asn1c/skeletons/constr_SET.c

683 lines
16 KiB
C

/*-
* Copyright (c) 2003, 2004 Lev Walkin <vlm@lionet.info>. All rights reserved.
* Redistribution and modifications are permitted subject to BSD license.
*/
#include <constr_SET.h>
#include <netinet/in.h> /* for ntohl() */
#include <assert.h> /* for assert() */
/*
* Number of bytes left for this structure.
* (ctx->left) indicates the number of bytes _transferred_ for the structure.
* (size) contains the number of bytes in the buffer passed.
*/
#define LEFT ((size<(size_t)ctx->left)?size:ctx->left)
/*
* If the subprocessor function returns with an indication that it wants
* more data, it may well be a fatal decoding problem, because the
* size is constrained by the <TLV>'s L, even if the buffer size allows
* reading more data.
* For example, consider the buffer containing the following TLVs:
* <T:5><L:1><V> <T:6>...
* The TLV length clearly indicates that one byte is expected in V, but
* if the V processor returns with "want more data" even if the buffer
* contains way more data than the V processor have seen.
*/
#define SIZE_VIOLATION (ctx->left >= 0 && (size_t)ctx->left <= size)
/*
* This macro "eats" the part of the buffer which is definitely "consumed",
* i.e. was correctly converted into local representation or rightfully skipped.
*/
#define ADVANCE(num_bytes) do { \
size_t num = num_bytes; \
ptr += num; \
size -= num; \
if(ctx->left >= 0) \
ctx->left -= num; \
consumed_myself += num; \
} while(0)
/*
* Switch to the next phase of parsing.
*/
#define NEXT_PHASE(ctx) do { \
ctx->phase++; \
ctx->step = 0; \
} while(0)
/*
* Return a standardized complex structure.
*/
#define RETURN(_code) do { \
rval.code = _code; \
rval.consumed = consumed_myself;\
return rval; \
} while(0)
/*
* Tags are canonically sorted in the tag2element map.
*/
static int
_t2e_cmp(const void *ap, const void *bp) {
const asn1_SET_tag2member_t *a = ap;
const asn1_SET_tag2member_t *b = bp;
int a_class = BER_TAG_CLASS(a->el_tag);
int b_class = BER_TAG_CLASS(b->el_tag);
if(a_class == b_class) {
ber_tlv_tag_t a_value = BER_TAG_VALUE(a->el_tag);
ber_tlv_tag_t b_value = BER_TAG_VALUE(b->el_tag);
if(a_value == b_value)
return 0;
else if(a_value < b_value)
return -1;
else
return 1;
} else if(a_class < b_class) {
return -1;
} else {
return 1;
}
}
/*
* The decoder of the SET type.
*/
ber_dec_rval_t
SET_decode_ber(asn1_TYPE_descriptor_t *sd,
void **struct_ptr, void *ptr, size_t size, int tag_mode) {
/*
* Bring closer parts of structure description.
*/
asn1_SET_specifics_t *specs = sd->specifics;
asn1_SET_element_t *elements = specs->elements;
/*
* Parts of the structure being constructed.
*/
void *st = *struct_ptr; /* Target structure. */
ber_dec_ctx_t *ctx; /* Decoder context */
ber_tlv_tag_t tlv_tag; /* T from TLV */
//ber_tlv_len_t tlv_len; /* L from TLV */
ber_dec_rval_t rval; /* Return code from subparsers */
ssize_t consumed_myself = 0; /* Consumed bytes from ptr */
int edx; /* SET element's index */
ASN_DEBUG("Decoding %s as SET", sd->name);
/*
* Create the target structure if it is not present already.
*/
if(st == 0) {
st = *struct_ptr = CALLOC(1, specs->struct_size);
if(st == 0) {
RETURN(RC_FAIL);
}
}
/*
* Restore parsing context.
