asn1c/skeletons/converter-example.c

999 lines
32 KiB
C

/*
* Generic converter template for a selected ASN.1 type.
* Copyright (c) 2005-2017 Lev Walkin <vlm@lionet.info>.
* All rights reserved.
*
* To compile with your own ASN.1 type, redefine the PDU as shown:
*
* cc -DPDU=MyCustomType -o myDecoder.o -c converter-example.c
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#define __EXTENSIONS__
#include <stdio.h>
#include <sys/types.h>
#include <stdlib.h> /* for atoi(3) */
#include <getopt.h> /* for getopt(3) */
#include <string.h> /* for strerror(3) */
#include <sysexits.h> /* for EX_* exit codes */
#include <errno.h> /* for errno */
#include <unistd.h> /* for isatty(3) */
#include <asn_application.h>
#include <asn_internal.h> /* for ASN__DEFAULT_STACK_MAX */
/* Convert "Type" defined by -DPDU into "asn_DEF_Type" */
#ifndef NO_ASN_PDU
#ifndef PDU
#error Define -DPDU to compile this sample converter.
#endif
#ifdef ASN_PDU_COLLECTION /* Generated by asn1c: -pdu=... */
extern asn_TYPE_descriptor_t *asn_pdu_collection[];
#endif
#define ASN_DEF_PDU(t) asn_DEF_ ## t
#define DEF_PDU_Type(t) ASN_DEF_PDU(t)
#define PDU_Type DEF_PDU_Type(PDU)
extern asn_TYPE_descriptor_t PDU_Type; /* ASN.1 type to be decoded */
#define PDU_Type_Ptr (&PDU_Type)
#else /* NO_ASN_PDU */
#define PDU_Type_Ptr NULL
#endif /* NO_ASN_PDU */
/*
* Open file and parse its contens.
*/
static void *data_decode_from_file(enum asn_transfer_syntax,
asn_TYPE_descriptor_t *asnTypeOfPDU,
FILE *file, const char *name,
ssize_t suggested_bufsize, int first_pdu);
static int write_out(const void *buffer, size_t size, void *key);
static FILE *argument_to_file(char *av[], int idx);
static char *argument_to_name(char *av[], int idx);
int opt_debug; /* -d (or -dd) */
static int opt_check; /* -c (constraints checking) */
static int opt_stack; /* -s (maximum stack size) */
static int opt_nopad; /* -per-nopad (PER input is not padded between msgs) */
static int opt_onepdu; /* -1 (decode single PDU) */
#ifdef JUNKTEST /* Enable -J <probability> */
#define JUNKOPT "J:"
static double opt_jprob; /* Junk bit probability */
static int junk_failures;
static void junk_bytes_with_probability(uint8_t *, size_t, double prob);
#define RANDOPT "R:"
static ssize_t random_max_size = 0; /* Size of the random data */
#if !defined(__FreeBSD__) && !(defined(__APPLE__) && defined(__MACH__))
static void
srandomdev(void) {
FILE *f = fopen("/dev/urandom", "rb");
unsigned seed;
if(f) {
if(fread(&seed, 1, sizeof(seed), f) != sizeof(seed)) {
seed = time(NULL);
}
fclose(f);
} else {
seed = time(NULL);
}
srandom(seed);
}
#endif
#else /* !JUNKTEST */
#define JUNKOPT
#define RANDOPT
#endif /* JUNKTEST */
/* Debug output function */
static void CC_PRINTFLIKE(1, 2)
DEBUG(const char *fmt, ...) {
va_list ap;
if(!opt_debug) return;
fprintf(stderr, "AD: ");
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
fprintf(stderr, "\n");
}
static const char *
ats_simple_name(enum asn_transfer_syntax syntax) {
switch(syntax) {
case ATS_INVALID:
return "/dev/null";
case ATS_NONSTANDARD_PLAINTEXT:
return "plaintext";
case ATS_BER:
return "BER";
case ATS_DER:
return "DER";
case ATS_CER:
return "CER";
case ATS_BASIC_OER:
case ATS_CANONICAL_OER:
return "OER";
case ATS_BASIC_XER:
case ATS_CANONICAL_XER:
return "XER";
case ATS_UNALIGNED_BASIC_PER:
case ATS_UNALIGNED_CANONICAL_PER:
return "PER";
default:
return "<?>";
}
}
#define CODEC_OFFSET(fname) ((ptrdiff_t)&(((asn_TYPE_operation_t *)0)->fname))
typedef struct {
const char *name;
enum asn_transfer_syntax syntax;
ptrdiff_t codec_offset;
const char *full_name;
} syntax_selector;
static syntax_selector input_encodings[] = {
{"ber", ATS_BER, CODEC_OFFSET(ber_decoder),
"Input is in BER (Basic Encoding Rules) or DER"},
{"oer", ATS_BASIC_OER, CODEC_OFFSET(oer_decoder),
"Input is in OER (Octet Encoding Rules)"},
{"per", ATS_UNALIGNED_BASIC_PER, CODEC_OFFSET(uper_decoder),
"Input is in Unaligned PER (Packed Encoding Rules)"},
{"xer", ATS_BASIC_XER, CODEC_OFFSET(xer_decoder),
"Input is in XER (XML Encoding Rules)"},
{0, ATS_INVALID, 0, 0}};
static syntax_selector output_encodings[] = {
{"der", ATS_DER, CODEC_OFFSET(der_encoder),
"Output as DER (Distinguished Encoding Rules)"},
{"oer", ATS_CANONICAL_OER, CODEC_OFFSET(oer_encoder),
"Output as Canonical OER (Octet Encoding Rules)"},
{"per", ATS_UNALIGNED_CANONICAL_PER, CODEC_OFFSET(uper_encoder),
"Output as Unaligned PER (Packed Encoding Rules)"},
{"xer", ATS_BASIC_XER, CODEC_OFFSET(xer_encoder),
"Output as XER (XML Encoding Rules)"},
{"text", ATS_NONSTANDARD_PLAINTEXT, CODEC_OFFSET(print_struct),
"Output as plain semi-structured text"},
{"null", ATS_INVALID, CODEC_OFFSET(print_struct),
"Verify (decode) input, but do not output"},
{0, ATS_INVALID, 0, 0}};
static int
has_codec_defined(const asn_TYPE_descriptor_t *td,
const syntax_selector *element) {
return *(const void *const *)(const void *)((const char *)td->op
+ element->codec_offset) != 0;
}
/*
* Select ASN.1 Transfer Enocoding Syntax by command line name.
*/
static const syntax_selector *
ats_by_name(const char *name, const asn_TYPE_descriptor_t *td,
const syntax_selector *first_element) {
const syntax_selector *element;
for(element = first_element; element->name; element++) {
if(strcmp(element->name, name) == 0) {
if(td && td->op && has_codec_defined(td, element)) {
return element;
}
}
}
return NULL;
}
int
main(int ac, char *av[]) {
FILE *binary_out;
static asn_TYPE_descriptor_t *pduType = PDU_Type_Ptr;
ssize_t suggested_bufsize = 8192; /* close or equal to stdio buffer */
int number_of_iterations = 1;
int num;
int ch;
const syntax_selector *sel;
enum asn_transfer_syntax isyntax = ATS_INVALID;
enum asn_transfer_syntax osyntax = ATS_BASIC_XER;
#ifndef PDU
if(!pduType) {
fprintf(stderr, "No -DPDU defined during compilation.\n");
#ifdef NO_ASN_PDU
exit(0);
#else
exit(EX_SOFTWARE);
#endif
}
#endif
/* Figure out if specialty decoder needs to be default */
if(ats_by_name("oer", pduType, input_encodings))
isyntax = ATS_BASIC_OER;
if(ats_by_name("per", pduType, input_encodings))
isyntax = ATS_UNALIGNED_BASIC_PER;
/*
* Pocess the command-line argments.
