asn1c/skeletons/constr_SET_OF.c

531 lines
12 KiB
C

/*-
* Copyright (c) 2003, 2004 Lev Walkin <vlm@lionet.info>. All rights reserved.
* Redistribution and modifications are permitted subject to BSD license.
*/
#include <constr_SET_OF.h>
#include <asn_SET_OF.h>
/*
* Number of bytes left for this structure.
* (ctx->left) indicates the number of bytes _transferred_ for the structure.
* (size) contains the number of bytes in the buffer passed.
*/
#define LEFT ((size<(size_t)ctx->left)?size:ctx->left)
/*
* If the subprocessor function returns with an indication that it wants
* more data, it may well be a fatal decoding problem, because the
* size is constrained by the <TLV>'s L, even if the buffer size allows
* reading more data.
* For example, consider the buffer containing the following TLVs:
* <T:5><L:1><V> <T:6>...
* The TLV length clearly indicates that one byte is expected in V, but
* if the V processor returns with "want more data" even if the buffer
* contains way more data than the V processor have seen.
*/
#define SIZE_VIOLATION (ctx->left != -1 && (size_t)ctx->left <= size)
/*
* This macro "eats" the part of the buffer which is definitely "consumed",
* i.e. was correctly converted into local representation or rightfully skipped.
*/
#define ADVANCE(num_bytes) do { \
size_t num = num_bytes; \
ptr += num; \
size -= num; \
if(ctx->left >= 0) \
ctx->left -= num; \
consumed_myself += num; \
} while(0)
/*
* Switch to the next phase of parsing.
*/
#define NEXT_PHASE(ctx) do { \
ctx->phase++; \
ctx->step = 0; \
} while(0)
#define PHASE_OUT(ctx) do { ctx->phase = 10; } while(0)
/*
* Return a standardized complex structure.
*/
#define RETURN(_code) do { \
rval.code = _code; \
rval.consumed = consumed_myself;\
return rval; \
} while(0)
/*
* The decoder of the SET OF type.
*/
ber_dec_rval_t
SET_OF_decode_ber(asn1_TYPE_descriptor_t *sd,
void **struct_ptr, void *ptr, size_t size, int tag_mode) {
/*
* Bring closer parts of structure description.
*/
asn1_SET_OF_specifics_t *specs = sd->specifics;
asn1_SET_OF_element_t *element = specs->element;
/*
* Parts of the structure being constructed.
*/
void *st = *struct_ptr; /* Target structure. */
ber_dec_ctx_t *ctx; /* Decoder context */
ber_tlv_tag_t tlv_tag; /* T from TLV */
//ber_tlv_len_t tlv_len; /* L from TLV */
ber_dec_rval_t rval; /* Return code from subparsers */
ssize_t consumed_myself = 0; /* Consumed bytes from ptr */
ASN_DEBUG("Decoding %s as SET OF", sd->name);
/*
* Create the target structure if it is not present already.
*/
if(st == 0) {
st = *struct_ptr = CALLOC(1, specs->struct_size);
if(st == 0) {
RETURN(RC_FAIL);
}
}
/*
* Restore parsing context.
*/
ctx = (st + specs->ctx_offset);
/*
* Start to parse where left previously
*/
switch(ctx->phase) {
case 0:
/*
* PHASE 0.
* Check that the set of tags associated with given structure
* perfectly fits our expectations.
*/
rval = ber_check_tags(sd, ctx, ptr, size,
tag_mode, &ctx->left, 0);
if(rval.code != RC_OK) {
ASN_DEBUG("%s tagging check failed: %d",
sd->name, rval.code);
consumed_myself += rval.consumed;
RETURN(rval.code);
}
if(ctx->left >= 0)
ctx->left += rval.consumed; /* ?Substracted below! */
ADVANCE(rval.consumed);
ASN_DEBUG("Structure consumes %ld bytes, "
"buffer %ld", (long)ctx->left, (long)size);
NEXT_PHASE(ctx);
/* Fall through */
case 1:
/*
* PHASE 1.
* From the place where we've left it previously,
* try to decode the next item.
*/
for(;; ctx->step = 0) {
ssize_t tag_len; /* Length of TLV's T */
if(ctx->step & 1)
goto microphase2;
/*
* MICROPHASE 1: Synchronize decoding.
*/
if(ctx->left == 0) {
ASN_DEBUG("End of SET OF %s", sd->name);
/*
* No more things to decode.
* Exit out of here.
*/
PHASE_OUT(ctx);
RETURN(RC_OK);
}
/*
* Fetch the T from TLV.
*/
tag_len = ber_fetch_tag(ptr, LEFT, &tlv_tag);
switch(tag_len) {
case 0: if(!SIZE_VIOLATION) RETURN(RC_WMORE);
/* Fall through */
case -1: RETURN(RC_FAIL);
}
if(ctx->left < 0 && ((uint8_t *)ptr)[0] == 0) {
if(LEFT < 2) {
if(SIZE_VIOLATION)
RETURN(RC_FAIL);
else
RETURN(RC_WMORE);
} else if(((uint8_t *)ptr)[1] == 0) {
/*
* Found the terminator of the
* indefinite length structure.