*/
ctx = (st + specs->ctx_offset);
/*
* Start to parse where left previously
*/
switch(ctx->phase) {
case 0:
/*
* PHASE 0.
* Check that the set of tags associated with given structure
* perfectly fits our expectations.
*/
rval = ber_check_tags(sd, ctx, ptr, size,
tag_mode, &ctx->left, 0);
if(rval.code != RC_OK) {
ASN_DEBUG("%s tagging check failed: %d",
sd->name, rval.code);
consumed_myself += rval.consumed;
RETURN(rval.code);
}
if(ctx->left >= 0)
ctx->left += rval.consumed; /* ?Substracted below! */
ADVANCE(rval.consumed);
NEXT_PHASE(ctx);
ASN_DEBUG("Structure advertised %ld bytes, "
"buffer contains %ld", (long)ctx->left, (long)size);
/* Fall through */
case 1:
/*
* PHASE 1.
* From the place where we've left it previously,
* try to decode the next member from the list of
* this structure's elements.
* (ctx->step) stores the member being processed
* between invocations and the microphase {0,1} of parsing
* that member:
* step = (2 * <member_number> + <microphase>).
* Note, however, that the elements in BER may arrive out of
* order, yet DER mandates that they shall arive in the
* canonical order of their tags. So, there is a room
* for optimization.
*/
for(edx = (ctx->step >> 1); edx < specs->elements_count;
ctx->step = (ctx->step & ~1) + 2,
edx = (ctx->step >> 1)) {
void *memb_ptr; /* Pointer to the member */
void *memb_ptr2; /* Pointer to that pointer */
ssize_t tag_len; /* Length of TLV's T */
if(ctx->step & 1)
goto microphase2;
/*
* MICROPHASE 1: Synchronize decoding.
*/
if(ctx->left == 0)
/*
* No more things to decode.
* Exit out of here and check whether all mandatory
* elements have been received (in the next phase).
*/
break;
/*
* Fetch the T from TLV.
*/
tag_len = ber_fetch_tag(ptr, LEFT, &tlv_tag);
switch(tag_len) {
case 0: if(!SIZE_VIOLATION) RETURN(RC_WMORE);
/* Fall through */
case -1: RETURN(RC_FAIL);
}
if(ctx->left < 0 && ((uint8_t *)ptr)[0] == 0) {
if(LEFT < 2) {
if(SIZE_VIOLATION)
RETURN(RC_FAIL);
else
RETURN(RC_WMORE);
} else if(((uint8_t *)ptr)[1] == 0) {
/*
* Found the terminator of the
* indefinite length structure.
* Invoke the generic finalization function.
*/
goto phase3;
}
}
if(BER_TAGS_EQUAL(tlv_tag, elements[edx].tag)) {
/*
* The elements seem to go in order.
* This is not particularly strange,
* but is not strongly anticipated either.
*/
} else {
asn1_SET_tag2member_t *t2m;
asn1_SET_tag2member_t key;
key.el_tag = tlv_tag;
t2m = bsearch(&key, specs->tag2el, specs->tag2el_count,
sizeof(specs->tag2el[0]), _t2e_cmp);
if(t2m) {
/*
* Found the element corresponding to the tag.
*/
edx = t2m->el_no;
ctx->step = 2 * edx;
} else if(specs->extensible == 0) {
ASN_DEBUG("Unexpected tag %s "
"in non-extensible SET %s",
ber_tlv_tag_string(tlv_tag), sd->name);
RETURN(RC_FAIL);
} else {
/* Skip this tag */
ssize_t skip;
ASN_DEBUG("Skipping unknown tag %s",
ber_tlv_tag_string(tlv_tag));
skip = ber_skip_length(
BER_TLV_CONSTRUCTED(ptr),
ptr + tag_len, LEFT - tag_len);
switch(skip) {
case 0: if(!SIZE_VIOLATION) RETURN(RC_WMORE);
/* Fall through */
case -1: RETURN(RC_FAIL);
}
ADVANCE(skip + tag_len);
ctx->step -= 2;
edx--;
continue; /* Try again with the next tag */
}
}
/*
* MICROPHASE 2: Invoke the member-specific decoder.