*/
while((ch = getopt(ac, av, "i:o:1b:cdn:p:hs:" JUNKOPT RANDOPT)) != -1)
switch(ch) {
case 'i':
sel = ats_by_name(optarg, pduType, input_encodings);
if(sel) {
isyntax = sel->syntax;
} else {
fprintf(stderr, "-i<format>: '%s': improper format selector\n",
optarg);
exit(EX_UNAVAILABLE);
}
break;
case 'o':
sel = ats_by_name(optarg, pduType, output_encodings);
if(sel) {
osyntax = sel->syntax;
} else {
fprintf(stderr, "-o<format>: '%s': improper format selector\n",
optarg);
exit(EX_UNAVAILABLE);
}
break;
case '1':
opt_onepdu = 1;
break;
case 'b':
suggested_bufsize = atoi(optarg);
if(suggested_bufsize < 1
|| suggested_bufsize > 16 * 1024 * 1024) {
fprintf(stderr,
"-b %s: Improper buffer size (1..16M)\n",
optarg);
exit(EX_UNAVAILABLE);
}
break;
case 'c':
opt_check = 1;
break;
case 'd':
opt_debug++; /* Double -dd means ASN.1 debug */
break;
case 'n':
number_of_iterations = atoi(optarg);
if(number_of_iterations < 1) {
fprintf(stderr,
"-n %s: Improper iterations count\n", optarg);
exit(EX_UNAVAILABLE);
}
break;
case 'p':
if(strcmp(optarg, "er-nopad") == 0) {
opt_nopad = 1;
break;
}
#ifdef ASN_PDU_COLLECTION
if(strcmp(optarg, "list") == 0) {
asn_TYPE_descriptor_t **pdu = asn_pdu_collection;
fprintf(stderr, "Available PDU types:\n");
for(; *pdu; pdu++) printf("%s\n", (*pdu)->name);
exit(0);
} else if(optarg[0] >= 'A' && optarg[0] <= 'Z') {
asn_TYPE_descriptor_t **pdu = asn_pdu_collection;
while(*pdu && strcmp((*pdu)->name, optarg)) pdu++;
if(*pdu) { pduType = *pdu; break; }
fprintf(stderr, "-p %s: Unrecognized PDU\n", optarg);
exit(EX_USAGE);
}
#else /* Without -pdu=auto there's just a single type */
if(strcmp(optarg, "list") == 0) {
fprintf(stderr, "Available PDU types:\n");
printf("%s\n", pduType->name);
exit(0);
} else if(optarg[0] >= 'A' && optarg[0] <= 'Z') {
if(strcmp(optarg, pduType->name) == 0) {
break;
}
fprintf(stderr, "-p %s: Unrecognized PDU\n", optarg);
exit(EX_USAGE);
}
#endif /* ASN_PDU_COLLECTION */
fprintf(stderr, "-p %s: Unrecognized option\n", optarg);
exit(EX_UNAVAILABLE);
case 's':
opt_stack = atoi(optarg);
if(opt_stack < 0) {
fprintf(stderr,
"-s %s: Non-negative value expected\n",
optarg);
exit(EX_UNAVAILABLE);
}
break;
#ifdef JUNKTEST
case 'J':
opt_jprob = strtod(optarg, 0);
if(opt_jprob <= 0.0 || opt_jprob > 1.0) {
fprintf(stderr,
"-J %s: Probability range 0..1 expected \n",
optarg);
exit(EX_UNAVAILABLE);
}
break;
case 'R':
isyntax = ATS_RANDOM;
random_max_size = atoi(optarg);
if(random_max_size < 0) {
fprintf(stderr,
"-R %s: Non-negative value expected\n",
optarg);
exit(EX_UNAVAILABLE);
}
srandomdev();
break;
#endif /* JUNKTEST */
case 'h':
default:
#ifdef ASN_CONVERTER_TITLE
#define _AXS(x) #x
#define _ASX(x) _AXS(x)
fprintf(stderr, "%s\n", _ASX(ASN_CONVERTER_TITLE));
#endif
fprintf(stderr, "Usage: %s [options] <datafile> ...\n", av[0]);
fprintf(stderr, "Where options are:\n");
for(sel = input_encodings; sel->name; sel++) {
if(ats_by_name(sel->name, pduType, sel)) {
fprintf(stderr, " -i%s %s%s\n", sel->name,
sel->full_name,
(sel->syntax == isyntax) ? " (DEFAULT)" : "");
}
}
for(sel = output_encodings; sel->name; sel++) {
if(ats_by_name(sel->name, pduType, sel)) {