*/
break;
}
}
/* Outmost tag may be unknown and cannot be fetched/compared */
if(element->tag != (ber_tlv_tag_t)-1) {
if(BER_TAGS_EQUAL(tlv_tag, element->tag)) {
/*
* The new list member of expected type has arrived.
*/
} else {
ASN_DEBUG("Unexpected tag %s fixed SET OF %s",
ber_tlv_tag_string(tlv_tag), sd->name);
ASN_DEBUG("%s SET OF has tag %s",
sd->name, ber_tlv_tag_string(element->tag));
RETURN(RC_FAIL);
}
}
/*
* MICROPHASE 2: Invoke the member-specific decoder.
*/
ctx->step |= 1; /* Confirm entering next microphase */
microphase2:
/*
* Invoke the member fetch routine according to member's type
*/
rval = element->type->ber_decoder(
(void *)element->type,
&ctx->ptr, ptr, LEFT, 0);
ASN_DEBUG("In %s SET OF %s code %d consumed %d",
sd->name, element->type->name,
rval.code, (int)rval.consumed);
switch(rval.code) {
case RC_OK:
{
A_SET_OF(void) *list = st;
if(ASN_SET_ADD(list, ctx->ptr) != 0)
RETURN(RC_FAIL);
else
ctx->ptr = 0;
}
break;
case RC_WMORE: /* More data expected */
if(!SIZE_VIOLATION) {
ADVANCE(rval.consumed);
RETURN(RC_WMORE);
}
/* Fall through */
case RC_FAIL: /* Fatal error */
RETURN(RC_FAIL);
} /* switch(rval) */
ADVANCE(rval.consumed);
} /* for(all list members) */
NEXT_PHASE(ctx);
case 2:
/*
* Read in all "end of content" TLVs.
*/
while(ctx->left < 0) {
if(LEFT < 2) {
if(LEFT > 0 && ((char *)ptr)[0] != 0) {
/* Unexpected tag */
RETURN(RC_FAIL);
} else {
RETURN(RC_WMORE);
}
}
if(((char *)ptr)[0] == 0
&& ((char *)ptr)[1] == 0) {
ADVANCE(2);
ctx->left++;
} else {
RETURN(RC_FAIL);
}
}
PHASE_OUT(ctx);
}
RETURN(RC_OK);
}
/*
* Internally visible buffer holding a single encoded element.
*/
struct _el_buffer {
uint8_t *buf;
size_t length;
size_t size;
};
/* Append bytes to the above structure */
static int _el_addbytes(const void *buffer, size_t size, void *el_buf_ptr) {
struct _el_buffer *el_buf = el_buf_ptr;
if(el_buf->length + size > el_buf->size)
return -1;
memcpy(el_buf->buf + el_buf->length, buffer, size);
el_buf->length += size;
return 0;
}
static int _el_buf_cmp(const void *ap, const void *bp) {
const struct _el_buffer *a = ap;
const struct _el_buffer *b = bp;
int ret;
size_t common_len;
if(a->length < b->length)
common_len = a->length;
else
common_len = b->length;
ret = memcmp(a->buf, b->buf, common_len);
if(ret == 0) {
if(a->length < b->length)
ret = -1;
else if(a->length > b->length)
ret = 1;
}
return ret;
}
/*
* The DER encoder of the SET OF type.
*/
der_enc_rval_t
SET_OF_encode_der(asn1_TYPE_descriptor_t *sd, void *ptr,
int tag_mode, ber_tlv_tag_t tag,
asn_app_consume_bytes_f *cb, void *app_key) {
asn1_SET_OF_specifics_t *specs = sd->specifics;
asn1_SET_OF_element_t *elm = specs->element;
asn1_TYPE_descriptor_t *elm_type = elm->type;
der_type_encoder_f *der_encoder = elm_type->der_encoder;
A_SET_OF(void) *list = ptr;
size_t computed_size = 0;
ssize_t encoding_size = 0;
struct _el_buffer *encoded_els;
size_t max_encoded_len = 1;
der_enc_rval_t erval;
int ret;
int edx;
ASN_DEBUG("Estimating size for SET OF %s", sd->name);
/*
* Gather the length of the underlying members sequence.
*/
for(edx = 0; edx < list->count; edx++) {
void *memb_ptr = list->array[edx];
erval = der_encoder(elm_type, memb_ptr, 0, elm->tag, 0, 0);
if(erval.encoded == -1)
return erval;
computed_size += erval.encoded;
/* Compute maximum encoding's size */
if(max_encoded_len < (size_t)erval.encoded)
max_encoded_len = erval.encoded;
}
/*
* Encode the TLV for the sequence itself.
