTAP_RRC_SUB_TargetRNC_ToSourceRNC_Container, "RRC Target RNC To Source RNC Container" },
{ 0, NULL }
};
/* LTE RRC message types */
enum {
GSMTAP_LTE_RRC_SUB_DL_CCCH_Message = 0,
GSMTAP_LTE_RRC_SUB_DL_DCCH_Message,
GSMTAP_LTE_RRC_SUB_UL_CCCH_Message,
GSMTAP_LTE_RRC_SUB_UL_DCCH_Message,
GSMTAP_LTE_RRC_SUB_BCCH_BCH_Message,
GSMTAP_LTE_RRC_SUB_BCCH_DL_SCH_Message,
GSMTAP_LTE_RRC_SUB_PCCH_Message,
GSMTAP_LTE_RRC_SUB_MCCH_Message,
GSMTAP_LTE_RRC_SUB_BCCH_BCH_Message_MBMS,
GSMTAP_LTE_RRC_SUB_BCCH_DL_SCH_Message_BR,
GSMTAP_LTE_RRC_SUB_BCCH_DL_SCH_Message_MBMS,
GSMTAP_LTE_RRC_SUB_SC_MCCH_Message,
GSMTAP_LTE_RRC_SUB_SBCCH_SL_BCH_Message,
GSMTAP_LTE_RRC_SUB_SBCCH_SL_BCH_Message_V2X,
GSMTAP_LTE_RRC_SUB_DL_CCCH_Message_NB,
GSMTAP_LTE_RRC_SUB_DL_DCCH_Message_NB,
GSMTAP_LTE_RRC_SUB_UL_CCCH_Message_NB,
GSMTAP_LTE_RRC_SUB_UL_DCCH_Message_NB,
GSMTAP_LTE_RRC_SUB_BCCH_BCH_Message_NB,
GSMTAP_LTE_RRC_SUB_BCCH_BCH_Message_TDD_NB,
GSMTAP_LTE_RRC_SUB_BCCH_DL_SCH_Message_NB,
GSMTAP_LTE_RRC_SUB_PCCH_Message_NB,
GSMTAP_LTE_RRC_SUB_SC_MCCH_Message_NB,
GSMTAP_LTE_RRC_SUB_MAX
};
/* LTE NAS message types */
enum {
GSMTAP_LTE_NAS_PLAIN = 0,
GSMTAP_LTE_NAS_SEC_HEADER,
GSMTAP_LTE_NAS_SUB_MAX
};
/*! First byte of type==GSMTAP_TYPE_UM sub_type==GSMTAP_CHANNEL_VOICE payload */
enum gsmtap_um_voice_type {
/*! 1 byte TOC + 112 bits (14 octets) = 15 octets payload;
* Reference is RFC5993 Section 5.2.1 + 3GPP TS 46.030 Annex B */
GSMTAP_UM_VOICE_HR,
/*! 33 payload bytes; Reference is RFC3551 Section 4.5.8.1 */
GSMTAP_UM_VOICE_FR,
/*! 31 payload bytes; Reference is RFC3551 Section 4.5.9 + ETSI TS 101 318 */
GSMTAP_UM_VOICE_EFR,
/*! 1 byte TOC + 5..31 bytes = 6..32 bytes payload; RFC4867 octet-aligned */
GSMTAP_UM_VOICE_AMR,
/* TODO: Revisit the types below; their usage; ... */
GSMTAP_UM_VOICE_AMR_SID_BAD,
GSMTAP_UM_VOICE_AMR_ONSET,
GSMTAP_UM_VOICE_AMR_RATSCCH,
GSMTAP_UM_VOICE_AMR_SID_UPDATE_INH,
GSMTAP_UM_VOICE_AMR_SID_FIRST_P1,
GSMTAP_UM_VOICE_AMR_SID_FIRST_P2,
GSMTAP_UM_VOICE_AMR_SID_FIRST_INH,
GSMTAP_UM_VOICE_AMR_RATSCCH_MARKER,
GSMTAP_UM_VOICE_AMR_RATSCCH_DATA,
};
static dissector_handle_t sub_handles[GSMTAP_SUB_MAX];
static dissector_handle_t rrc_sub_handles[GSMTAP_RRC_SUB_MAX];
static dissector_handle_t lte_rrc_sub_handles[GSMTAP_LTE_RRC_SUB_MAX];
static dissector_handle_t lte_nas_sub_handles[GSMTAP_LTE_NAS_SUB_MAX];
static dissector_table_t gsmtap_dissector_table;
static const value_string gsmtap_bursts[] = {
{ GSMTAP_BURST_UNKNOWN, "UNKNOWN" },
{ GSMTAP_BURST_FCCH, "FCCH" },
{ GSMTAP_BURST_PARTIAL_SCH, "PARTIAL SCH" },
{ GSMTAP_BURST_SCH, "SCH" },
{ GSMTAP_BURST_CTS_SCH, "CTS SCH" },
{ GSMTAP_BURST_COMPACT_SCH, "COMPACT SCH" },
{ GSMTAP_BURST_NORMAL, "NORMAL" },
{ GSMTAP_BURST_DUMMY, "DUMMY" },
{ GSMTAP_BURST_ACCESS, "RACH" },
/* WiMAX bursts */
{ GSMTAP_BURST_CDMA_CODE, "CDMA Code" },
{ GSMTAP_BURST_FCH, "FCH" },
{ GSMTAP_BURST_FFB, "Fast Feedback" },
{ GSMTAP_BURST_PDU, "PDU" },
{ GSMTAP_BURST_HACK, "HACK" },
{ GSMTAP_BURST_PHY_ATTRIBUTES, "PHY Attributes" },
{ 0, NULL },
};
static const value_string gsmtap_channels[] = {
{ GSMTAP_CHANNEL_UNKNOWN, "UNKNOWN" },
{ GSMTAP_CHANNEL_BCCH, "BCCH" },
{ GSMTAP_CHANNEL_CCCH, "CCCH" },
{ GSMTAP_CHANNEL_RACH, "RACH" },
{ GSMTAP_CHANNEL_AGCH, "AGCH" },
{ GSMTAP_CHANNEL_PCH, "PCH" },
{ GSMTAP_CHANNEL_SDCCH, "SDCCH" },
{ GSMTAP_CHANNEL_SDCCH4, "SDCCH/4" },
{ GSMTAP_CHANNEL_SDCCH8, "SDCCH/8" },
{ GSMTAP_CHANNEL_TCH_F, "FACCH/F" },
{ GSMTAP_CHANNEL_TCH_H, "FACCH/H" },
{ GSMTAP_CHANNEL_PACCH, "PACCH" },
{ GSMTAP_CHANNEL_CBCH52, "CBCH" },
{ GSMTAP_CHANNEL_PDTCH, "PDTCH" },
{ GSMTAP_CHANNEL_PTCCH, "PTTCH" },
{ GSMTAP_CHANNEL_CBCH51, "CBCH" },
{ GSMTAP_CHANNEL_VOICE_F, "TCH/F" },
{ GSMTAP_CHANNEL_VOICE_H, "TCH/H" },
{ GSMTAP_CHANNEL_ACCH|
GSMTAP_CHANNEL_SDCCH, "LSACCH" },
{ GSMTAP_CHANNEL_ACCH|
GSMTAP_CHANNEL_SDCCH4, "SACCH/4" },
{ GSMTAP_CHANNEL_ACCH|
GSMTAP_CHANNEL_SDCCH8, "SACCH/8" },
{ GSMTAP_CHANNEL_ACCH|
GSMTAP_CHANNEL_TCH_F, "SACCH/F" },
{ GSMTAP_CHANNEL_ACCH|
GSMTAP_CHANNEL_TCH_H, "SACCH/H" },
{ 0, NULL },
};
static const value_string gsmtap_tetra_channels[] = {
{ GSMTAP_TETRA_BSCH, "BSCH" },
{ GSMTAP_TETRA_AACH, "AACH" },
{ GSMTAP_TETRA_SCH_HU, "SCH/HU" },
{ GSMTAP_TETRA_SCH_HD, "SCH/HD" },
{ GSMTAP_TETRA_SCH_F, "SCH/F" },
{ GSMTAP_TETRA_BNCH, "BNCH" },
{ GSMTAP_TETRA_STCH, "STCH" },
{ GSMTAP_TETRA_TCH_F, "AACH" },
{ 0, NULL },
};
static const value_string gsmtap_gmr1_channels[] = {
{ GSMTAP_GMR1_BCCH, "BCCH" },
{ GSMTAP_GMR1_CCCH, "CCCH" },
{ GSMTAP_GMR1_PCH, "PCH" },
{ GSMTAP_GMR1_AGCH, "AGCH" },
{ GSMTAP_GMR1_BACH, "BACH" },
{ GSMTAP_GMR1_RACH, "RACH" },
{ GSMTAP_GMR1_CBCH, "CBCH" },
{ GSMTAP_GMR1_SDCCH, "SDCCH" },
{ GSMTAP_GMR1_TACCH, "TACCH" },
{ GSMTAP_GMR1_GBCH, "GBCH" },
{ GSMTAP_GMR1_TCH3, "TCH3" },
{ GSMTAP_GMR1_TCH3|
GSMTAP_GMR1_FACCH, "FACCH3" },
{ GSMTAP_GMR1_TCH3|
GSMTAP_GMR1_DKAB, "DKAB" },
{ GSMTAP_GMR1_TCH6, "TCH6" },
{ GSMTAP_GMR1_TCH6|
GSMTAP_GMR1_FACCH, "FACCH6" },
{ GSMTAP_GMR1_TCH6|
GSMTAP_GMR1_SACCH, "SACCH6" },