fprintf(stderr, " -o%s%s %s%s\n", sel->name,
strlen(sel->name) > 3 ? "" : " ",
sel->full_name,
(sel->syntax == osyntax) ? " (DEFAULT)" : "");
}
}
if(pduType->op->uper_decoder) {
fprintf(stderr,
" -per-nopad Assume PER PDUs are not padded (-iper)\n");
}
#ifdef ASN_PDU_COLLECTION
fprintf(stderr,
" -p <PDU> Specify PDU type to decode\n"
" -p list List available PDUs\n");
#endif /* ASN_PDU_COLLECTION */
fprintf(stderr,
" -1 Decode only the first PDU in file\n"
" -b <size> Set the i/o buffer size (default is %ld)\n"
" -c Check ASN.1 constraints after decoding\n"
" -d Enable debugging (-dd is even better)\n"
" -n <num> Process files <num> times\n"
" -s <size> Set the stack usage limit (default is %d)\n"
#ifdef JUNKTEST
" -J <prob> Set random junk test bit garbaging probability\n"
" -R <size> Generate a random value of roughly the given size,\n"
" instead of parsing the value from file.\n"
#endif
, (long)suggested_bufsize, ASN__DEFAULT_STACK_MAX);
exit(EX_USAGE);
}
ac -= optind;
av += optind;
if(ac < 1 && isyntax != ATS_RANDOM) {
fprintf(stderr, "%s: No input files specified. "
"Try '-h' for more information\n",
av[-optind]);
exit(EX_USAGE);
}
if(isatty(1)) {
const int is_text_output = osyntax == ATS_NONSTANDARD_PLAINTEXT
|| osyntax == ATS_BASIC_XER
|| osyntax == ATS_CANONICAL_XER;
if(is_text_output) {
binary_out = stdout;
} else {
fprintf(stderr, "(Suppressing binary output to a terminal.)\n");
binary_out = fopen("/dev/null", "wb");
if(!binary_out) {
fprintf(stderr, "Can't open /dev/null: %s\n", strerror(errno));
exit(EX_OSERR);
}
}
} else {
binary_out = stdout;
}
setvbuf(stdout, 0, _IOLBF, 0);
for(num = 0; num < number_of_iterations; num++) {
int ac_i;
/*
* Process all files in turn.
*/
for(ac_i = (isyntax == ATS_RANDOM) ? -1 : 0; ac_i < ac; ac_i++) {
asn_enc_rval_t erv;
void *structure; /* Decoded structure */
FILE *file;
char *name;
int first_pdu;
if(ac_i == -1) {
file = NULL;
name = "<random value generator>";
opt_onepdu = 1;
} else {
file = argument_to_file(av, ac_i);
name = argument_to_name(av, ac_i);
}
for(first_pdu = 1; (first_pdu || !opt_onepdu); first_pdu = 0) {
/*
* Decode the encoded structure from file.
*/
#ifdef JUNKTEST
if(isyntax == ATS_RANDOM) {
structure = NULL;
if(asn_random_fill(pduType, &structure, random_max_size) != 0) {
fprintf(stderr, "Cannot generate a random value.\n");
assert(structure == NULL);
errno = EINVAL;
}
} else {
#endif
structure = data_decode_from_file(isyntax, pduType, file, name,
suggested_bufsize, first_pdu);
#ifdef JUNKTEST
}
#endif
if(!structure) {
if(errno) {
/* Error message is already printed */
exit(EX_DATAERR);
} else {
/* EOF */
break;
}
}
/* Check ASN.1 constraints */
if(opt_check) {
char errbuf[128];
size_t errlen = sizeof(errbuf);
if(asn_check_constraints(pduType, structure, errbuf, &errlen)) {
fprintf(stderr,
"%s: ASN.1 constraint "
"check failed: %s\n",
name, errbuf);
exit(EX_DATAERR);
}
}
if(osyntax == ATS_INVALID) {
#ifdef JUNKTEST
if(opt_jprob == 0.0) {
fprintf(stderr, "%s: decoded successfully\n", name);
}
#else
fprintf(stderr, "%s: decoded successfully\n", name);
#endif
} else {
erv = asn_encode(NULL, osyntax, pduType, structure, write_out,
