libosmocore/src/gsm_utils.c

394 lines
8.1 KiB
C
Raw Normal View History

/*
* (C) 2008 by Daniel Willmann <daniel@totalueberwachung.de>
* (C) 2009 by Holger Hans Peter Freyther <zecke@selfish.org>
* (C) 2009-2010 by Harald Welte <laforge@gnumonks.org>
*
* All Rights Reserved
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
*/
//#include <openbsc/gsm_data.h>
#include <osmocore/utils.h>
#include <osmocore/gsm_utils.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>
#include <ctype.h>
#include "../config.h"
/* GSM 03.38 6.2.1 Charachter packing */
int gsm_7bit_decode(char *text, const uint8_t *user_data, uint8_t length)
{
int i = 0;
int l = 0;
/* FIXME: We need to account for user data headers here */
i += l;
for (; i < length; i ++)
*(text ++) =
((user_data[(i * 7 + 7) >> 3] <<
(7 - ((i * 7 + 7) & 7))) |
(user_data[(i * 7) >> 3] >>
((i * 7) & 7))) & 0x7f;
*text = '\0';
return i - l;
}
/* GSM 03.38 6.2.1 Charachter packing */
int gsm_7bit_encode(uint8_t *result, const char *data)
{
int i,j = 0;
unsigned char ch1, ch2;
int shift = 0;
for ( i=0; i<strlen(data); i++ ) {
ch1 = data[i] & 0x7F;
ch1 = ch1 >> shift;
ch2 = data[(i+1)] & 0x7F;
ch2 = ch2 << (7-shift);
ch1 = ch1 | ch2;
result[j++] = ch1;
shift++;
if ((shift == 7) && (i+1<strlen(data))) {
shift = 0;
i++;
}
}
return i;
}
/* determine power control level for given dBm value, as indicated
* by the tables in chapter 4.1.1 of GSM TS 05.05 */
int ms_pwr_ctl_lvl(enum gsm_band band, unsigned int dbm)
{
switch (band) {
case GSM_BAND_450:
case GSM_BAND_480:
case GSM_BAND_750:
case GSM_BAND_900:
case GSM_BAND_810:
case GSM_BAND_850:
if (dbm >= 39)
return 0;
else if (dbm < 5)
return 19;
else {
/* we are guaranteed to have (5 <= dbm < 39) */
return 2 + ((39 - dbm) / 2);
}
break;
case GSM_BAND_1800:
if (dbm >= 36)
return 29;
else if (dbm >= 34)
return 30;
else if (dbm >= 32)
return 31;
else if (dbm == 31)
return 0;
else {
/* we are guaranteed to have (0 <= dbm < 31) */
return (30 - dbm) / 2;
}
break;
case GSM_BAND_1900:
if (dbm >= 33)
return 30;
else if (dbm >= 32)
return 31;
else if (dbm == 31)
return 0;
else {
/* we are guaranteed to have (0 <= dbm < 31) */
return (30 - dbm) / 2;
}
break;
}
return -EINVAL;
}
int ms_pwr_dbm(enum gsm_band band, uint8_t lvl)
{
lvl &= 0x1f;
switch (band) {
case GSM_BAND_450:
case GSM_BAND_480:
case GSM_BAND_750:
case GSM_BAND_900:
case GSM_BAND_810:
case GSM_BAND_850:
if (lvl < 2)
return 39;
else if (lvl < 20)
return 39 - ((lvl - 2) * 2) ;
else
return 5;
break;
case GSM_BAND_1800:
if (lvl < 16)
return 30 - (lvl * 2);
else if (lvl < 29)
return 0;
else
return 36 - ((lvl - 29) * 2);
break;
case GSM_BAND_1900:
if (lvl < 16)
return 30 - (lvl * 2);
else if (lvl < 30)
return -EINVAL;
else
return 33 - (lvl - 30);
break;
}
return -EINVAL;
}
/* According to TS 08.05 Chapter 8.1.4 */
int rxlev2dbm(uint8_t rxlev)
{
if (rxlev > 63)
rxlev = 63;
return -110 + rxlev;
}
/* According to TS 08.05 Chapter 8.1.4 */
uint8_t dbm2rxlev(int dbm)
{
int rxlev = dbm + 110;
if (rxlev > 63)
rxlev = 63;
else if (rxlev < 0)
rxlev = 0;
return rxlev;
}
const char *gsm_band_name(enum gsm_band band)
{
switch (band) {
case GSM_BAND_450:
return "GSM450";
case GSM_BAND_480:
return "GSM450";
case GSM_BAND_750:
return "GSM750";
case GSM_BAND_810:
return "GSM810";
case GSM_BAND_850:
return "GSM850";
case GSM_BAND_900:
return "GSM900";
case GSM_BAND_1800:
return "DCS1800";
case GSM_BAND_1900:
return "PCS1900";
}
return "invalid";
}
enum gsm_band gsm_band_parse(const char* mhz)
{
while (*mhz && !isdigit(*mhz))
mhz++;
if (*mhz == '\0')
return -EINVAL;
2010-03-07 17:23:47 +00:00
switch (strtol(mhz, NULL, 10)) {
