asn1c/skeletons/constr_SEQUENCE.c

589 lines
15 KiB
C

/*-
* Copyright (c) 2003, 2004 Lev Walkin <vlm@lionet.info>. All rights reserved.
* Redistribution and modifications are permitted subject to BSD license.
*/
#include <constr_SEQUENCE.h>
/*
* Number of bytes left for this structure.
* (ctx->left) indicates the number of bytes _transferred_ for the structure.
* (size) contains the number of bytes in the buffer passed.
*/
#define LEFT ((size<(size_t)ctx->left)?size:ctx->left)
/*
* If the subprocessor function returns with an indication that it wants
* more data, it may well be a fatal decoding problem, because the
* size is constrained by the <TLV>'s L, even if the buffer size allows
* reading more data.
* For example, consider the buffer containing the following TLVs:
* <T:5><L:1><V> <T:6>...
* The TLV length clearly indicates that one byte is expected in V, but
* if the V processor returns with "want more data" even if the buffer
* contains way more data than the V processor have seen.
*/
#define SIZE_VIOLATION (ctx->left >= 0 && (size_t)ctx->left <= size)
/*
* This macro "eats" the part of the buffer which is definitely "consumed",
* i.e. was correctly converted into local representation or rightfully skipped.
*/
#define ADVANCE(num_bytes) do { \
size_t num = num_bytes; \
ptr += num; \
size -= num; \
if(ctx->left >= 0) \
ctx->left -= num; \
consumed_myself += num; \
} while(0)
/*
* Switch to the next phase of parsing.
*/
#define NEXT_PHASE(ctx) do { \
ctx->phase++; \
ctx->step = 0; \
} while(0)
#define PHASE_OUT(ctx) do { ctx->phase = 10; } while(0)
/*
* Return a standardized complex structure.
*/
#define RETURN(_code) do { \
rval.code = _code; \
rval.consumed = consumed_myself;\
return rval; \
} while(0)
/*
* Check whether we are inside the extensions group.
*/
#define IN_EXTENSION_GROUP(specs, memb_idx) \
( ((memb_idx) > (specs)->ext_after) \
&&((memb_idx) < (specs)->ext_before))
/*
* The decoder of the SEQUENCE type.
*/
ber_dec_rval_t
SEQUENCE_decode_ber(asn1_TYPE_descriptor_t *sd,
void **struct_ptr, void *ptr, size_t size, int tag_mode) {
/*
* Bring closer parts of structure description.
*/
asn1_SEQUENCE_specifics_t *specs = sd->specifics;
asn1_SEQUENCE_element_t *elements = specs->elements;
/*
* Parts of the structure being constructed.
*/
void *st = *struct_ptr; /* Target structure. */
ber_dec_ctx_t *ctx; /* Decoder context */
ber_tlv_tag_t tlv_tag; /* T from TLV */
//ber_tlv_len_t tlv_len; /* L from TLV */
ber_dec_rval_t rval; /* Return code from subparsers */
ssize_t consumed_myself = 0; /* Consumed bytes from ptr */
int edx; /* SEQUENCE element's index */
ASN_DEBUG("Decoding %s as SEQUENCE", sd->name);
/*
* Create the target structure if it is not present already.
*/
if(st == 0) {
st = *struct_ptr = CALLOC(1, specs->struct_size);
if(st == 0) {
RETURN(RC_FAIL);
}
}
/*
* Restore parsing context.
*/
ctx = (st + specs->ctx_offset);
/*
* Start to parse where left previously
*/
switch(ctx->phase) {
case 0:
/*
* PHASE 0.
* Check that the set of tags associated with given structure
* perfectly fits our expectations.
*/
rval = ber_check_tags(sd, ctx, ptr, size,
tag_mode, &ctx->left, 0);
if(rval.code != RC_OK) {
ASN_DEBUG("%s tagging check failed: %d",
sd->name, rval.code);
consumed_myself += rval.consumed;
RETURN(rval.code);
}
if(ctx->left >= 0)
ctx->left += rval.consumed; /* ?Substracted below! */
ADVANCE(rval.consumed);
NEXT_PHASE(ctx);
ASN_DEBUG("Structure consumes %ld bytes, buffer %ld",
(long)ctx->left, (long)size);
/* Fall through */
case 1:
/*
* PHASE 1.
* From the place where we've left it previously,
* try to decode the next member from the list of
* this structure's elements.
* (ctx->step) stores the member being processed
* between invocations and the microphase {0,1} of parsing
* that member:
* step = (<member_number> * 2 + <microphase>).