binary_out);
if(erv.encoded == -1) {
fprintf(stderr, "%s: Cannot convert %s into %s\n", name,
pduType->name, ats_simple_name(osyntax));
DEBUG("Conversion failed for %s:\n", pduType->name);
asn_fprint(stderr, pduType, structure);
exit(EX_UNAVAILABLE);
}
DEBUG("Encoded in %" ASN_PRI_SSIZE " bytes of %s", erv.encoded,
ats_simple_name(osyntax));
}
ASN_STRUCT_FREE(*pduType, structure);
}
if(file && file != stdin) {
fclose(file);
}
}
}
#ifdef JUNKTEST
if(opt_jprob > 0.0) {
fprintf(stderr, "Junked %f OK (%d/%d)\n",
opt_jprob, junk_failures, number_of_iterations);
}
#endif /* JUNKTEST */
return 0;
}
static struct dynamic_buffer {
uint8_t *data; /* Pointer to the data bytes */
size_t offset; /* Offset from the start */
size_t length; /* Length of meaningful contents */
size_t unbits; /* Unused bits in the last byte */
size_t allocated; /* Allocated memory for data */
int nreallocs; /* Number of data reallocations */
off_t bytes_shifted; /* Number of bytes ever shifted */
} DynamicBuffer;
static void
buffer_dump() {
uint8_t *p = DynamicBuffer.data + DynamicBuffer.offset;
uint8_t *e = p + DynamicBuffer.length - (DynamicBuffer.unbits ? 1 : 0);
if(!opt_debug) return;
DEBUG("Buffer: { d=%p, o=%" ASN_PRI_SIZE ", l=%" ASN_PRI_SIZE
", u=%" ASN_PRI_SIZE ", a=%" ASN_PRI_SIZE ", s=%" ASN_PRI_SIZE " }",
(const void *)DynamicBuffer.data,
DynamicBuffer.offset,
DynamicBuffer.length,
DynamicBuffer.unbits,
DynamicBuffer.allocated,
(size_t)DynamicBuffer.bytes_shifted);
for(; p < e; p++) {
fprintf(stderr, " %c%c%c%c%c%c%c%c",
((*p >> 7) & 1) ? '1' : '0',
((*p >> 6) & 1) ? '1' : '0',
((*p >> 5) & 1) ? '1' : '0',
((*p >> 4) & 1) ? '1' : '0',
((*p >> 3) & 1) ? '1' : '0',
((*p >> 2) & 1) ? '1' : '0',
((*p >> 1) & 1) ? '1' : '0',
((*p >> 0) & 1) ? '1' : '0');
}
if(DynamicBuffer.unbits) {
unsigned int shift;
fprintf(stderr, " ");
for(shift = 7; shift >= DynamicBuffer.unbits; shift--)
fprintf(stderr, "%c", ((*p >> shift) & 1) ? '1' : '0');
fprintf(stderr, " %" ASN_PRI_SSIZE ":%" ASN_PRI_SSIZE "\n",
(ssize_t)DynamicBuffer.length - 1,
(ssize_t)8 - DynamicBuffer.unbits);
} else {
fprintf(stderr, " %ld\n", (long)DynamicBuffer.length);
}
}
/*
* Move the buffer content left N bits, possibly joining it with
* preceeding content.
*/
static void
buffer_shift_left(size_t offset, int bits) {
uint8_t *ptr = DynamicBuffer.data + DynamicBuffer.offset + offset;
uint8_t *end = DynamicBuffer.data + DynamicBuffer.offset
+ DynamicBuffer.length - 1;
if(!bits) return;
DEBUG("Shifting left %d bits off %ld (o=%ld, u=%ld, l=%ld)",
bits, (long)offset,
(long)DynamicBuffer.offset,
(long)DynamicBuffer.unbits,
(long)DynamicBuffer.length);
if(offset) {
int right;
right = ptr[0] >> (8 - bits);
DEBUG("oleft: %c%c%c%c%c%c%c%c",
((ptr[-1] >> 7) & 1) ? '1' : '0',
((ptr[-1] >> 6) & 1) ? '1' : '0',
((ptr[-1] >> 5) & 1) ? '1' : '0',
((ptr[-1] >> 4) & 1) ? '1' : '0',
((ptr[-1] >> 3) & 1) ? '1' : '0',
((ptr[-1] >> 2) & 1) ? '1' : '0',
((ptr[-1] >> 1) & 1) ? '1' : '0',
((ptr[-1] >> 0) & 1) ? '1' : '0');
DEBUG("oriht: %c%c%c%c%c%c%c%c",
((ptr[0] >> 7) & 1) ? '1' : '0',
((ptr[0] >> 6) & 1) ? '1' : '0',
((ptr[0] >> 5) & 1) ? '1' : '0',