case 450:
return GSM_BAND_450;
case 480:
return GSM_BAND_480;
case 750:
return GSM_BAND_750;
case 810:
return GSM_BAND_810;
case 850:
return GSM_BAND_850;
case 900:
return GSM_BAND_900;
case 1800:
return GSM_BAND_1800;
case 1900:
return GSM_BAND_1900;
default:
return -EINVAL;
}
}
#ifdef HAVE_EXECINFO_H
#include <execinfo.h>
void generate_backtrace()
{
int i, nptrs;
void *buffer[100];
char **strings;
nptrs = backtrace(buffer, ARRAY_SIZE(buffer));
printf("backtrace() returned %d addresses\n", nptrs);
strings = backtrace_symbols(buffer, nptrs);
if (!strings)
return;
for (i = 1; i < nptrs; i++)
printf("%s\n", strings[i]);
free(strings);
}
#endif
enum gsm_band gsm_arfcn2band(uint16_t arfcn)
{
if (arfcn & ARFCN_PCS)
return GSM_BAND_1900;
else if (arfcn <= 124)
return GSM_BAND_900;
else if (arfcn >= 955 && arfcn <= 1023)
return GSM_BAND_900;
else if (arfcn >= 128 && arfcn <= 251)
return GSM_BAND_850;
else if (arfcn >= 512 && arfcn <= 885)
return GSM_BAND_1800;
else if (arfcn >= 259 && arfcn <= 293)
return GSM_BAND_450;
else if (arfcn >= 306 && arfcn <= 340)
return GSM_BAND_480;
else if (arfcn >= 350 && arfcn <= 425)
return GSM_BAND_810;
else if (arfcn >= 438 && arfcn <= 511)
return GSM_BAND_750;
else
return GSM_BAND_1800;
}
/* Convert an ARFCN to the frequency in MHz * 10 */
uint16_t gsm_arfcn2freq10(uint16_t arfcn, int uplink)
{
uint16_t freq10_ul;
uint16_t freq10_dl;
if (arfcn & ARFCN_PCS) {
/* DCS 1900 */
arfcn &= ~ARFCN_PCS;
freq10_ul = 18502 + 2 * (arfcn-512);
freq10_dl = freq10_ul + 800;
} else if (arfcn <= 124) {
/* Primary GSM + ARFCN 0 of E-GSM */
freq10_ul = 8900 + 2 * arfcn;
freq10_dl = freq10_ul + 450;
} else if (arfcn >= 955 && arfcn <= 1023) {
/* E-GSM and R-GSM */
freq10_ul = 8900 + 2 * (arfcn - 1024);
freq10_dl = freq10_ul + 450;
} else if (arfcn >= 128 && arfcn <= 251) {
/* GSM 850 */
freq10_ul = 8242 + 2 * (arfcn - 128);
freq10_dl = freq10_ul + 450;
} else if (arfcn >= 512 && arfcn <= 885) {
/* DCS 1800 */
freq10_ul = 17102 + 2 * (arfcn - 512);
freq10_dl = freq10_ul + 950;
} else if (arfcn >= 259 && arfcn <= 293) {
/* GSM 450 */
freq10_ul = 4506 + 2 * (arfcn - 259);
freq10_dl = freq10_ul + 100;
} else if (arfcn >= 306 && arfcn <= 340) {
/* GSM 480 */
freq10_ul = 4790 + 2 * (arfcn - 306);
freq10_dl = freq10_ul + 100;
} else if (arfcn >= 350 && arfcn <= 425) {
/* GSM 810 */
freq10_ul = 8060 + 2 * (arfcn - 350);
freq10_dl = freq10_ul + 450;
} else if (arfcn >= 438 && arfcn <= 511) {
/* GSM 750 */
freq10_ul = 7472 + 2 * (arfcn - 438);
freq10_dl = freq10_ul + 300;
} else
return 0xffff;
if (uplink)
return freq10_ul;
else
return freq10_dl;
}
void gsm_fn2gsmtime(struct gsm_time *time, uint32_t fn)
{
time->fn = fn;
time->t1 = time->fn / (26*51);
time->t2 = time->fn % 26;
time->t3 = time->fn % 51;
time->tc = (time->fn / 51) % 8;
}
uint32_t gsm_gsmtime2fn(struct gsm_time *time)
{
/* TS 05.02 Chapter 4.3.3 TDMA frame number */
return (51 * ((time->t3 - time->t2 + 26) % 26) + time->t3 + (26 * 51 * time->t1));
}
/* TS 03.03 Chapter 2.6 */
int gprs_tlli_type(uint32_t tlli)
{
if ((tlli & 0xc0000000) == 0xc0000000)
return TLLI_LOCAL;
else if ((tlli & 0xc0000000) == 0x80000000)
return TLLI_FOREIGN;
else if ((tlli & 0xf8000000) == 0x78000000)
return TLLI_RANDOM;
else if ((tlli & 0xf8000000) == 0x70000000)
return TLLI_AUXILIARY;
return TLLI_RESERVED;
}
2010-06-01 08:47:07 +00:00
uint32_t gprs_tmsi2tlli(uint32_t p_tmsi, enum gprs_tlli_type type)
{
uint32_t tlli;
switch (type) {
case TLLI_LOCAL:
tlli = p_tmsi | 0xc0000000;
break;
case TLLI_FOREIGN:
tlli = (p_tmsi & 0x3fffffff) | 0x80000000;
break;
default:
tlli = 0;
break;
}
return tlli;
}