{ GSMTAP_GMR1_TCH9, "TCH9" },
{ GSMTAP_GMR1_TCH9|
GSMTAP_GMR1_FACCH, "FACCH9" },
{ GSMTAP_GMR1_TCH9|
GSMTAP_GMR1_SACCH, "SACCH9" },
{ 0, NULL },
};
/* the mapping is not complete */
static const int gsmtap_to_tetra[9] = {
0,
TETRA_CHAN_BSCH,
TETRA_CHAN_AACH,
TETRA_CHAN_SCH_HU,
0,
TETRA_CHAN_SCH_F,
TETRA_CHAN_BNCH,
TETRA_CHAN_STCH,
0
};
static const value_string gsmtap_types[] = {
{ GSMTAP_TYPE_UM, "GSM Um (MS<->BTS)" },
{ GSMTAP_TYPE_ABIS, "GSM Abis (BTS<->BSC)" },
{ GSMTAP_TYPE_UM_BURST, "GSM Um burst (MS<->BTS)" },
{ GSMTAP_TYPE_SIM, "SIM" },
{ GSMTAP_TYPE_TETRA_I1, "TETRA V+D"},
{ GSMTAP_TTPE_TETRA_I1_BURST, "TETRA V+D burst"},
{ GSMTAP_TYPE_WMX_BURST,"WiMAX burst" },
{ GSMTAP_TYPE_GMR1_UM, "GMR-1 air interface (MES-MS<->GTS)" },
{ GSMTAP_TYPE_UMTS_RLC_MAC, "UMTS RLC/MAC" },
{ GSMTAP_TYPE_UMTS_RRC, "UMTS RRC" },
{ GSMTAP_TYPE_LTE_RRC, "LTE RRC" },
{ GSMTAP_TYPE_LTE_MAC, "LTE MAC" },
{ GSMTAP_TYPE_LTE_MAC_FRAMED, "LTE MAC framed" },
{ GSMTAP_TYPE_OSMOCORE_LOG, "libosmocore logging" },
{ GSMTAP_TYPE_QC_DIAG, "Qualcomm DIAG" },
{ GSMTAP_TYPE_LTE_NAS, "LTE NAS" },
{ GSMTAP_TYPE_E1T1, "E1/T1" },
{ 0, NULL },
};
static const value_string gsmtap_um_voice_types[] = {
{ GSMTAP_UM_VOICE_HR, "HR" },
{ GSMTAP_UM_VOICE_FR, "FR" },
{ GSMTAP_UM_VOICE_EFR, "EFR" },
{ GSMTAP_UM_VOICE_AMR, "AMR" },
{ GSMTAP_UM_VOICE_AMR_SID_BAD, "AMR_SID_BAD" },
{ GSMTAP_UM_VOICE_AMR_ONSET, "AMR_ONSET" },
{ GSMTAP_UM_VOICE_AMR_RATSCCH, "AMR_RATSCCH" },
{ GSMTAP_UM_VOICE_AMR_SID_UPDATE_INH, "AMR_SID_UPDATE_INH" },
{ GSMTAP_UM_VOICE_AMR_SID_FIRST_P1, "AMR_SID_FIRST_P1" },
{ GSMTAP_UM_VOICE_AMR_SID_FIRST_P2, "AMR_SID_FIRST_P2" },
{ GSMTAP_UM_VOICE_AMR_SID_FIRST_INH, "AMR_SID_FIRST_INH" },
{ GSMTAP_UM_VOICE_AMR_RATSCCH_MARKER, "AMR_RATSCCH_MARKER" },
{ GSMTAP_UM_VOICE_AMR_RATSCCH_DATA, "AMR_RATSCCH_DATA" },
{ 0, NULL },
};
static const value_string gsmtap_um_e1t1_types[] = {
{ GSMTAP_E1T1_LAPD, "LAPD" }, /* ISDN LAPD Q.921 */
{ GSMTAP_E1T1_FR, "FR" }, /* Frame Relay */
{ GSMTAP_E1T1_RAW, "RAW" }, /* RAW/transparent B-channels */
{ GSMTAP_E1T1_TRAU16, "TRAU 16k" }, /* 16k/s sub-channels (I.460) with GSM TRAU frames */
{ GSMTAP_E1T1_TRAU8, "TRAU 8k" }, /* 8k/s sub-channels (I.460) with GSM TRAU frames */
{ 0, NULL },
};
/* dissect a SACCH L1 header which is included in the first 2 bytes
* of every SACCH frame (according to TS 04.04) */
static void
dissect_sacch_l1h(tvbuff_t *tvb, proto_tree *tree)
{
proto_item *ti;
proto_tree *l1h_tree = NULL;
if (!tree)
return;
ti = proto_tree_add_protocol_format(tree, proto_gsmtap, tvb, 0, 2,
"SACCH L1 Header, Power Level: %u, Timing Advance: %u",
tvb_get_guint8(tvb, 0) & 0x1f,
tvb_get_guint8(tvb, 1));
l1h_tree = proto_item_add_subtree(ti, ett_gsmtap);
/* Power Level */
proto_tree_add_item(l1h_tree, hf_sacch_l1h_power_lev, tvb, 0, 1, ENC_BIG_ENDIAN);
/* Fast Power Control */
proto_tree_add_item(l1h_tree, hf_sacch_l1h_fpc, tvb, 0, 1, ENC_BIG_ENDIAN);
/* SRO/SRR (SACCH Repetition) bit */
proto_tree_add_item(l1h_tree, hf_sacch_l1h_sro_srr, tvb, 0, 1, ENC_BIG_ENDIAN);
/* Acutal Timing Advance */
proto_tree_add_item(l1h_tree, hf_sacch_l1h_ta, tvb, 1, 1, ENC_BIG_ENDIAN);
}
GSMTAP: implement dissecting of PTCCH/D messages According to 3GPP TS 45.002, section 3.3.4.2, PTCCH (Packet Timing advance control channel) is a packet dedicated channel, that is used for continuous Timing Advance control in (E)GPRS. There are two sub-types of that logical channel: - PTCCH/U (Uplink): used to transmit random Access Bursts to allow estimation of the Timing Advance for one MS in packet transfer mode. - PTCCH/D (Downlink): used by the network to transmit Timing Advance updates for several MS. As per 3GPP TS 45.003, section 5.2, the coding scheme used for PTCCH/U is the same as for PRACH as specified in subclause 5.3, while the coding scheme used for PTCCH/D is the same as for CS-1 as specified in subclause 5.1.1. The format of PTCCH/D messages can be described as follows: +--------------+--------------+-----+---------------+------------------+ | Octet 1 | Octet 2 | | Octet 16 | Octet 17 .. 23 | +---+----------+---+----------+-----+---+-----------+------------------+ | 0 | TA TAI=0 | 0 | TA TAI=1 | ... | 0 | TA TAI=15 | Padding 00101011 | +---+----------+---+----------+-----+---+-----------+------------------+ what gives us 16 Timing Advance values (7 bit each) for 16 different mobile stations identified by TAI (0..15). The remaining space is padding and shall be filled with constant value 0x2B. Bug: 16096 Change-Id: I0ce81d922a8a8c3981da2486baa3e1efcff46539 Reviewed-on: https://code.wireshark.org/review/34660 Reviewed-by: Pau Espin Pedrol <pespin@sysmocom.de> Petri-Dish: Anders Broman <a.broman58@gmail.com> Tested-by: Petri Dish Buildbot Reviewed-by: Anders Broman <a.broman58@gmail.com>
2019-09-30 15:17:23 +00:00
/* Dissect a PTCCH/D (Packet Timing Advance Control Channel) message.
* See 3GPP TS 45.010, section 5.6.2 and 3GPP TS 45.002, section 3.3.4.2.