((ptr[0] >> 4) & 1) ? '1' : '0',
((ptr[0] >> 3) & 1) ? '1' : '0',
((ptr[0] >> 2) & 1) ? '1' : '0',
((ptr[0] >> 1) & 1) ? '1' : '0',
((ptr[0] >> 0) & 1) ? '1' : '0');
DEBUG("mriht: %c%c%c%c%c%c%c%c",
((right >> 7) & 1) ? '1' : '0',
((right >> 6) & 1) ? '1' : '0',
((right >> 5) & 1) ? '1' : '0',
((right >> 4) & 1) ? '1' : '0',
((right >> 3) & 1) ? '1' : '0',
((right >> 2) & 1) ? '1' : '0',
((right >> 1) & 1) ? '1' : '0',
((right >> 0) & 1) ? '1' : '0');
ptr[-1] = (ptr[-1] & (0xff << bits)) | right;
DEBUG("after: %c%c%c%c%c%c%c%c",
((ptr[-1] >> 7) & 1) ? '1' : '0',
((ptr[-1] >> 6) & 1) ? '1' : '0',
((ptr[-1] >> 5) & 1) ? '1' : '0',
((ptr[-1] >> 4) & 1) ? '1' : '0',
((ptr[-1] >> 3) & 1) ? '1' : '0',
((ptr[-1] >> 2) & 1) ? '1' : '0',
((ptr[-1] >> 1) & 1) ? '1' : '0',
((ptr[-1] >> 0) & 1) ? '1' : '0');
}
buffer_dump();
for(; ptr < end; ptr++) {
int right = ptr[1] >> (8 - bits);
*ptr = (*ptr << bits) | right;
}
*ptr <<= bits;
DEBUG("Unbits [%" ASN_PRI_SIZE "=>", DynamicBuffer.unbits);
if(DynamicBuffer.unbits == 0) {
DynamicBuffer.unbits += bits;
} else {
DynamicBuffer.unbits += bits;
if(DynamicBuffer.unbits > 7) {
DynamicBuffer.unbits -= 8;
DynamicBuffer.length--;
DynamicBuffer.bytes_shifted++;
}
}
DEBUG("Unbits =>%" ASN_PRI_SIZE "]", DynamicBuffer.unbits);
buffer_dump();
DEBUG("Shifted. Now (o=%" ASN_PRI_SIZE ", u=%" ASN_PRI_SIZE
" l=%" ASN_PRI_SIZE ")",
DynamicBuffer.offset,
DynamicBuffer.unbits,
DynamicBuffer.length);
}
/*
* Ensure that the buffer contains at least this amount of free space.
*/
static void add_bytes_to_buffer(const void *data2add, size_t bytes) {
if(bytes == 0) return;
DEBUG("=> add_bytes(%" ASN_PRI_SIZE ") { o=%" ASN_PRI_SIZE
" l=%" ASN_PRI_SIZE " u=%" ASN_PRI_SIZE ", s=%" ASN_PRI_SIZE " }",
bytes,
DynamicBuffer.offset,
DynamicBuffer.length,
DynamicBuffer.unbits,
DynamicBuffer.allocated);
if(DynamicBuffer.allocated
>= (DynamicBuffer.offset + DynamicBuffer.length + bytes)) {
DEBUG("\tNo buffer reallocation is necessary");
} else if(bytes <= DynamicBuffer.offset) {
DEBUG("\tContents shifted by %ld", DynamicBuffer.offset);
/* Shift the buffer contents */
memmove(DynamicBuffer.data,
DynamicBuffer.data + DynamicBuffer.offset,
DynamicBuffer.length);
DynamicBuffer.bytes_shifted += DynamicBuffer.offset;
DynamicBuffer.offset = 0;
} else {
size_t newsize = (DynamicBuffer.allocated << 2) + bytes;
void *p = MALLOC(newsize);
if(!p) {
perror("malloc()");
exit(EX_OSERR);
}
memcpy(p,
DynamicBuffer.data + DynamicBuffer.offset,
DynamicBuffer.length);
FREEMEM(DynamicBuffer.data);
DynamicBuffer.data = (uint8_t *)p;
DynamicBuffer.offset = 0;
DynamicBuffer.allocated = newsize;
DynamicBuffer.nreallocs++;
DEBUG("\tBuffer reallocated to %ld (%d time)",
newsize, DynamicBuffer.nreallocs);
}
memcpy(DynamicBuffer.data
+ DynamicBuffer.offset + DynamicBuffer.length,
data2add, bytes);
DynamicBuffer.length += bytes;
if(DynamicBuffer.unbits) {
int bits = DynamicBuffer.unbits;
DynamicBuffer.unbits = 0;
buffer_shift_left(DynamicBuffer.length - bytes, bits);
}
DEBUG("<= add_bytes(%" ASN_PRI_SIZE ") { o=%" ASN_PRI_SIZE
" l=%" ASN_PRI_SIZE " u=%" ASN_PRI_SIZE ", s=%" ASN_PRI_SIZE " }",
bytes,
DynamicBuffer.offset,