*/
ctx->step |= 1; /* Confirm entering next microphase */
microphase2:
/*
* Check for duplications: must not overwrite
* already decoded elements.
*/
if(ASN_SET_ISPRESENT2(st + specs->pres_offset, edx)) {
ASN_DEBUG("Duplicate element %d", edx);
RETURN(RC_FAIL);
}
/*
* Compute the position of the member inside a structure,
* and also a type of containment (it may be contained
* as pointer or using inline inclusion).
*/
if(elements[edx].optional) {
/* Optional member, hereby, a simple pointer */
memb_ptr2 = (char *)st + elements[edx].memb_offset;
} else {
/*
* A pointer to a pointer
* holding the start of the structure
*/
memb_ptr = (char *)st + elements[edx].memb_offset;
memb_ptr2 = &memb_ptr;
}
/*
* Invoke the member fetch routine according to member's type
*/
rval = elements[edx].type->ber_decoder(
(void *)elements[edx].type,
memb_ptr2, ptr, LEFT,
elements[edx].tag_mode);
switch(rval.code) {
case RC_OK:
ASN_SET_MKPRESENT(st + specs->pres_offset, edx);
break;
case RC_WMORE: /* More data expected */
if(!SIZE_VIOLATION) {
ADVANCE(rval.consumed);
RETURN(RC_WMORE);
}
/* Fail through */
case RC_FAIL: /* Fatal error */
RETURN(RC_FAIL);
} /* switch(rval) */
ADVANCE(rval.consumed);
} /* for(all structure members) */
phase3:
ctx->phase = 3;
/* Fall through */
case 3:
case 4: /* Only 00 is expected */
ASN_DEBUG("SET %s Leftover: %ld, size = %ld",
sd->name, (long)ctx->left, (long)size);
/*
* Skip everything until the end of the SET.
*/
while(ctx->left) {
ssize_t tl, ll;
tl = ber_fetch_tag(ptr, LEFT, &tlv_tag);
switch(tl) {
case 0: if(!SIZE_VIOLATION) RETURN(RC_WMORE);
/* Fall through */
case -1: RETURN(RC_FAIL);
}
/*
* If expected <0><0>...
*/
if(ctx->left < 0
&& ((uint8_t *)ptr)[0] == 0) {
if(LEFT < 2) {
if(SIZE_VIOLATION)
RETURN(RC_FAIL);
else
RETURN(RC_WMORE);
} else if(((uint8_t *)ptr)[1] == 0) {
/*
* Correctly finished with <0><0>.
*/
ADVANCE(2);
ctx->left++;
ctx->phase = 4;
continue;
}
}
if(specs->extensible == 0 || ctx->phase == 4) {
ASN_DEBUG("Unexpected continuation "
"of a non-extensible type %s",
sd->name);
RETURN(RC_FAIL);
}
ll = ber_skip_length(
BER_TLV_CONSTRUCTED(ptr),
ptr + tl, LEFT - tl);
switch(ll) {
case 0: if(!SIZE_VIOLATION) RETURN(RC_WMORE);
/* Fall through */
case -1: RETURN(RC_FAIL);
}
ADVANCE(tl + ll);
}
ctx->phase = 5;
case 5:
/*
* Check that all mandatory elements are present.
*/
for(edx = 0; edx < specs->elements_count;
edx += (8 * sizeof(specs->_mandatory_elements[0]))) {
unsigned int midx, pres, must;
midx = edx/(8 * sizeof(specs->_mandatory_elements[0]));
pres = ((unsigned int *)(st+specs->pres_offset))[midx];
must = ntohl(specs->_mandatory_elements[midx]);
if((pres & must) == must) {
/*
* Yes, everything seems to be in place.