*
* +--------------+--------------+-----+---------------+------------------+
* | Octet 1 | Octet 2 | | Octet 16 | Octet 17 .. 23 |
* +---+----------+---+----------+-----+---+-----------+------------------+
* | 0 | TA TAI=0 | 0 | TA TAI=1 | ... | 0 | TA TAI=15 | Padding 00101011 |
* +---+----------+---+----------+-----+---+-----------+------------------+
*/
static void
dissect_ptcch_dl(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
GSMTAP: implement dissecting of PTCCH/D messages According to 3GPP TS 45.002, section 3.3.4.2, PTCCH (Packet Timing advance control channel) is a packet dedicated channel, that is used for continuous Timing Advance control in (E)GPRS. There are two sub-types of that logical channel: - PTCCH/U (Uplink): used to transmit random Access Bursts to allow estimation of the Timing Advance for one MS in packet transfer mode. - PTCCH/D (Downlink): used by the network to transmit Timing Advance updates for several MS. As per 3GPP TS 45.003, section 5.2, the coding scheme used for PTCCH/U is the same as for PRACH as specified in subclause 5.3, while the coding scheme used for PTCCH/D is the same as for CS-1 as specified in subclause 5.1.1. The format of PTCCH/D messages can be described as follows: +--------------+--------------+-----+---------------+------------------+ | Octet 1 | Octet 2 | | Octet 16 | Octet 17 .. 23 | +---+----------+---+----------+-----+---+-----------+------------------+ | 0 | TA TAI=0 | 0 | TA TAI=1 | ... | 0 | TA TAI=15 | Padding 00101011 | +---+----------+---+----------+-----+---+-----------+------------------+ what gives us 16 Timing Advance values (7 bit each) for 16 different mobile stations identified by TAI (0..15). The remaining space is padding and shall be filled with constant value 0x2B. Bug: 16096 Change-Id: I0ce81d922a8a8c3981da2486baa3e1efcff46539 Reviewed-on: https://code.wireshark.org/review/34660 Reviewed-by: Pau Espin Pedrol <pespin@sysmocom.de> Petri-Dish: Anders Broman <a.broman58@gmail.com> Tested-by: Petri Dish Buildbot Reviewed-by: Anders Broman <a.broman58@gmail.com>
2019-09-30 15:17:23 +00:00
{
proto_tree *sub_tree;
proto_item *ti, *gi;
int offset;
col_set_str(pinfo->cinfo, COL_INFO, "Packet Timing Advance Control");
GSMTAP: implement dissecting of PTCCH/D messages According to 3GPP TS 45.002, section 3.3.4.2, PTCCH (Packet Timing advance control channel) is a packet dedicated channel, that is used for continuous Timing Advance control in (E)GPRS. There are two sub-types of that logical channel: - PTCCH/U (Uplink): used to transmit random Access Bursts to allow estimation of the Timing Advance for one MS in packet transfer mode. - PTCCH/D (Downlink): used by the network to transmit Timing Advance updates for several MS. As per 3GPP TS 45.003, section 5.2, the coding scheme used for PTCCH/U is the same as for PRACH as specified in subclause 5.3, while the coding scheme used for PTCCH/D is the same as for CS-1 as specified in subclause 5.1.1. The format of PTCCH/D messages can be described as follows: +--------------+--------------+-----+---------------+------------------+ | Octet 1 | Octet 2 | | Octet 16 | Octet 17 .. 23 | +---+----------+---+----------+-----+---+-----------+------------------+ | 0 | TA TAI=0 | 0 | TA TAI=1 | ... | 0 | TA TAI=15 | Padding 00101011 | +---+----------+---+----------+-----+---+-----------+------------------+ what gives us 16 Timing Advance values (7 bit each) for 16 different mobile stations identified by TAI (0..15). The remaining space is padding and shall be filled with constant value 0x2B. Bug: 16096 Change-Id: I0ce81d922a8a8c3981da2486baa3e1efcff46539 Reviewed-on: https://code.wireshark.org/review/34660 Reviewed-by: Pau Espin Pedrol <pespin@sysmocom.de> Petri-Dish: Anders Broman <a.broman58@gmail.com> Tested-by: Petri Dish Buildbot Reviewed-by: Anders Broman <a.broman58@gmail.com>
2019-09-30 15:17:23 +00:00
if (!tree)
return;
ti = proto_tree_add_protocol_format(tree, proto_gsmtap, tvb, 0, 23,
"PTCCH (Packet Timing Advance Control Channel) on Downlink");
sub_tree = proto_item_add_subtree(ti, ett_gsmtap);
for (offset = 0; offset < 16; offset++) {
/* Meta info: Timing Advance Index */
gi = proto_tree_add_uint(sub_tree, hf_ptcch_ta_idx, tvb, 0, 0, offset);
proto_item_set_generated(gi);
proto_tree_add_item(sub_tree, hf_ptcch_spare, tvb, offset, 1, ENC_NA);
proto_tree_add_item(sub_tree, hf_ptcch_ta_val, tvb, offset, 1, ENC_NA);
}
/* Spare padding */
proto_tree_add_item(sub_tree, hf_ptcch_padding, tvb, offset, -1, ENC_NA);
}
static void
handle_lapdm(guint8 sub_type, tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
lapdm_data_t ld;
ld.hdr_type = LAPDM_HDR_FMT_B;
/* only downlink SACCH frames use B4 header format */
if (sub_type & GSMTAP_CHANNEL_ACCH && pinfo->p2p_dir == P2P_DIR_RECV)
ld.hdr_type = LAPDM_HDR_FMT_B4;
call_dissector_with_data(sub_handles[GSMTAP_SUB_UM_LAPDM], tvb, pinfo, tree, &ld);
}
static void
dissect_um_voice(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
tvbuff_t *payload_tvb;
guint8 vtype = tvb_get_guint8(tvb, 0);
col_add_fstr(pinfo->cinfo, COL_INFO, "GSM CS User Plane (Voice/CSD): %s",
val_to_str(vtype, gsmtap_um_voice_types, "Unknown %d"));
proto_tree_add_item(tree, hf_um_voice_type, tvb, 0, 1, ENC_NA);
payload_tvb = tvb_new_subset_length(tvb, 1, tvb_reported_length(tvb)-1);
call_dissector(sub_handles[GSMTAP_SUB_DATA], payload_tvb, pinfo, tree);
}
static void
handle_tetra(int channel, tvbuff_t *payload_tvb, packet_info *pinfo, proto_tree *tree)
{
int tetra_chan;
if (channel < 0 || channel > GSMTAP_TETRA_TCH_F)
return;
tetra_chan = gsmtap_to_tetra[channel];
if (tetra_chan <= 0)
return;
tetra_dissect_pdu(tetra_chan, TETRA_DOWNLINK, payload_tvb, tree, pinfo);
}
/* length of an EGPRS RLC data block for given MCS */
static const guint data_block_len_by_mcs[] = {
0, /* MCS0 */
22, /* MCS1 */
28,
37,
44,
56,
74,
56,
68,
74, /* MCS9 */
0, /* MCS_INVALID */
};
/* determine the number of rlc data blocks and their size / offsets */
static void
setup_rlc_mac_priv(RlcMacPrivateData_t *rm, gboolean is_uplink,
guint *n_calls, guint *data_block_bits, guint *data_block_offsets)
{
guint nc, dbl = 0, dbo[2] = {0,0};
dbl = data_block_len_by_mcs[rm->mcs];
switch (rm->block_format) {
case RLCMAC_HDR_TYPE_1:
nc = 3;
dbo[0] = is_uplink ? 5*8 + 6 : 5*8 + 0;
dbo[1] = dbo[0] + dbl * 8 + 2;
break;
case RLCMAC_HDR_TYPE_2:
nc = 2;
dbo[0] = is_uplink ? 4*8 + 5 : 3*8 + 4;
break;
case RLCMAC_HDR_TYPE_3:
nc = 2;
dbo[0] = 3*8 + 7;
break;
default:
nc = 1;
break;
}
*n_calls = nc;
*data_block_bits = dbl * 8 + 2;
data_block_offsets[0] = dbo[0];
data_block_offsets[1] = dbo[1];
}
/* bit-shift the entire 'src' of length 'length_bytes' by 'offset_bits'
* and store the reuslt to caller-allocated 'buffer'. The shifting is
* done lsb-first, unlike tvb_new_octet_aligned() */
static void clone_aligned_buffer_lsbf(guint offset_bits, guint length_bytes,
const guint8 *src, guint8 *buffer)
{
guint hdr_bytes;
guint extra_bits;
guint i;
guint8 c, last_c;
guint8 *dst;
hdr_bytes = offset_bits / 8;
extra_bits = offset_bits % 8;
if (extra_bits == 0) {
/* It is aligned already */
memmove(buffer, src + hdr_bytes, length_bytes);