DynamicBuffer.length,
DynamicBuffer.unbits,
DynamicBuffer.allocated);
}
static int
is_syntax_PER(enum asn_transfer_syntax syntax) {
return (syntax != ATS_UNALIGNED_BASIC_PER
&& syntax != ATS_UNALIGNED_CANONICAL_PER);
}
static int
restartability_supported(enum asn_transfer_syntax syntax) {
return is_syntax_PER(syntax);
}
static void *
data_decode_from_file(enum asn_transfer_syntax isyntax, asn_TYPE_descriptor_t *pduType, FILE *file, const char *name, ssize_t suggested_bufsize, int on_first_pdu) {
static uint8_t *fbuf;
static ssize_t fbuf_size;
static asn_codec_ctx_t s_codec_ctx;
asn_codec_ctx_t *opt_codec_ctx = 0;
void *structure = 0;
asn_dec_rval_t rval;
size_t old_offset;
size_t new_offset;
int tolerate_eof;
size_t rd;
if(!file) {
fprintf(stderr, "%s: %s\n", name, strerror(errno));
errno = EINVAL;
return 0;
}
if(opt_stack) {
s_codec_ctx.max_stack_size = opt_stack;
opt_codec_ctx = &s_codec_ctx;
}
DEBUG("Processing %s", name);
/* prepare the file buffer */
if(fbuf_size != suggested_bufsize) {
fbuf = (uint8_t *)REALLOC(fbuf, suggested_bufsize);
if(!fbuf) {
perror("realloc()");
exit(EX_OSERR);
}
fbuf_size = suggested_bufsize;
}
if(on_first_pdu) {
DynamicBuffer.offset = 0;
DynamicBuffer.length = 0;
DynamicBuffer.unbits = 0;
DynamicBuffer.allocated = 0;
DynamicBuffer.bytes_shifted = 0;
DynamicBuffer.nreallocs = 0;
}
old_offset = DynamicBuffer.bytes_shifted + DynamicBuffer.offset;
/* Pretend immediate EOF */
rval.code = RC_WMORE;
rval.consumed = 0;
for(tolerate_eof = 1; /* Allow EOF first time buffer is non-empty */
(rd = fread(fbuf, 1, fbuf_size, file))
|| feof(file) == 0
|| (tolerate_eof && DynamicBuffer.length)
;) {
int ecbits = 0; /* Extra consumed bits in case of PER */
uint8_t *i_bptr;
size_t i_size;
/*
* Copy the data over, or use the original buffer.
*/
if(DynamicBuffer.allocated) {
/* Append new data into the existing dynamic buffer */
add_bytes_to_buffer(fbuf, rd);
i_bptr = DynamicBuffer.data + DynamicBuffer.offset;
i_size = DynamicBuffer.length;
} else {
i_bptr = fbuf;
i_size = rd;
}
DEBUG("Decoding %" ASN_PRI_SIZE " bytes", i_size);
#ifdef JUNKTEST
junk_bytes_with_probability(i_bptr, i_size, opt_jprob);
#endif
if(is_syntax_PER(isyntax) && opt_nopad) {
#ifdef ASN_DISABLE_PER_SUPPORT
rval.code = RC_FAIL;
rval.consumed = 0;
#else
rval = uper_decode(opt_codec_ctx, pduType, (void **)&structure,
i_bptr, i_size, 0, DynamicBuffer.unbits);
/* uper_decode() returns bits! */
ecbits = rval.consumed % 8; /* Bits consumed from the last byte */
rval.consumed >>= 3; /* Convert bits into bytes. */
#endif
/* Non-padded PER decoder */
} else {
rval = asn_decode(opt_codec_ctx, isyntax, pduType,
(void **)&structure, i_bptr, i_size);
}
if(rval.code == RC_WMORE && !restartability_supported(isyntax)) {
/* PER does not support restartability */
ASN_STRUCT_FREE(*pduType, structure);
structure = 0;
rval.consumed = 0;
/* Continue accumulating data */
}
DEBUG("decode(%" ASN_PRI_SIZE ") consumed %" ASN_PRI_SIZE
"+%db (%" ASN_PRI_SIZE "), code %d",
DynamicBuffer.length, rval.consumed, ecbits, i_size, rval.code);
if(DynamicBuffer.allocated == 0) {
/*
* Flush remainder into the intermediate buffer.
