wireshark/reassemble.c

385 lines
10 KiB
C
Raw Normal View History

/* reassemble.c
* Routines for {fragment,segment} reassembly
*
* $Id: reassemble.c,v 1.3 2001/09/13 07:53:52 guy Exp $
*
* Ethereal - Network traffic analyzer
* By Gerald Combs <gerald@ethereal.com>
* Copyright 1998 Gerald Combs
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include <string.h>
#include "packet.h"
#include "reassemble.h"
typedef struct _fragment_key {
address src;
address dst;
guint32 id;
} fragment_key;
static GMemChunk *fragment_key_chunk = NULL;
static GMemChunk *fragment_data_chunk = NULL;
static int fragment_init_count = 200;
#define LINK_FRAG(fd_head,fd) \
{ fragment_data *fd_i; \
/* add fragment to list, keep list sorted */ \
for(fd_i=fd_head;fd_i->next;fd_i=fd_i->next){ \
if( (fd->offset) < (fd_i->next->offset) ) \
break; \
} \
fd->next=fd_i->next; \
fd_i->next=fd; \
}
static gint
fragment_equal(gconstpointer k1, gconstpointer k2)
{
fragment_key* key1 = (fragment_key*) k1;
fragment_key* key2 = (fragment_key*) k2;
/*key.id is the first item to compare since item is most
likely to differ between sessions, thus shortcircuiting
the comparasion of addresses.
*/
return ( ( (key1->id == key2->id) &&
(ADDRESSES_EQUAL(&key1->src, &key2->src)) &&
(ADDRESSES_EQUAL(&key1->dst, &key2->dst))
) ?
TRUE : FALSE);
}
static guint
fragment_hash(gconstpointer k)
{
fragment_key* key = (fragment_key*) k;
guint hash_val;
int i;
hash_val = 0;
/* More than likely: in most captures src and dst addresses are the
same, and would hash the same.
We only use id as the hash as an optimization.
for (i = 0; i < key->src.len; i++)
hash_val += key->src.data[i];
for (i = 0; i < key->dst.len; i++)
hash_val += key->dst.data[i];
*/
hash_val += key->id;
return hash_val;
}
/*
* For a hash table entry, free the address data to which the key refers
* and the fragment data to which the value refers.
* (The actual key and value structures get freed by "reassemble_init()".)
*/
static gboolean
free_all_fragments(gpointer key_arg, gpointer value, gpointer user_data)
{
fragment_key *key = key_arg;
fragment_data *fd_head;
/*
* Grr. I guess the theory here is that freeing
* something sure as heck modifies it, so you
* want to ban attempts to free it, but, alas,
* if we make the "data" field of an "address"
* structure not a "const", the compiler whines if
* we try to make it point into the data for a packet,
* as that's a "const" array (and should be, as dissectors
* shouldn't trash it).
*
* So we cast the complaint into oblivion, and rely on
* the fact that these addresses are known to have had
* their data mallocated, i.e. they don't point into,
* say, the middle of the data for a packet.
*/
g_free((gpointer)key->src.data);
g_free((gpointer)key->dst.data);
for (fd_head = value; fd_head != NULL; fd_head = fd_head->next) {
if (fd_head->data)
g_free(fd_head->data);
}
return TRUE;
}
/*
* Initialize a fragment table.
*/
void
fragment_table_init(GHashTable **fragment_table)
{
if (*fragment_table != NULL) {
/*
* The fragment hash table exists.
*
* Remove all entries and free fragment data for
* each entry. (The key and value data is freed
* by "reassemble_init()".)
*/
g_hash_table_foreach_remove(*fragment_table,
free_all_fragments, NULL);
} else {
/* The fragment table does not exist. Create it */
*fragment_table = g_hash_table_new(fragment_hash,
fragment_equal);
}
}
/*
* Free up all space allocated for fragment keys and data.
*/
void
reassemble_init(void)
{
if (fragment_key_chunk != NULL)
g_mem_chunk_destroy(fragment_key_chunk);
if (fragment_data_chunk != NULL)
g_mem_chunk_destroy(fragment_data_chunk);
fragment_key_chunk = g_mem_chunk_new("fragment_key_chunk",
sizeof(fragment_key),
fragment_init_count * sizeof(fragment_key),
G_ALLOC_ONLY);
fragment_data_chunk = g_mem_chunk_new("fragment_data_chunk",
sizeof(fragment_data),
fragment_init_count * sizeof(fragment_data),
G_ALLOC_ONLY);
}
/*
* This function adds a new fragment to the fragment hash table.
* If this is the first fragment seen for this datagram, a new entry
* is created in the hash table, otherwise this fragment is just added
* to the linked list of fragments for this packet.
* The list of fragments for a specific datagram is kept sorted for
* easier handling.
*
* Returns a pointer to the head of the fragment data list if we have all the
* fragments, NULL otherwise.
*/
fragment_data *
fragment_add(tvbuff_t *tvb, int offset, packet_info *pinfo, guint32 id,
GHashTable *fragment_table, guint32 frag_offset,
guint32 frag_data_len, gboolean more_frags)
{
fragment_key key, *new_key;
fragment_data *fd_head;
fragment_data *fd;
fragment_data *fd_i;
guint32 max, dfpos;
/* create key to search hash with */
key.src = pinfo->src;
key.dst = pinfo->dst;
key.id = id;
fd_head = g_hash_table_lookup(fragment_table, &key);
/* have we already seen this frame ?*/
if (pinfo->fd->flags.visited) {
if (fd_head != NULL && fd_head->flags & FD_DEFRAGMENTED) {
return fd_head;
} else {
return NULL;
}
}
if (fd_head==NULL){
/* not found, this must be the first snooped fragment for this
* packet. Create list-head.