*/
for(edx = (ctx->step >> 1); edx < specs->elements_count;
edx++, ctx->step = (ctx->step & ~1) + 2) {
void *memb_ptr; /* Pointer to the member */
void *memb_ptr2; /* Pointer to that pointer */
ssize_t tag_len; /* Length of TLV's T */
int opt_edx_end; /* Next non-optional element */
int n;
if(ctx->step & 1)
goto microphase2;
/*
* MICROPHASE 1: Synchronize decoding.
*/
ASN_DEBUG("In %s SEQUENCE left %d, edx=%d opt=%d ec=%d",
sd->name, (int)ctx->left,
edx, elements[edx].optional, specs->elements_count);
if(ctx->left == 0 /* No more stuff is expected */
&& (
/* Explicit OPTIONAL specification reaches the end */
(edx + elements[edx].optional == specs->elements_count)
||
/* All extensions are optional */
(IN_EXTENSION_GROUP(specs, edx)
&& specs->ext_before > specs->elements_count)
)
) {
ASN_DEBUG("End of SEQUENCE %s", sd->name);
/*
* Found the legitimate end of the structure.
*/
PHASE_OUT(ctx);
RETURN(RC_OK);
}
/*
* Fetch the T from TLV.
*/
tag_len = ber_fetch_tag(ptr, LEFT, &tlv_tag);
ASN_DEBUG("In %s SEQUENCE for %d %s next tag length %d",
sd->name, edx, elements[edx].name, (int)tag_len);
switch(tag_len) {
case 0: if(!SIZE_VIOLATION) RETURN(RC_WMORE);
/* Fall through */
case -1: RETURN(RC_FAIL);
}
/*
* Find the next available type with this tag.
*/
opt_edx_end = edx + elements[edx].optional + 1;
if(opt_edx_end > specs->elements_count)
opt_edx_end = specs->elements_count; /* Cap */
for(n = edx; n < opt_edx_end; n++) {
if(BER_TAGS_EQUAL(tlv_tag, elements[n].tag)) {
/*
* Found element corresponding to the tag
* being looked at.
* Reposition over the right element.
*/
edx = n;
ctx->step = 2 * edx; /* Remember! */
break;
}
}
if(n == opt_edx_end) {
/*
* If tag is unknown, it may be either
* an unknown (thus, incorrect) tag,
* or an extension (...),
* or an end of the indefinite-length structure.
*/
if(!IN_EXTENSION_GROUP(specs, edx)) {
ASN_DEBUG("Unexpected tag %s",
ber_tlv_tag_string(tlv_tag));
ASN_DEBUG("Expected tag %s%s",
ber_tlv_tag_string(elements[edx].tag),
elements[edx].optional
?" or alternatives":"");
RETURN(RC_FAIL);
}
if(ctx->left < 0
&& ((uint8_t *)ptr)[0] == 0) {
if(LEFT < 2) {
if(SIZE_VIOLATION)
RETURN(RC_FAIL);
else
RETURN(RC_WMORE);
} else if(((uint8_t *)ptr)[1] == 0) {
/*
* Yeah, baby! Found the terminator
* of the indefinite length structure.
*/
/*
* Proceed to the canonical
* finalization function.
* No advancing is necessary.
*/
goto phase3;
}
} else {
/* Skip this tag */
ssize_t skip;
skip = ber_skip_length(
BER_TLV_CONSTRUCTED(ptr),
ptr + tag_len, LEFT - tag_len);
ASN_DEBUG("Skip length %d in %s",
(int)skip, sd->name);
switch(skip) {
case 0: if(!SIZE_VIOLATION) RETURN(RC_WMORE);
/* Fall through */
case -1: RETURN(RC_FAIL);
}
ADVANCE(skip + tag_len);
ctx->step -= 2;
edx--;
continue; /* Try again with the next tag */
}
}
/*
* MICROPHASE 2: Invoke the member-specific decoder.
*/
ctx->step |= 1; /* Confirm entering next microphase */
microphase2:
ASN_DEBUG("Inside SEQUENCE %s MF2", sd->name);
/*
* Compute the position of the member inside a structure,
* and also a type of containment (it may be contained
* as pointer or using inline inclusion).