return;
}
dst = buffer;
src = src + hdr_bytes;
last_c = *(src++);
for (i = 0; i < length_bytes; i++) {
c = src[i];
*(dst++) = (last_c >> extra_bits) | (c << (8 - extra_bits));
last_c = c;
}
}
/* obtain an (aligned) EGPRS data block with given bit-offset and
* bit-length from the parent TVB */
static tvbuff_t *get_egprs_data_block(tvbuff_t *tvb, guint offset_bits,
guint length_bits, packet_info *pinfo)
{
tvbuff_t *aligned_tvb;
const guint initial_spare_bits = 6;
guint8 *aligned_buf;
guint min_src_length_bytes = (offset_bits + length_bits + 7) / 8;
guint length_bytes = (initial_spare_bits + length_bits + 7) / 8;
tvb_ensure_bytes_exist(tvb, 0, min_src_length_bytes);
aligned_buf = (guint8 *) wmem_alloc(pinfo->pool, length_bytes);
/* Copy the data out of the tvb to an aligned buffer */
clone_aligned_buffer_lsbf(
offset_bits - initial_spare_bits, length_bytes,
tvb_get_ptr(tvb, 0, min_src_length_bytes),
aligned_buf);
/* clear spare bits and move block header bits to the right */
aligned_buf[0] = aligned_buf[0] >> initial_spare_bits;
aligned_tvb = tvb_new_child_real_data(tvb, aligned_buf,
length_bytes, length_bytes);
add_new_data_source(pinfo, aligned_tvb, "Aligned EGPRS data bits");
return aligned_tvb;
}
static void tvb_len_get_mcs_and_fmt(guint len, gboolean is_uplink, guint *frm, guint8 *mcs)
{
if (len <= 5 && is_uplink) {
/* Assume random access burst */
*frm = RLCMAC_PRACH;
*mcs = 0;
return;
}
switch (len)
{
case 23: *frm = RLCMAC_CS1; *mcs = 0; break;
case 34: *frm = RLCMAC_CS2; *mcs = 0; break;
case 40: *frm = RLCMAC_CS3; *mcs = 0; break;
case 54: *frm = RLCMAC_CS4; *mcs = 0; break;
case 27: *frm = RLCMAC_HDR_TYPE_3; *mcs = 1; break;
case 33: *frm = RLCMAC_HDR_TYPE_3; *mcs = 2; break;
case 42: *frm = RLCMAC_HDR_TYPE_3; *mcs = 3; break;
case 49: *frm = RLCMAC_HDR_TYPE_3; *mcs = 4; break;
case 60: /* fall through */
case 61: *frm = RLCMAC_HDR_TYPE_2; *mcs = 5; break;
case 78: /* fall through */
case 79: *frm = RLCMAC_HDR_TYPE_2; *mcs = 6; break;
case 118: /* fall through */
case 119: *frm = RLCMAC_HDR_TYPE_1; *mcs = 7; break;
case 142: /* fall through */
case 143: *frm = RLCMAC_HDR_TYPE_1; *mcs = 8; break;
case 154: /* fall through */
case 155: *frm = RLCMAC_HDR_TYPE_1; *mcs = 9; break;
default: *frm = RLCMAC_CS1; *mcs = 0; break; /* TODO: report error instead */
}
}
static void
handle_rlcmac(guint32 frame_nr, tvbuff_t *payload_tvb, packet_info *pinfo, proto_tree *tree)
{
int sub_handle;
RlcMacPrivateData_t rlcmac_data = {0};
tvbuff_t *data_tvb;
guint data_block_bits, data_block_offsets[2];
guint num_calls;
gboolean is_uplink;
if (pinfo->p2p_dir == P2P_DIR_SENT) {
is_uplink = 1;
sub_handle = GSMTAP_SUB_UM_RLC_MAC_UL;
} else {
is_uplink = 0;
sub_handle = GSMTAP_SUB_UM_RLC_MAC_DL;
}
rlcmac_data.magic = GSM_RLC_MAC_MAGIC_NUMBER;
rlcmac_data.frame_number = frame_nr;
tvb_len_get_mcs_and_fmt(tvb_reported_length(payload_tvb), is_uplink,
(guint *) &rlcmac_data.block_format,
(guint8 *) &rlcmac_data.mcs);
switch (rlcmac_data.block_format) {
case RLCMAC_HDR_TYPE_1:
case RLCMAC_HDR_TYPE_2:
case RLCMAC_HDR_TYPE_3:
/* First call of RLC/MAC dissector for header */
call_dissector_with_data(sub_handles[sub_handle], payload_tvb,
pinfo, tree, (void *) &rlcmac_data);
/* now determine how to proceed for data */
setup_rlc_mac_priv(&rlcmac_data, is_uplink,
&num_calls, &data_block_bits, data_block_offsets);
/* and call dissector one or two time for the data blocks */
if (num_calls >= 2) {
rlcmac_data.flags = GSM_RLC_MAC_EGPRS_BLOCK1;
data_tvb = get_egprs_data_block(payload_tvb, data_block_offsets[0],
data_block_bits, pinfo);
call_dissector_with_data(sub_handles[sub_handle], data_tvb, pinfo, tree,
(void *) &rlcmac_data);
}
if (num_calls == 3) {
rlcmac_data.flags = GSM_RLC_MAC_EGPRS_BLOCK2;
data_tvb = get_egprs_data_block(payload_tvb, data_block_offsets[1],
data_block_bits, pinfo);
call_dissector_with_data(sub_handles[sub_handle], data_tvb, pinfo, tree,
(void *) &rlcmac_data);
}
break;
default:
/* regular GPRS CS doesn't need any
* shifting/re-alignment or even separate calls for
* header and data blocks. We simply call the dissector
* as-is */
call_dissector_with_data(sub_handles[sub_handle], payload_tvb, pinfo, tree,
(void *) &rlcmac_data);
}
}
/* dissect a GSMTAP header and hand payload off to respective dissector */
static int
dissect_gsmtap(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* data _U_)
{
int sub_handle, sub_handle_idx = 0, len, offset = 0;
proto_item *ti;
proto_tree *gsmtap_tree = NULL;
tvbuff_t *payload_tvb, *l1h_tvb = NULL;
guint8 hdr_len, type, sub_type, timeslot, subslot;
guint16 arfcn;
guint32 frame_nr;
len = tvb_reported_length(tvb);
hdr_len = tvb_get_guint8(tvb, offset + 1) <<2;
type = tvb_get_guint8(tvb, offset + 2);
timeslot = tvb_get_guint8(tvb, offset + 3);
arfcn = tvb_get_ntohs(tvb, offset + 4);
frame_nr = tvb_get_ntohl(tvb, offset + 8);
sub_type = tvb_get_guint8(tvb, offset + 12);
subslot = tvb_get_guint8(tvb, offset + 14);
/* In case of a SACCH, there is a two-byte L1 header in front
* of the packet (see TS 04.04) */
if (type == GSMTAP_TYPE_UM &&
sub_type & GSMTAP_CHANNEL_ACCH) {
l1h_tvb = tvb_new_subset_length(tvb, hdr_len, 2);
payload_tvb = tvb_new_subset_length(tvb, hdr_len+2, len-(hdr_len+2));
} else {
payload_tvb = tvb_new_subset_length(tvb, hdr_len, len-hdr_len);
}
/* We don't want any UDP related info left in the INFO field, as the
* gsm_a_dtap dissector will not clear but only append */
col_clear(pinfo->cinfo, COL_INFO);
col_set_str(pinfo->cinfo, COL_PROTOCOL, "GSMTAP");
/* Some GSMTAP types are completely unrelated to the Um air interface */
if (dissector_try_uint(gsmtap_dissector_table, type, payload_tvb,
pinfo, tree))
return tvb_captured_length(tvb);
if (arfcn & GSMTAP_ARFCN_F_UPLINK) {
col_set_str(pinfo->cinfo, COL_RES_NET_SRC, "MS");
col_set_str(pinfo->cinfo, COL_RES_NET_DST, "BTS");
/* p2p_dir is used by the LAPDm dissector */
pinfo->p2p_dir = P2P_DIR_SENT;
} else {
col_set_str(pinfo->cinfo, COL_RES_NET_SRC, "BTS");
switch (sub_type & ~GSMTAP_CHANNEL_ACCH) {
case GSMTAP_CHANNEL_BCCH:
case GSMTAP_CHANNEL_CCCH:
case GSMTAP_CHANNEL_PCH:
case GSMTAP_CHANNEL_AGCH:
case GSMTAP_CHANNEL_CBCH51:
case GSMTAP_CHANNEL_CBCH52:
case GSMTAP_CHANNEL_PTCCH:
col_set_str(pinfo->cinfo, COL_RES_NET_DST, "Broadcast");
break;
default:
col_set_str(pinfo->cinfo, COL_RES_NET_DST, "MS");
break;
}
/* p2p_dir is used by the LAPDm dissector */
pinfo->p2p_dir = P2P_DIR_RECV;
}
/* Try to build an identifier of different 'streams' */
/* (AFCN _cant_ be used because of hopping */
conversation_create_key_by_id(pinfo, CONVERSATION_GSMTAP, (timeslot << 3) | subslot);
if (tree) {
guint8 channel;
const char *channel_str;
channel = tvb_get_guint8(tvb, offset+12);
if (type == GSMTAP_TYPE_TETRA_I1)
channel_str = val_to_str(channel, gsmtap_tetra_channels, "Unknown: %d");
else if (type == GSMTAP_TYPE_GMR1_UM)
channel_str = val_to_str(channel, gsmtap_gmr1_channels, "Unknown: %d");
else
channel_str = val_to_str(channel, gsmtap_channels, "Unknown: %d");
ti = proto_tree_add_protocol_format(tree, proto_gsmtap, tvb, 0, hdr_len,
"GSM TAP Header, ARFCN: %u (%s), TS: %u, Channel: %s (%u)",
arfcn & GSMTAP_ARFCN_MASK,