*/
} else {
ASN_DEBUG("One or more mandatory elements "
"of a SET %s %d (%08x.%08x)=%08x "
"are not present",
sd->name,
midx,
pres,
must,
(~(pres & must) & must)
);
RETURN(RC_FAIL);
}
}
NEXT_PHASE(ctx);
}
RETURN(RC_OK);
}
/*
* The DER encoder of the SET type.
*/
der_enc_rval_t
SET_encode_der(asn1_TYPE_descriptor_t *sd,
void *ptr, int tag_mode, ber_tlv_tag_t tag,
asn_app_consume_bytes_f *cb, void *app_key) {
asn1_SET_specifics_t *specs = sd->specifics;
size_t computed_size = 0;
der_enc_rval_t my_erval;
int t2m_build_own = (specs->tag2el_count != specs->elements_count);
asn1_SET_tag2member_t *t2m;
int t2m_count;
ssize_t ret;
int edx;
/*
* Use existing, or build our own tags map.
*/
if(t2m_build_own) {
t2m = alloca(specs->elements_count * sizeof(t2m[0]));
t2m_count = 0;
} else {
/*
* There is no untagged CHOICE in this SET.
* Employ existing table.
*/
t2m = specs->tag2el;
t2m_count = specs->tag2el_count;
}
/*
* Gather the length of the underlying members sequence.
*/
for(edx = 0; edx < specs->elements_count; edx++) {
asn1_SET_element_t *elm = &specs->elements[edx];
der_enc_rval_t erval;
void *memb_ptr;
/*
* Compute the length of the encoding of this member.
*/
if(elm->optional) {
memb_ptr = *(void **)((char *)ptr + elm->memb_offset);
if(!memb_ptr) {
if(t2m_build_own) {
t2m[t2m_count].el_no = edx;
t2m[t2m_count].el_tag = 0;
t2m_count++;
}
continue;
}
} else {
memb_ptr = (void *)((char *)ptr + elm->memb_offset);
}
erval = elm->type->der_encoder(elm->type, memb_ptr,
elm->tag_mode, elm->tag,
0, 0);
if(erval.encoded == -1)
return erval;
computed_size += erval.encoded;
/*
* Remember the outmost tag of this member.
*/
if(t2m_build_own) {
t2m[t2m_count].el_no = edx;
t2m[t2m_count].el_tag = asn1_TYPE_outmost_tag(
elm->type, memb_ptr, elm->tag_mode, elm->tag);
t2m_count++;
} else {
/*
* No dynamic sorting is necessary.
*/
}
}
/*
* Finalize order of the components.
*/
assert(t2m_count == specs->elements_count);
if(t2m_build_own) {
/*
* Sort the underlying members according to their
* canonical tags order. DER encoding mandates it.
*/
qsort(t2m, t2m_count, sizeof(specs->tag2el[0]), _t2e_cmp);
} else {
/*
* Tags are already sorted by the compiler.
*/
}
/*
* Encode the TLV for the sequence itself.
*/
ret = der_write_tags(sd, computed_size, tag_mode, tag, cb, app_key);
if(ret == -1) {
my_erval.encoded = -1;
my_erval.failed_type = sd;
my_erval.structure_ptr = ptr;
return my_erval;
}
my_erval.encoded = computed_size + ret;
if(!cb) return my_erval;
/*
* Encode all members.
*/
for(edx = 0; edx < specs->elements_count; edx++) {
asn1_SET_element_t *elm;
der_enc_rval_t erval;
void *memb_ptr;
/* Encode according to the tag order */
elm = &specs->elements[t2m[edx].el_no];
if(elm->optional) {
memb_ptr = *(void **)((char *)ptr + elm->memb_offset);
if(!memb_ptr) continue;
} else {
memb_ptr = (void *)((char *)ptr + elm->memb_offset);
}
erval = elm->type->der_encoder(elm->type, memb_ptr,
elm->tag_mode, elm->tag,
cb, app_key);
if(erval.encoded == -1)
return erval;
computed_size -= erval.encoded;
}
if(computed_size != 0) {
/*
* Encoded size is not equal to the computed size.