*/
if(elements[edx].optional) {
/* Optional member, hereby, a simple pointer */
memb_ptr2 = (char *)st + elements[edx].memb_offset;
} else {
/*
* A pointer to a pointer
* holding the start of the structure
*/
memb_ptr = (char *)st + elements[edx].memb_offset;
memb_ptr2 = &memb_ptr;
}
/*
* Invoke the member fetch routine according to member's type
*/
rval = elements[edx].type->ber_decoder(
(void *)elements[edx].type,
memb_ptr2, ptr, LEFT,
elements[edx].tag_mode);
ASN_DEBUG("In %s SEQUENCE decoded %d %s in %d bytes code %d",
sd->name, edx, elements[edx].type->name,
(int)rval.consumed, rval.code);
switch(rval.code) {
case RC_OK:
break;
case RC_WMORE: /* More data expected */
if(!SIZE_VIOLATION) {
ADVANCE(rval.consumed);
RETURN(RC_WMORE);
}
/* Fall through */
case RC_FAIL: /* Fatal error */
RETURN(RC_FAIL);
} /* switch(rval) */
ADVANCE(rval.consumed);
} /* for(all structure members) */
phase3:
ctx->phase = 3;
case 3: /* 00 and other tags expected */
case 4: /* only 00's expected */
ASN_DEBUG("SEQUENCE %s Leftover: %ld, size = %ld",
sd->name, (long)ctx->left, (long)size);
/*
* Skip everything until the end of the SEQUENCE.
*/
while(ctx->left) {
ssize_t tl, ll;
tl = ber_fetch_tag(ptr, LEFT, &tlv_tag);
switch(tl) {
case 0: if(!SIZE_VIOLATION) RETURN(RC_WMORE);
/* Fall through */
case -1: RETURN(RC_FAIL);
}
/*
* If expected <0><0>...
*/
if(ctx->left < 0
&& ((uint8_t *)ptr)[0] == 0) {
if(LEFT < 2) {
if(SIZE_VIOLATION)
RETURN(RC_FAIL);
else
RETURN(RC_WMORE);
} else if(((uint8_t *)ptr)[1] == 0) {
/*
* Correctly finished with <0><0>.
*/
ADVANCE(2);
ctx->left++;
ctx->phase = 4;
continue;
}
}
if(!IN_EXTENSION_GROUP(specs, specs->elements_count)
|| ctx->phase == 4) {
ASN_DEBUG("Unexpected continuation "
"of a non-extensible type "
"%s (SEQUENCE): %s",
sd->name,
ber_tlv_tag_string(tlv_tag));
RETURN(RC_FAIL);
}
ll = ber_skip_length(
BER_TLV_CONSTRUCTED(ptr),
ptr + tl, LEFT - tl);
switch(ll) {
case 0: if(!SIZE_VIOLATION) RETURN(RC_WMORE);
/* Fall through */
case -1: RETURN(RC_FAIL);
}
ADVANCE(tl + ll);
}
PHASE_OUT(ctx);
}
RETURN(RC_OK);
}
/*
* The DER encoder of the SEQUENCE type.
*/
der_enc_rval_t
SEQUENCE_encode_der(asn1_TYPE_descriptor_t *sd,
void *ptr, int tag_mode, ber_tlv_tag_t tag,
asn_app_consume_bytes_f *cb, void *app_key) {
asn1_SEQUENCE_specifics_t *specs = sd->specifics;
size_t computed_size = 0;
der_enc_rval_t erval;
ssize_t ret;
int edx;
ASN_DEBUG("%s %s as SEQUENCE",
cb?"Encoding":"Estimating", sd->name);
/*
* Gather the length of the underlying members sequence.
*/
for(edx = 0; edx < specs->elements_count; edx++) {
asn1_SEQUENCE_element_t *elm = &specs->elements[edx];
void *memb_ptr;
if(elm->optional) {
memb_ptr = *(void **)((char *)ptr + elm->memb_offset);
if(!memb_ptr) continue;
} else {
memb_ptr = (void *)((char *)ptr + elm->memb_offset);
}
erval = elm->type->der_encoder(elm->type, memb_ptr,
elm->tag_mode, elm->tag,
0, 0);
if(erval.encoded == -1)
return erval;
computed_size += erval.encoded;
ASN_DEBUG("Member %d %s estimated %ld bytes",
edx, elm->name, (long)erval.encoded);
}
/*
* Encode the TLV for the sequence itself.
*/
ret = der_write_tags(sd, computed_size, tag_mode, tag, cb, app_key);
ASN_DEBUG("Wrote tags: %ld (+%ld)", (long)ret, (long)computed_size);
if(ret == -1) {
erval.encoded = -1;
erval.failed_type = sd;
erval.structure_ptr = ptr;
return erval;
}
erval.encoded = computed_size + ret;
if(!cb) return erval;
/*
* Encode all members.