arfcn & GSMTAP_ARFCN_F_UPLINK ? "Uplink" : "Downlink",
tvb_get_guint8(tvb, offset+3),
channel_str,
tvb_get_guint8(tvb, offset+14));
gsmtap_tree = proto_item_add_subtree(ti, ett_gsmtap);
proto_tree_add_item(gsmtap_tree, hf_gsmtap_version,
tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_uint(gsmtap_tree, hf_gsmtap_hdrlen,
tvb, offset+1, 1, hdr_len);
proto_tree_add_item(gsmtap_tree, hf_gsmtap_type,
tvb, offset+2, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(gsmtap_tree, hf_gsmtap_timeslot,
tvb, offset+3, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(gsmtap_tree, hf_gsmtap_arfcn,
tvb, offset+4, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(gsmtap_tree, hf_gsmtap_uplink,
tvb, offset+4, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(gsmtap_tree, hf_gsmtap_pcs,
tvb, offset+4, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(gsmtap_tree, hf_gsmtap_signal_dbm,
tvb, offset+6, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(gsmtap_tree, hf_gsmtap_snr_db,
tvb, offset+7, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(gsmtap_tree, hf_gsmtap_frame_nr,
tvb, offset+8, 4, ENC_BIG_ENDIAN);
if (type == GSMTAP_TYPE_UM_BURST)
proto_tree_add_item(gsmtap_tree, hf_gsmtap_burst_type,
tvb, offset+12, 1, ENC_BIG_ENDIAN);
else if (type == GSMTAP_TYPE_UM)
proto_tree_add_item(gsmtap_tree, hf_gsmtap_channel_type,
tvb, offset+12, 1, ENC_BIG_ENDIAN);
else if (type == GSMTAP_TYPE_TETRA_I1)
proto_tree_add_item(gsmtap_tree, hf_gsmtap_tetra_channel_type,
tvb, offset+12, 1, ENC_BIG_ENDIAN);
else if (type == GSMTAP_TYPE_WMX_BURST)
proto_tree_add_item(gsmtap_tree, hf_gsmtap_burst_type,
tvb, offset+12, 1, ENC_BIG_ENDIAN);
else if (type == GSMTAP_TYPE_GMR1_UM)
proto_tree_add_item(gsmtap_tree, hf_gsmtap_gmr1_channel_type,
tvb, offset+12, 1, ENC_BIG_ENDIAN);
else if (type == GSMTAP_TYPE_UMTS_RRC)
proto_tree_add_item(gsmtap_tree, hf_gsmtap_rrc_sub_type,
tvb, offset+12, 1, ENC_BIG_ENDIAN);
else if (type == GSMTAP_TYPE_E1T1)
proto_tree_add_item(gsmtap_tree, hf_gsmtap_e1t1_sub_type,
tvb, offset+12, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(gsmtap_tree, hf_gsmtap_antenna,
tvb, offset+13, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(gsmtap_tree, hf_gsmtap_subslot,
tvb, offset+14, 1, ENC_BIG_ENDIAN);
}
switch (type) {
case GSMTAP_TYPE_UMTS_RRC:
sub_handle = GSMTAP_SUB_UMTS_RRC;
sub_handle_idx = sub_type;
if (sub_handle_idx >= GSMTAP_RRC_SUB_MAX) {
sub_handle = GSMTAP_SUB_DATA;
}
/* make entry in the Protocol column on summary display.
* Normally, the RRC dissector would be doing this, but
* we are bypassing dissect_rrc() and directly call a
* sub-dissector */
col_set_str(pinfo->cinfo, COL_PROTOCOL, "RRC");
break;
case GSMTAP_TYPE_LTE_RRC:
sub_handle = GSMTAP_SUB_LTE_RRC;
sub_handle_idx = sub_type;
if (sub_handle_idx >= GSMTAP_LTE_RRC_SUB_MAX) {
sub_handle = GSMTAP_SUB_DATA;
}
/*Directly call the respective lte rrc message dissector */
break;
case GSMTAP_TYPE_LTE_NAS:
sub_handle = GSMTAP_SUB_LTE_NAS;
sub_handle_idx = sub_type;
if (sub_handle_idx >= GSMTAP_LTE_NAS_SUB_MAX) {
sub_handle = GSMTAP_SUB_DATA;
}
break;
case GSMTAP_TYPE_UM:
if (l1h_tvb)
dissect_sacch_l1h(l1h_tvb, tree);
switch (sub_type & ~GSMTAP_CHANNEL_ACCH) {
case GSMTAP_CHANNEL_BCCH:
case GSMTAP_CHANNEL_CCCH:
case GSMTAP_CHANNEL_PCH:
case GSMTAP_CHANNEL_AGCH:
/* FIXME: we might want to skip idle frames */
sub_handle = GSMTAP_SUB_UM;
break;
case GSMTAP_CHANNEL_SDCCH:
case GSMTAP_CHANNEL_SDCCH4:
case GSMTAP_CHANNEL_SDCCH8:
case GSMTAP_CHANNEL_TCH_F:
case GSMTAP_CHANNEL_TCH_H:
handle_lapdm(sub_type, payload_tvb, pinfo, tree);
return tvb_captured_length(tvb);
case GSMTAP_CHANNEL_PACCH:
if (pinfo->p2p_dir == P2P_DIR_SENT) {
sub_handle = GSMTAP_SUB_UM_RLC_MAC_UL;
}
else
{
sub_handle = GSMTAP_SUB_UM_RLC_MAC_DL;
}
break;
case GSMTAP_CHANNEL_PDTCH:
handle_rlcmac(frame_nr, payload_tvb, pinfo, tree);
return tvb_captured_length(tvb);
GSMTAP: implement dissecting of PTCCH/D messages According to 3GPP TS 45.002, section 3.3.4.2, PTCCH (Packet Timing advance control channel) is a packet dedicated channel, that is used for continuous Timing Advance control in (E)GPRS. There are two sub-types of that logical channel: - PTCCH/U (Uplink): used to transmit random Access Bursts to allow estimation of the Timing Advance for one MS in packet transfer mode. - PTCCH/D (Downlink): used by the network to transmit Timing Advance updates for several MS. As per 3GPP TS 45.003, section 5.2, the coding scheme used for PTCCH/U is the same as for PRACH as specified in subclause 5.3, while the coding scheme used for PTCCH/D is the same as for CS-1 as specified in subclause 5.1.1. The format of PTCCH/D messages can be described as follows: +--------------+--------------+-----+---------------+------------------+ | Octet 1 | Octet 2 | | Octet 16 | Octet 17 .. 23 | +---+----------+---+----------+-----+---+-----------+------------------+ | 0 | TA TAI=0 | 0 | TA TAI=1 | ... | 0 | TA TAI=15 | Padding 00101011 | +---+----------+---+----------+-----+---+-----------+------------------+ what gives us 16 Timing Advance values (7 bit each) for 16 different mobile stations identified by TAI (0..15). The remaining space is padding and shall be filled with constant value 0x2B. Bug: 16096 Change-Id: I0ce81d922a8a8c3981da2486baa3e1efcff46539 Reviewed-on: https://code.wireshark.org/review/34660 Reviewed-by: Pau Espin Pedrol <pespin@sysmocom.de> Petri-Dish: Anders Broman <a.broman58@gmail.com> Tested-by: Petri Dish Buildbot Reviewed-by: Anders Broman <a.broman58@gmail.com>
2019-09-30 15:17:23 +00:00
/* See 3GPP TS 45.003, section 5.2 "Packet control channels" */
case GSMTAP_CHANNEL_PTCCH:
/* PTCCH/D carries Timing Advance updates encoded with CS-1 */
if (pinfo->p2p_dir == P2P_DIR_RECV) {
dissect_ptcch_dl(payload_tvb, pinfo, tree);
GSMTAP: implement dissecting of PTCCH/D messages According to 3GPP TS 45.002, section 3.3.4.2, PTCCH (Packet Timing advance control channel) is a packet dedicated channel, that is used for continuous Timing Advance control in (E)GPRS. There are two sub-types of that logical channel: - PTCCH/U (Uplink): used to transmit random Access Bursts to allow estimation of the Timing Advance for one MS in packet transfer mode. - PTCCH/D (Downlink): used by the network to transmit Timing Advance updates for several MS. As per 3GPP TS 45.003, section 5.2, the coding scheme used for PTCCH/U is the same as for PRACH as specified in subclause 5.3, while the coding scheme used for PTCCH/D is the same as for CS-1 as specified in subclause 5.1.1. The format of PTCCH/D messages can be described as follows: +--------------+--------------+-----+---------------+------------------+ | Octet 1 | Octet 2 | | Octet 16 | Octet 17 .. 23 | +---+----------+---+----------+-----+---+-----------+------------------+ | 0 | TA TAI=0 | 0 | TA TAI=1 | ... | 0 | TA TAI=15 | Padding 00101011 | +---+----------+---+----------+-----+---+-----------+------------------+ what gives us 16 Timing Advance values (7 bit each) for 16 different mobile stations identified by TAI (0..15). The remaining space is padding and shall be filled with constant value 0x2B. Bug: 16096 Change-Id: I0ce81d922a8a8c3981da2486baa3e1efcff46539 Reviewed-on: https://code.wireshark.org/review/34660 Reviewed-by: Pau Espin Pedrol <pespin@sysmocom.de> Petri-Dish: Anders Broman <a.broman58@gmail.com> Tested-by: Petri Dish Buildbot Reviewed-by: Anders Broman <a.broman58@gmail.com>