*/
encoding_size = der_write_tags(sd, computed_size, tag_mode, tag,
cb, app_key);
if(encoding_size == -1) {
erval.encoded = -1;
erval.failed_type = sd;
erval.structure_ptr = ptr;
return erval;
}
computed_size += encoding_size;
if(!cb) {
erval.encoded = computed_size;
return erval;
}
/*
* DER mandates dynamic sorting of the SET OF elements
* according to their encodings. Build an array of the
* encoded elements.
*/
encoded_els = MALLOC(list->count * sizeof(encoded_els[0]));
if(encoded_els == NULL) {
erval.encoded = -1;
erval.failed_type = sd;
erval.structure_ptr = ptr;
return erval;
}
ASN_DEBUG("Encoding members of %s SET OF", sd->name);
/*
* Encode all members.
*/
for(edx = 0; edx < list->count; edx++) {
void *memb_ptr = list->array[edx];
struct _el_buffer *encoded_el = &encoded_els[edx];
/*
* Prepare space for encoding.
*/
encoded_el->buf = MALLOC(max_encoded_len);
if(encoded_el->buf) {
encoded_el->length = 0;
encoded_el->size = max_encoded_len;
} else {
for(edx--; edx >= 0; edx--)
FREEMEM(encoded_els[edx].buf);
FREEMEM(encoded_els);
erval.encoded = -1;
erval.failed_type = sd;
erval.structure_ptr = ptr;
return erval;
}
/*
* Encode the member into the prepared space.
*/
erval = der_encoder(elm_type, memb_ptr, 0, elm->tag,
_el_addbytes, encoded_el);
if(erval.encoded == -1) {
for(; edx >= 0; edx--)
FREEMEM(encoded_els[edx].buf);
FREEMEM(encoded_els);
return erval;
}
encoding_size += erval.encoded;
}
/*
* Sort the encoded elements according to their encoding.
*/
qsort(encoded_els, list->count, sizeof(encoded_els[0]), _el_buf_cmp);
/*
* Report encoded elements to the application.
* Dispose of temporary sorted members table.
*/
ret = 0;
for(edx = 0; edx < list->count; edx++) {
struct _el_buffer *encoded_el = &encoded_els[edx];
/* Report encoded chunks to the application */
if(ret == 0
&& cb(encoded_el->buf, encoded_el->length, app_key) == -1)
ret = -1;
FREEMEM(encoded_el->buf);
}
FREEMEM(encoded_els);
if(ret || computed_size != (size_t)encoding_size) {
/*
* Standard callback failed, or
* encoded size is not equal to the computed size.
*/
erval.encoded = -1;
erval.failed_type = sd;
erval.structure_ptr = ptr;
} else {
erval.encoded = computed_size;
}
return erval;
}
int
SET_OF_print(asn1_TYPE_descriptor_t *td, const void *sptr, int ilevel,
asn_app_consume_bytes_f *cb, void *app_key) {
asn1_SET_OF_specifics_t *specs = td->specifics;
asn1_SET_OF_element_t *element = specs->element;
const A_SET_OF(void) *list = sptr;
int ret;
int i;
if(!sptr) return cb("<absent>", 8, app_key);
/* Dump preamble */
if(cb(td->name, strlen(td->name), app_key)
|| cb(" ::= {\n", 7, app_key))
return -1;
for(i = 0; i < list->count; i++) {
const void *memb_ptr = list->array[i];
if(!memb_ptr) continue;
/* Indentation */
for(ret = 0; ret < ilevel; ret++) cb(" ", 1, app_key);
ret = element->type->print_struct(element->type, memb_ptr,
ilevel + 4, cb, app_key);
if(ret) return ret;
ret = cb("\n", 1, app_key);
if(ret) return ret;
}
/* Indentation */
for(ret = 0; ret < ilevel - 4; ret++) cb(" ", 1, app_key);
return cb("}", 1, app_key);
}
void
SET_OF_free(asn1_TYPE_descriptor_t *td, void *ptr, int contents_only) {
if(td && ptr) {
asn1_SET_OF_specifics_t *specs = td->specifics;
asn1_SET_OF_element_t *element = specs->element;
A_SET_OF(void) *list = ptr;
int i;
/*
* Could not use set_of_empty() because of (*free)
* incompatibility.
*/
for(i = 0; i < list->count; i++) {
void *memb_ptr = list->array[i];
if(memb_ptr)
element->type->free_struct(element->type, memb_ptr, 0);
}
list->count = 0; /* Just in case */
if(!contents_only) {
FREEMEM(ptr);
}
}
}
int
SET_OF_constraint(asn1_TYPE_descriptor_t *td, const void *sptr,
asn_app_consume_bytes_f *app_errlog, void *app_key) {
asn1_SET_OF_specifics_t *specs = td->specifics;
asn1_SET_OF_element_t *element = specs->element;
const A_SET_OF(void) *list = sptr;
int i;
if(!sptr) {
_ASN_ERRLOG("%s: value not given", td->name);
return -1;
}
for(i = 0; i < list->count; i++) {
const void *memb_ptr = list->array[i];
if(!memb_ptr) continue;
return element->type->check_constraints(element->type, memb_ptr,
app_errlog, app_key);
}
return 0;
}