*/
for(edx = 0; edx < specs->elements_count; edx++) {
asn1_SEQUENCE_element_t *elm = &specs->elements[edx];
der_enc_rval_t tmperval;
void *memb_ptr;
if(elm->optional) {
memb_ptr = *(void **)((char *)ptr + elm->memb_offset);
if(!memb_ptr) continue;
} else {
memb_ptr = (void *)((char *)ptr + elm->memb_offset);
}
tmperval = elm->type->der_encoder(elm->type, memb_ptr,
elm->tag_mode, elm->tag,
cb, app_key);
if(tmperval.encoded == -1)
return tmperval;
computed_size -= tmperval.encoded;
ASN_DEBUG("Member %d %s of SEQUENCE %s encoded in %d bytes",
edx, elm->name, sd->name, tmperval.encoded);
}
if(computed_size != 0) {
/*
* Encoded size is not equal to the computed size.
*/
erval.encoded = -1;
erval.failed_type = sd;
erval.structure_ptr = ptr;
}
return erval;
}
int
SEQUENCE_print(asn1_TYPE_descriptor_t *td, const void *sptr, int ilevel,
asn_app_consume_bytes_f *cb, void *app_key) {
asn1_SEQUENCE_specifics_t *specs = td->specifics;
int edx;
int ret;
if(!sptr) return cb("<absent>", 8, app_key);
/* Dump preamble */
if(cb(td->name, strlen(td->name), app_key)
|| cb(" ::= {\n", 7, app_key))
return -1;
for(edx = 0; edx < specs->elements_count; edx++) {
asn1_SEQUENCE_element_t *elm = &specs->elements[edx];
const void *memb_ptr;
if(elm->optional) {
memb_ptr = *(const void * const *)((const char *)sptr + elm->memb_offset);
if(!memb_ptr) continue;
} else {
memb_ptr = (const void *)((const char *)sptr + elm->memb_offset);
}
/* Indentation */
for(ret = 0; ret < ilevel; ret++) cb(" ", 1, app_key);
/* Print the member's name and stuff */
if(cb(elm->name, strlen(elm->name), app_key)
|| cb(": ", 2, app_key))
return -1;
/* Print the member itself */
ret = elm->type->print_struct(elm->type, memb_ptr, ilevel + 4,
cb, app_key);
if(ret) return ret;
/* Print out the terminator */
ret = cb("\n", 1, app_key);
if(ret) return ret;
}
/* Indentation */
for(ret = 0; ret < ilevel - 4; ret++) cb(" ", 1, app_key);
return cb("}", 1, app_key);
}
void
SEQUENCE_free(asn1_TYPE_descriptor_t *td, void *sptr, int contents_only) {
asn1_SEQUENCE_specifics_t *specs = td->specifics;
int edx;
if(!td || !sptr)
return;
ASN_DEBUG("Freeing %s as SEQUENCE", td->name);
for(edx = 0; edx < specs->elements_count; edx++) {
asn1_SEQUENCE_element_t *elm = &specs->elements[edx];
void *memb_ptr;
if(elm->optional) {
memb_ptr = *(void **)((char *)sptr + elm->memb_offset);
if(memb_ptr)
elm->type->free_struct(elm->type, memb_ptr, 0);
} else {
memb_ptr = (void *)((char *)sptr + elm->memb_offset);
elm->type->free_struct(elm->type, memb_ptr, 1);
}
}
if(!contents_only) {
FREEMEM(sptr);
}
}
int
SEQUENCE_constraint(asn1_TYPE_descriptor_t *td, const void *sptr,
asn_app_consume_bytes_f *app_errlog, void *app_key) {
asn1_SEQUENCE_specifics_t *specs = td->specifics;
int edx;
if(!sptr) {
_ASN_ERRLOG("%s: value not given", td->name);
return -1;
}
/*
* Iterate over structure members and check their validity.
*/
for(edx = 0; edx < specs->elements_count; edx++) {
asn1_SEQUENCE_element_t *elm = &specs->elements[edx];
const void *memb_ptr;
if(elm->optional) {
memb_ptr = *(const void **)((const char *)sptr + elm->memb_offset);
if(!memb_ptr) continue;
} else {
memb_ptr = (const void *)((const char *)sptr + elm->memb_offset);
}
return elm->type->check_constraints(elm->type, memb_ptr,
app_errlog, app_key);
}
return 0;
}