2019-09-30 15:17:23 +00:00
return tvb_captured_length(tvb);
}
/* PTCCH/U carries Access Bursts for Timing Advance estimation */
sub_handle = GSMTAP_SUB_DATA;
break;
case GSMTAP_CHANNEL_CBCH51:
case GSMTAP_CHANNEL_CBCH52:
sub_handle = GSMTAP_SUB_CBCH;
break;
case GSMTAP_CHANNEL_VOICE_F:
case GSMTAP_CHANNEL_VOICE_H:
dissect_um_voice(payload_tvb, pinfo, tree);
return tvb_captured_length(tvb);
case GSMTAP_CHANNEL_RACH:
default:
sub_handle = GSMTAP_SUB_DATA;
break;
}
break;
case GSMTAP_TYPE_ABIS:
sub_handle = GSMTAP_SUB_ABIS;
break;
case GSMTAP_TYPE_GB_LLC:
sub_handle = GSMTAP_SUB_LLC;
break;
case GSMTAP_TYPE_GB_SNDCP:
sub_handle = GSMTAP_SUB_SNDCP;
break;
case GSMTAP_TYPE_TETRA_I1:
handle_tetra(tvb_get_guint8(tvb, offset+12), payload_tvb, pinfo, tree);
return tvb_captured_length(tvb);
case GSMTAP_TYPE_WMX_BURST:
switch (sub_type) {
case GSMTAP_BURST_CDMA_CODE:
sub_handle = GSMTAP_SUB_CDMA_CODE;
break;
case GSMTAP_BURST_FCH:
sub_handle = GSMTAP_SUB_FCH;
break;
case GSMTAP_BURST_FFB:
sub_handle = GSMTAP_SUB_FFB;
break;
case GSMTAP_BURST_PDU:
sub_handle = GSMTAP_SUB_PDU;
break;
case GSMTAP_BURST_HACK:
sub_handle = GSMTAP_SUB_HACK;
break;
case GSMTAP_BURST_PHY_ATTRIBUTES:
sub_handle = GSMTAP_SUB_PHY_ATTRIBUTES;
break;
default:
sub_handle = GSMTAP_SUB_DATA;
break;
}
break;
case GSMTAP_TYPE_GMR1_UM:
switch (sub_type) {
case GSMTAP_GMR1_BCCH:
sub_handle = GSMTAP_SUB_GMR1_BCCH;
break;
case GSMTAP_GMR1_CCCH:
case GSMTAP_GMR1_AGCH:
case GSMTAP_GMR1_PCH:
sub_handle = GSMTAP_SUB_GMR1_CCCH;
break;
case GSMTAP_GMR1_SDCCH:
case GSMTAP_GMR1_TCH3 | GSMTAP_GMR1_FACCH:
case GSMTAP_GMR1_TCH6 | GSMTAP_GMR1_FACCH:
case GSMTAP_GMR1_TCH9 | GSMTAP_GMR1_FACCH:
sub_handle = GSMTAP_SUB_GMR1_LAPSAT;
break;
case GSMTAP_GMR1_RACH:
sub_handle = GSMTAP_SUB_GMR1_RACH;
break;
default:
sub_handle = GSMTAP_SUB_DATA;
break;
}
break;
case GSMTAP_TYPE_E1T1:
switch (sub_type) {
case GSMTAP_E1T1_LAPD:
sub_handle = GSMTAP_SUB_LAPD;
break;
case GSMTAP_E1T1_FR:
sub_handle = GSMTAP_SUB_FR;
break;
default:
sub_handle = GSMTAP_SUB_DATA;
break;
}
break;
case GSMTAP_TYPE_UM_BURST:
default:
sub_handle = GSMTAP_SUB_DATA;
break;
}
switch (sub_handle){
case GSMTAP_SUB_UMTS_RRC:
call_dissector(rrc_sub_handles[sub_handle_idx], payload_tvb,
pinfo, tree);
break;
case GSMTAP_SUB_LTE_RRC:
call_dissector(lte_rrc_sub_handles[sub_handle_idx], payload_tvb,
pinfo, tree);
break;
case GSMTAP_SUB_LTE_NAS:
call_dissector(lte_nas_sub_handles[sub_handle_idx], payload_tvb,
pinfo, tree);
break;
default:
if (sub_handles[sub_handle] != NULL)
call_dissector(sub_handles[sub_handle], payload_tvb, pinfo, tree);
break;
}
/* TODO: warn user that the WiMAX plugin must be enabled for some types */
return tvb_captured_length(tvb);
}
static const true_false_string sacch_l1h_fpc_mode_vals = {
"In use",
"Not in use"
};
void
proto_register_gsmtap(void)
{
static hf_register_info hf[] = {
{ &hf_gsmtap_version, { "Version", "gsmtap.version",
FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL } },
{ &hf_gsmtap_hdrlen, { "Header Length", "gsmtap.hdr_len",
FT_UINT8, BASE_DEC|BASE_UNIT_STRING, &units_byte_bytes, 0, NULL, HFILL } },
{ &hf_gsmtap_type, { "Payload Type", "gsmtap.type",
FT_UINT8, BASE_DEC, VALS(gsmtap_types), 0, NULL, HFILL } },
{ &hf_gsmtap_timeslot, { "Time Slot", "gsmtap.ts",
FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL } },
{ &hf_gsmtap_arfcn, { "ARFCN", "gsmtap.arfcn",
FT_UINT16, BASE_DEC, NULL, GSMTAP_ARFCN_MASK, NULL, HFILL } },
{ &hf_gsmtap_uplink, { "Uplink", "gsmtap.uplink",
FT_UINT16, BASE_DEC, NULL, GSMTAP_ARFCN_F_UPLINK, NULL, HFILL } },
{ &hf_gsmtap_pcs, { "PCS band indicator", "gsmtap.pcs_band",
FT_UINT16, BASE_DEC, NULL, GSMTAP_ARFCN_F_PCS, NULL, HFILL } },
{ &hf_gsmtap_signal_dbm, { "Signal Level", "gsmtap.signal_dbm",
FT_INT8, BASE_DEC | BASE_UNIT_STRING, &units_dbm, 0, NULL, HFILL } },
{ &hf_gsmtap_snr_db, { "Signal/Noise Ratio", "gsmtap.snr_db",
FT_INT8, BASE_DEC | BASE_UNIT_STRING, &units_decibels, 0, NULL, HFILL } },
{ &hf_gsmtap_frame_nr, { "GSM Frame Number", "gsmtap.frame_nr",
FT_UINT32, BASE_DEC, NULL, 0, NULL, HFILL } },
{ &hf_gsmtap_burst_type, { "Burst Type", "gsmtap.burst_type",
FT_UINT8, BASE_DEC, VALS(gsmtap_bursts), 0, NULL, HFILL }},
{ &hf_gsmtap_channel_type, { "Channel Type", "gsmtap.chan_type",
FT_UINT8, BASE_DEC, VALS(gsmtap_channels), 0, NULL, HFILL }},
{ &hf_gsmtap_tetra_channel_type, { "Channel Type", "gsmtap.tetra_chan_type",
FT_UINT8, BASE_DEC, VALS(gsmtap_tetra_channels), 0, NULL, HFILL }},
{ &hf_gsmtap_gmr1_channel_type, { "Channel Type", "gsmtap.gmr1_chan_type",
FT_UINT8, BASE_DEC, VALS(gsmtap_gmr1_channels), 0, NULL, HFILL }},
{ &hf_gsmtap_rrc_sub_type, { "Message Type", "gsmtap.rrc_sub_type",
FT_UINT8, BASE_DEC, VALS(rrc_sub_types), 0, NULL, HFILL }},
{ &hf_gsmtap_e1t1_sub_type, { "Channel Type", "gsmtap.e1t1_sub_type",
FT_UINT8, BASE_DEC, VALS(gsmtap_um_e1t1_types), 0, NULL, HFILL }},
{ &hf_gsmtap_antenna, { "Antenna Number", "gsmtap.antenna",
FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL } },
{ &hf_gsmtap_subslot, { "Sub-Slot", "gsmtap.sub_slot",
FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL } },
{ &hf_sacch_l1h_power_lev, { "MS power level", "gsmtap.sacch_l1.power_lev",
FT_UINT8, BASE_DEC, NULL, 0x1f, NULL, HFILL } },
{ &hf_sacch_l1h_fpc, { "FPC (Fast Power Control)", "gsmtap.sacch_l1.fpc",
FT_BOOLEAN, 8, TFS(&sacch_l1h_fpc_mode_vals), 0x20, NULL, HFILL } },
{ &hf_sacch_l1h_sro_srr, { "SRO/SRR (SACCH Repetition)", "gsmtap.sacch_l1.sro_srr",
FT_BOOLEAN, 8, TFS(&tfs_required_not_required), 0x40, NULL, HFILL } },
{ &hf_sacch_l1h_ta, { "Actual Timing Advance", "gsmtap.sacch_l1.ta",
FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL } },
{ &hf_um_voice_type, { "GSM Um Voice Type", "gsmtap.um_voice_type",
FT_UINT8, BASE_DEC, VALS(gsmtap_um_voice_types), 0, NULL, HFILL } },
GSMTAP: implement dissecting of PTCCH/D messages According to 3GPP TS 45.002, section 3.3.4.2, PTCCH (Packet Timing advance control channel) is a packet dedicated channel, that is used for continuous Timing Advance control in (E)GPRS. There are two sub-types of that logical channel: - PTCCH/U (Uplink): used to transmit random Access Bursts to allow estimation of the Timing Advance for one MS in packet transfer mode. - PTCCH/D (Downlink): used by the network to transmit Timing Advance updates for several MS. As per 3GPP TS 45.003, section 5.2, the coding scheme used for PTCCH/U is the same as for PRACH as specified in subclause 5.3, while the coding scheme used for PTCCH/D is the same as for CS-1 as specified in subclause 5.1.1. The format of PTCCH/D messages can be described as follows: +--------------+--------------+-----+---------------+------------------+ | Octet 1 | Octet 2 | | Octet 16 | Octet 17 .. 23 | +---+----------+---+----------+-----+---+-----------+------------------+ | 0 | TA TAI=0 | 0 | TA TAI=1 | ... | 0 | TA TAI=15 | Padding 00101011 | +---+----------+---+----------+-----+---+-----------+------------------+ what gives us 16 Timing Advance values (7 bit each) for 16 different mobile stations identified by TAI (0..15). The remaining space is padding and shall be filled with constant value 0x2B. Bug: 16096 Change-Id: I0ce81d922a8a8c3981da2486baa3e1efcff46539 Reviewed-on: https://code.wireshark.org/review/34660 Reviewed-by: Pau Espin Pedrol <pespin@sysmocom.de> Petri-Dish: Anders Broman <a.broman58@gmail.com> Tested-by: Petri Dish Buildbot Reviewed-by: Anders Broman <a.broman58@gmail.com>