*/
my_erval.encoded = -1;
my_erval.failed_type = sd;
my_erval.structure_ptr = ptr;
}
return my_erval;
}
int
SET_print(asn1_TYPE_descriptor_t *td, const void *sptr, int ilevel,
asn_app_consume_bytes_f *cb, void *app_key) {
asn1_SET_specifics_t *specs = td->specifics;
int edx;
int ret;
if(!sptr) return cb("<absent>", 8, app_key);
/* Dump preamble */
if(cb(td->name, strlen(td->name), app_key)
|| cb(" ::= {\n", 7, app_key))
return -1;
for(edx = 0; edx < specs->elements_count; edx++) {
asn1_SET_element_t *elm = &specs->elements[edx];
const void *memb_ptr;
if(elm->optional) {
memb_ptr = *(const void * const *)((const char *)sptr + elm->memb_offset);
if(!memb_ptr) continue;
} else {
memb_ptr = (const void *)((const char *)sptr + elm->memb_offset);
}
/* Indentation */
for(ret = 0; ret < ilevel; ret++) cb(" ", 1, app_key);
/* Print the member's name and stuff */
if(cb(elm->name, strlen(elm->name), app_key)
|| cb(": ", 2, app_key))
return -1;
/* Print the member itself */
ret = elm->type->print_struct(elm->type, memb_ptr, ilevel + 4,
cb, app_key);
if(ret) return ret;
ret = cb("\n", 1, app_key);
if(ret) return ret;
}
/* Indentation */
for(ret = 0; ret < ilevel - 4; ret++) cb(" ", 1, app_key);
return cb("}", 1, app_key);
}
void
SET_free(asn1_TYPE_descriptor_t *td, void *ptr, int contents_only) {
asn1_SET_specifics_t *specs = td->specifics;
int edx;
if(!td || !ptr)
return;
ASN_DEBUG("Freeing %s as SET", td->name);
for(edx = 0; edx < specs->elements_count; edx++) {
asn1_SET_element_t *elm = &specs->elements[edx];
void *memb_ptr;
if(elm->optional) {
memb_ptr = *(void **)((char *)ptr + elm->memb_offset);
if(memb_ptr)
elm->type->free_struct(elm->type, memb_ptr, 0);
} else {
memb_ptr = (void *)((char *)ptr + elm->memb_offset);
elm->type->free_struct(elm->type, memb_ptr, 1);
}
}
if(!contents_only) {
FREEMEM(ptr);
}
}
int
SET_constraint(asn1_TYPE_descriptor_t *td, const void *sptr,
asn_app_consume_bytes_f *app_errlog, void *app_key) {
asn1_SET_specifics_t *specs = td->specifics;
int edx;
if(!sptr) {
_ASN_ERRLOG("%s: value not given", td->name);
return -1;
}
/*
* Iterate over structure members and check their validity.
*/
for(edx = 0; edx < specs->elements_count; edx++) {
asn1_SET_element_t *elm = &specs->elements[edx];
const void *memb_ptr;
if(elm->optional) {
memb_ptr = *(const void * const *)((const char *)sptr + elm->memb_offset);
if(!memb_ptr) {
if(ASN_SET_ISPRESENT2(
&(specs->_mandatory_elements), edx)) {
_ASN_ERRLOG(
"%s: mandatory element "
"%s absent",
td->name, elm->name);
return -1;
}
continue;
}
} else {
memb_ptr = (const void *)((const char *)sptr + elm->memb_offset);
}
return elm->type->check_constraints(elm->type, memb_ptr,
app_errlog, app_key);
}
return 0;
}