*/
fd_head=g_mem_chunk_alloc(fragment_data_chunk);
/* head/first structure in list only holds no other data than
* 'datalen' then we don't have to change the head of the list
* even if we want to keep it sorted
*/
fd_head->next=NULL;
fd_head->datalen=0;
fd_head->offset=0;
fd_head->len=0;
fd_head->flags=0;
fd_head->data=NULL;
/*
* We're going to use the key to insert the fragment,
* so allocate a structure for it, and copy the
* addresses, allocating new buffers for the address
* data.
*/
new_key = g_mem_chunk_alloc(fragment_key_chunk);
COPY_ADDRESS(&new_key->src, &key.src);
COPY_ADDRESS(&new_key->dst, &key.dst);
new_key->id = key.id;
g_hash_table_insert(fragment_table, new_key, fd_head);
}
/* create new fd describing this fragment */
fd = g_mem_chunk_alloc(fragment_data_chunk);
fd->next = NULL;
fd->flags = 0;
fd->frame = pinfo->fd->num;
fd->offset = frag_offset;
fd->len = frag_data_len;
fd->data = NULL;
if (!more_frags) {
/*
* This is the tail fragment in the sequence.
*/
if (fd_head->datalen) {
/* ok we have already seen other tails for this packet
* it might be a duplicate.
*/
if (fd_head->datalen != (fd->offset + fd->len) ){
/* Oops, this tail indicates a different packet
* len than the previous ones. Somethings wrong
*/
fd->flags |= FD_MULTIPLETAILS;
fd_head->flags |= FD_MULTIPLETAILS;
}
} else {
/* this was the first tail fragment, now we know the
* length of the packet
*/
fd_head->datalen = fd->offset + fd->len;
}
}
/* If the packet is already defragmented, this MUST be an overlap.
* The entire defragmented packet is in fd_head->data
* Even if we have previously defragmented this packet, we still check
* check it. Someone might play overlap and TTL games.
*/
if (fd_head->flags & FD_DEFRAGMENTED) {
fd->flags |= FD_OVERLAP;
fd_head->flags |= FD_OVERLAP;
/* make sure its not too long */
if (fd->offset + fd->len > fd_head->datalen) {
fd->flags |= FD_TOOLONGFRAGMENT;
fd_head->flags |= FD_TOOLONGFRAGMENT;
LINK_FRAG(fd_head,fd);
return (fd_head);
}
/* make sure it doesnt conflict with previous data */
if ( memcmp(fd_head->data+fd->offset,
tvb_get_ptr(tvb,offset,fd->len),fd->len) ){
fd->flags |= FD_OVERLAPCONFLICT;
fd_head->flags |= FD_OVERLAPCONFLICT;
LINK_FRAG(fd_head,fd);
return (fd_head);
}
/* it was just an overlap, link it and return */
LINK_FRAG(fd_head,fd);
return (fd_head);
}
/* If we have reached this point, the packet is not defragmented yet.
* Save all payload in a buffer until we can defragment.
* XXX - what if we didn't capture the entire fragment due
* to a too-short snapshot length?
*/
fd->data = g_malloc(fd->len);
tvb_memcpy(tvb, fd->data, offset, fd->len);
LINK_FRAG(fd_head,fd);
if( !(fd_head->datalen) ){
/* if we dont know the datalen, there are still missing
* packets. Cheaper than the check below.
*/
return NULL;
}
/* check if we have received the entire fragment
* this is easy since the list is sorted and the head is faked.
*/
max = 0;
for (fd_i=fd_head->next;fd_i;fd_i=fd_i->next) {
if ( ((fd_i->offset)<=max) &&
((fd_i->offset+fd_i->len)>max) ){
max = fd_i->offset+fd_i->len;
}
}
if (max < (fd_head->datalen)) {
/* we have not received all packets yet */
return NULL;
}
if (max > (fd_head->datalen)) {
/* oops, too long fragment detected */
fd->flags |= FD_TOOLONGFRAGMENT;
fd_head->flags |= FD_TOOLONGFRAGMENT;
}
/* we have received an entire packet, defragment it and
* free all fragments
*/
fd_head->data = g_malloc(max);
/* add all data fragments */
for (dfpos=0,fd_i=fd_head;fd_i;fd_i=fd_i->next) {
if (fd_i->len) {
if (fd_i->offset < dfpos) {
fd_i->flags |= FD_OVERLAP;
fd_head->flags |= FD_OVERLAP;
if ( memcmp(fd_head->data+fd_i->offset,
fd_i->data,
MIN(fd_i->len,(dfpos-fd_i->offset))
) ){
fd_i->flags |= FD_OVERLAPCONFLICT;
fd_head->flags |= FD_OVERLAPCONFLICT;
}
}
memcpy(fd_head->data+fd_i->offset,fd_i->data,fd_i->len);
g_free(fd_i->data);
fd_i->data=NULL;
dfpos=MAX(dfpos,(fd_i->offset+fd_i->len));
}
}
/* mark this packet as defragmented.
allows us to skip any trailing fragments */
fd_head->flags |= FD_DEFRAGMENTED;
return fd_head;
}