2019-09-30 15:17:23 +00:00
/* PTCCH (Packet Timing Advance Control Channel) on Downlink */
{ &hf_ptcch_spare, { "Spare Bit", "gsmtap.ptcch.spare",
FT_UINT8, BASE_DEC, NULL, 0x80, NULL, HFILL } },
{ &hf_ptcch_ta_idx, { "Timing Advance Index", "gsmtap.ptcch.ta_idx",
FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL } },
{ &hf_ptcch_ta_val, { "Timing Advance Value", "gsmtap.ptcch.ta_val",
FT_UINT8, BASE_DEC, NULL, 0x7f, NULL, HFILL } },
{ &hf_ptcch_padding, { "Spare Padding", "gsmtap.ptcch.padding",
FT_BYTES, SEP_SPACE, NULL, 0, NULL, HFILL } },
};
static gint *ett[] = {
&ett_gsmtap
};
proto_gsmtap = proto_register_protocol("GSM Radiotap", "GSMTAP", "gsmtap");
proto_register_field_array(proto_gsmtap, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));
gsmtap_dissector_table = register_dissector_table("gsmtap.type",
"GSMTAP type", proto_gsmtap, FT_UINT8, BASE_HEX);
}
void
proto_reg_handoff_gsmtap(void)
{
dissector_handle_t gsmtap_handle;
/* TODO: some dissectors may be NULL if not loaded */
sub_handles[GSMTAP_SUB_DATA] = find_dissector("data");
sub_handles[GSMTAP_SUB_UM] = find_dissector_add_dependency("gsm_a_ccch", proto_gsmtap);
sub_handles[GSMTAP_SUB_UM_LAPDM] = find_dissector_add_dependency("lapdm", proto_gsmtap);
sub_handles[GSMTAP_SUB_UM_RLC_MAC_UL] = find_dissector_add_dependency("gsm_rlcmac_ul", proto_gsmtap);
sub_handles[GSMTAP_SUB_UM_RLC_MAC_DL] = find_dissector_add_dependency("gsm_rlcmac_dl", proto_gsmtap);
sub_handles[GSMTAP_SUB_LLC] = find_dissector_add_dependency("llcgprs", proto_gsmtap);
sub_handles[GSMTAP_SUB_SNDCP] = find_dissector_add_dependency("sndcp", proto_gsmtap);
sub_handles[GSMTAP_SUB_ABIS] = find_dissector_add_dependency("gsm_a_dtap", proto_gsmtap);
sub_handles[GSMTAP_SUB_CDMA_CODE] = find_dissector_add_dependency("wimax_cdma_code_burst_handler", proto_gsmtap);
sub_handles[GSMTAP_SUB_FCH] = find_dissector_add_dependency("wimax_fch_burst_handler", proto_gsmtap);
sub_handles[GSMTAP_SUB_FFB] = find_dissector_add_dependency("wimax_ffb_burst_handler", proto_gsmtap);
sub_handles[GSMTAP_SUB_PDU] = find_dissector_add_dependency("wimax_pdu_burst_handler", proto_gsmtap);
sub_handles[GSMTAP_SUB_HACK] = find_dissector_add_dependency("wimax_hack_burst_handler", proto_gsmtap);
sub_handles[GSMTAP_SUB_PHY_ATTRIBUTES] = find_dissector_add_dependency("wimax_phy_attributes_burst_handler", proto_gsmtap);
sub_handles[GSMTAP_SUB_CBCH] = find_dissector_add_dependency("gsm_cbch", proto_gsmtap);
sub_handles[GSMTAP_SUB_GMR1_BCCH] = find_dissector_add_dependency("gmr1_bcch", proto_gsmtap);
sub_handles[GSMTAP_SUB_GMR1_CCCH] = find_dissector_add_dependency("gmr1_ccch", proto_gsmtap);
sub_handles[GSMTAP_SUB_GMR1_LAPSAT] = find_dissector_add_dependency("lapsat", proto_gsmtap);
sub_handles[GSMTAP_SUB_GMR1_RACH] = find_dissector_add_dependency("gmr1_rach", proto_gsmtap);
sub_handles[GSMTAP_SUB_UMTS_RRC] = find_dissector_add_dependency("rrc", proto_gsmtap);
sub_handles[GSMTAP_SUB_LAPD] = find_dissector_add_dependency("lapd", proto_gsmtap);
sub_handles[GSMTAP_SUB_FR] = find_dissector_add_dependency("fr", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_DL_DCCH_Message] = find_dissector_add_dependency("rrc.dl.dcch", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_UL_DCCH_Message] = find_dissector_add_dependency("rrc.ul.dcch", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_DL_CCCH_Message] = find_dissector_add_dependency("rrc.dl.ccch", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_UL_CCCH_Message] = find_dissector_add_dependency("rrc.ul.ccch", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_PCCH_Message] = find_dissector_add_dependency("rrc.pcch", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_DL_SHCCH_Message] = find_dissector_add_dependency("rrc.dl.shcch", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_UL_SHCCH_Message] = find_dissector_add_dependency("rrc.ul.shcch", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_BCCH_FACH_Message] = find_dissector_add_dependency("rrc.bcch.fach", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_BCCH_BCH_Message] = find_dissector_add_dependency("rrc.bcch.bch", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_MCCH_Message] = find_dissector_add_dependency("rrc.mcch", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_MSCH_Message] = find_dissector_add_dependency("rrc.msch", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_HandoverToUTRANCommand] = find_dissector_add_dependency("rrc.irat.ho_to_utran_cmd", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_InterRATHandoverInfo] = find_dissector_add_dependency("rrc.irat.irat_ho_info", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SystemInformation_BCH] = find_dissector_add_dependency("rrc.sysinfo", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_System_Information_Container] = find_dissector_add_dependency("rrc.sysinfo.cont", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_UE_RadioAccessCapabilityInfo] = find_dissector_add_dependency("rrc.ue_radio_access_cap_info", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_MasterInformationBlock] = find_dissector_add_dependency("rrc.si.mib", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType1] = find_dissector_add_dependency("rrc.si.sib1", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType2] = find_dissector_add_dependency("rrc.si.sib2", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType3] = find_dissector_add_dependency("rrc.si.sib3", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType4] = find_dissector_add_dependency("rrc.si.sib4", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType5] = find_dissector_add_dependency("rrc.si.sib5", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType5bis] = find_dissector_add_dependency("rrc.si.sib5bis", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType6] = find_dissector_add_dependency("rrc.si.sib6", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType7] = find_dissector_add_dependency("rrc.si.sib7", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType8] = find_dissector_add_dependency("rrc.si.sib8", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType9] = find_dissector_add_dependency("rrc.si.sib9", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType10] = find_dissector_add_dependency("rrc.si.sib10", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType11] = find_dissector_add_dependency("rrc.si.sib11", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType11bis] = find_dissector_add_dependency("rrc.si.sib11bis", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType12] = find_dissector_add_dependency("rrc.si.sib12", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType13] = find_dissector_add_dependency("rrc.si.sib13", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType13_1] = find_dissector_add_dependency("rrc.si.sib13-1", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType13_2] = find_dissector_add_dependency("rrc.si.sib13-2", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType13_3] = find_dissector_add_dependency("rrc.si.sib13-3", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType13_4] = find_dissector_add_dependency("rrc.si.sib13-4", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType14] = find_dissector_add_dependency("rrc.si.sib14", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType15] = find_dissector_add_dependency("rrc.si.sib15", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType15bis] = find_dissector_add_dependency("rrc.si.sib15bis", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType15_1] = find_dissector_add_dependency("rrc.si.sib15-1", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType15_1bis] = find_dissector_add_dependency("rrc.si.sib15-1bis", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType15_2] = find_dissector_add_dependency("rrc.si.sib15-2", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType15_2bis] = find_dissector_add_dependency("rrc.si.sib15-2bis", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType15_2ter] = find_dissector_add_dependency("rrc.si.sib15-2ter", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType15_3] = find_dissector_add_dependency("rrc.si.sib15-3", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType15_3bis] = find_dissector_add_dependency("rrc.si.sib15-3bis", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType15_4] = find_dissector_add_dependency("rrc.si.sib15-4", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType15_5] = find_dissector_add_dependency("rrc.si.sib15-5", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType15_6] = find_dissector_add_dependency("rrc.si.sib15-6", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType15_7] = find_dissector_add_dependency("rrc.si.sib15-7", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType15_8] = find_dissector_add_dependency("rrc.si.sib15-8", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType16] = find_dissector_add_dependency("rrc.si.sib16", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType17] = find_dissector_add_dependency("rrc.si.sib17", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType18] = find_dissector_add_dependency("rrc.si.sib18", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType19] = find_dissector_add_dependency("rrc.si.sib19", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType20] = find_dissector_add_dependency("rrc.si.sib20", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType21] = find_dissector_add_dependency("rrc.si.sib21", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoType22] = find_dissector_add_dependency("rrc.si.sib22", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoTypeSB1] = find_dissector_add_dependency("rrc.si.sb1", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_SysInfoTypeSB2] = find_dissector_add_dependency("rrc.si.sb2", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_ToTargetRNC_Container] = find_dissector_add_dependency("rrc.s_to_trnc_cont", proto_gsmtap);
rrc_sub_handles[GSMTAP_RRC_SUB_TargetRNC_ToSourceRNC_Container] = find_dissector_add_dependency("rrc.t_to_srnc_cont", proto_gsmtap);
lte_rrc_sub_handles[GSMTAP_LTE_RRC_SUB_DL_CCCH_Message] = find_dissector_add_dependency("lte_rrc.dl_ccch", proto_gsmtap);
lte_rrc_sub_handles[GSMTAP_LTE_RRC_SUB_DL_DCCH_Message] = find_dissector_add_dependency("lte_rrc.dl_dcch", proto_gsmtap);
lte_rrc_sub_handles[GSMTAP_LTE_RRC_SUB_UL_CCCH_Message] = find_dissector_add_dependency("lte_rrc.ul_ccch", proto_gsmtap);
lte_rrc_sub_handles[GSMTAP_LTE_RRC_SUB_UL_DCCH_Message] = find_dissector_add_dependency("lte_rrc.ul_dcch", proto_gsmtap);
lte_rrc_sub_handles[GSMTAP_LTE_RRC_SUB_BCCH_BCH_Message] = find_dissector_add_dependency("lte_rrc.bcch_bch", proto_gsmtap);
lte_rrc_sub_handles[GSMTAP_LTE_RRC_SUB_BCCH_DL_SCH_Message] = find_dissector_add_dependency("lte_rrc.bcch_dl_sch", proto_gsmtap);
lte_rrc_sub_handles[GSMTAP_LTE_RRC_SUB_PCCH_Message] = find_dissector_add_dependency("lte_rrc.pcch", proto_gsmtap);
lte_rrc_sub_handles[GSMTAP_LTE_RRC_SUB_MCCH_Message] = find_dissector_add_dependency("lte_rrc.mcch", proto_gsmtap);
lte_rrc_sub_handles[GSMTAP_LTE_RRC_SUB_BCCH_BCH_Message_MBMS] = find_dissector_add_dependency("lte_rrc.bcch_bch.mbms", proto_gsmtap);
lte_rrc_sub_handles[GSMTAP_LTE_RRC_SUB_BCCH_DL_SCH_Message_BR] = find_dissector_add_dependency("lte_rrc.bcch_dl_sch_br", proto_gsmtap);
lte_rrc_sub_handles[GSMTAP_LTE_RRC_SUB_BCCH_DL_SCH_Message_MBMS] = find_dissector_add_dependency("lte_rrc.bcch_dl_sch.mbms", proto_gsmtap);
lte_rrc_sub_handles[GSMTAP_LTE_RRC_SUB_SC_MCCH_Message] = find_dissector_add_dependency("lte_rrc.sc_mcch", proto_gsmtap);
lte_rrc_sub_handles[GSMTAP_LTE_RRC_SUB_SBCCH_SL_BCH_Message] = find_dissector_add_dependency("lte_rrc.sbcch_sl_bch", proto_gsmtap);
lte_rrc_sub_handles[GSMTAP_LTE_RRC_SUB_SBCCH_SL_BCH_Message_V2X] = find_dissector_add_dependency("lte_rrc.sbcch_sl_bch.v2x", proto_gsmtap);
lte_rrc_sub_handles[GSMTAP_LTE_RRC_SUB_DL_CCCH_Message_NB] = find_dissector_add_dependency("lte_rrc.dl_ccch.nb", proto_gsmtap);
lte_rrc_sub_handles[GSMTAP_LTE_RRC_SUB_DL_DCCH_Message_NB] = find_dissector_add_dependency("lte_rrc.dl_dcch.nb", proto_gsmtap);
lte_rrc_sub_handles[GSMTAP_LTE_RRC_SUB_UL_CCCH_Message_NB] = find_dissector_add_dependency("lte_rrc.ul_ccch.nb", proto_gsmtap);
lte_rrc_sub_handles[GSMTAP_LTE_RRC_SUB_UL_DCCH_Message_NB] = find_dissector_add_dependency("lte_rrc.ul_dcch.nb", proto_gsmtap);
lte_rrc_sub_handles[GSMTAP_LTE_RRC_SUB_BCCH_BCH_Message_NB] = find_dissector_add_dependency("lte_rrc.bcch_bch.nb", proto_gsmtap);
lte_rrc_sub_handles[GSMTAP_LTE_RRC_SUB_BCCH_BCH_Message_TDD_NB] = find_dissector_add_dependency("lte_rrc.bcch_bch.nb.tdd", proto_gsmtap);
lte_rrc_sub_handles[GSMTAP_LTE_RRC_SUB_BCCH_DL_SCH_Message_NB] = find_dissector_add_dependency("lte_rrc.bcch_dl_sch.nb", proto_gsmtap);
lte_rrc_sub_handles[GSMTAP_LTE_RRC_SUB_PCCH_Message_NB] = find_dissector_add_dependency("lte_rrc.pcch.nb", proto_gsmtap);
lte_rrc_sub_handles[GSMTAP_LTE_RRC_SUB_SC_MCCH_Message_NB] = find_dissector_add_dependency("lte_rrc.sc_mcch.nb", proto_gsmtap);
lte_nas_sub_handles[GSMTAP_LTE_NAS_PLAIN] = find_dissector_add_dependency("nas-eps_plain", proto_gsmtap);
lte_nas_sub_handles[GSMTAP_LTE_NAS_SEC_HEADER] = find_dissector_add_dependency("nas-eps", proto_gsmtap);
gsmtap_handle = create_dissector_handle(dissect_gsmtap, proto_gsmtap);
dissector_add_uint_with_preference("udp.port", GSMTAP_UDP_PORT, gsmtap_handle);
}
/*
* Editor modelines - https://www.wireshark.org/tools/modelines.html
*
* Local variables:
* c-basic-offset: 8
* tab-width: 8
* indent-tabs-mode: t
* End:
*
* vi: set shiftwidth=8 tabstop=8 noexpandtab:
* :indentSize=8:tabSize=8:noTabs=false:
*/