*/
if(rval.code != RC_FAIL && rval.consumed < rd) {
add_bytes_to_buffer(fbuf + rval.consumed,
rd - rval.consumed);
buffer_shift_left(0, ecbits);
DynamicBuffer.bytes_shifted = rval.consumed;
rval.consumed = 0;
ecbits = 0;
}
}
/*
* Adjust position inside the source buffer.
*/
if(DynamicBuffer.allocated) {
DynamicBuffer.offset += rval.consumed;
DynamicBuffer.length -= rval.consumed;
} else {
DynamicBuffer.bytes_shifted += rval.consumed;
}
switch(rval.code) {
case RC_OK:
if(ecbits) buffer_shift_left(0, ecbits);
DEBUG("RC_OK, finishing up with %ld+%d",
(long)rval.consumed, ecbits);
return structure;
case RC_WMORE:
DEBUG("RC_WMORE, continuing read=%ld, cons=%ld "
" with %ld..%ld-%ld..%ld",
(long)rd,
(long)rval.consumed,
(long)DynamicBuffer.offset,
(long)DynamicBuffer.length,
(long)DynamicBuffer.unbits,
(long)DynamicBuffer.allocated);
if(!rd) tolerate_eof--;
continue;
case RC_FAIL:
break;
}
break;
}
DEBUG("Clean up partially decoded %s", pduType->name);
ASN_STRUCT_FREE(*pduType, structure);
new_offset = DynamicBuffer.bytes_shifted + DynamicBuffer.offset;
/*
* Print a message and return failure only if not EOF,
* unless this is our first PDU (empty file).
*/
if(on_first_pdu
|| DynamicBuffer.length
|| new_offset - old_offset > ((isyntax == ATS_BASIC_XER)?sizeof("\r\n")-1:0)
) {
#ifdef JUNKTEST
/*
* Nothing's wrong with being unable to decode junk.
* Simulate EOF.
*/
if(opt_jprob != 0.0) {
junk_failures++;
errno = 0;
return 0;
}
#endif
DEBUG("ofp %d, no=%ld, oo=%ld, dbl=%ld",
on_first_pdu, (long)new_offset, (long)old_offset,
(long)DynamicBuffer.length);
fprintf(stderr, "%s: "
"Decode failed past byte %ld: %s\n",
name, (long)new_offset,
(rval.code == RC_WMORE)
? "Unexpected end of input"
: "Input processing error");
#ifndef ENOMSG
#define ENOMSG EINVAL
#endif
#ifndef EBADMSG
#define EBADMSG EINVAL
#endif
errno = (rval.code == RC_WMORE) ? ENOMSG : EBADMSG;
} else {
/* Got EOF after a few successful PDUs */
errno = 0;
}
return 0;
}
/* Dump the buffer out to the specified FILE */
static int write_out(const void *buffer, size_t size, void *key) {
FILE *fp = (FILE *)key;
return (fwrite(buffer, 1, size, fp) == size) ? 0 : -1;
}
static int argument_is_stdin(char *av[], int idx) {
if(strcmp(av[idx], "-")) {
return 0; /* Certainly not <stdin> */
} else {
/* This might be <stdin>, unless `./program -- -` */
if(strcmp(av[-1], "--"))
return 1;
else
return 0;
}
}
static FILE *argument_to_file(char *av[], int idx) {
return argument_is_stdin(av, idx) ? stdin : fopen(av[idx], "rb");
}
static char *argument_to_name(char *av[], int idx) {
return argument_is_stdin(av, idx) ? "standard input" : av[idx];
}
#ifdef JUNKTEST
/*
* Fill bytes with some garbage with specified probability (more or less).
*/
static void
junk_bytes_with_probability(uint8_t *buf, size_t size, double prob) {
static int junkmode;
uint8_t *ptr;
uint8_t *end;
if(opt_jprob <= 0.0) return;
for(ptr = buf, end = ptr + size; ptr < end; ptr++) {
int byte = *ptr;
if(junkmode++ & 1) {
if((((double)random() / RAND_MAX) < prob))
byte = random() & 0xff;
} else {
#define BPROB(b) ((((double)random() / RAND_MAX) < prob) ? b : 0)
byte ^= BPROB(0x80);
byte ^= BPROB(0x40);
byte ^= BPROB(0x20);
byte ^= BPROB(0x10);
byte ^= BPROB(0x08);
byte ^= BPROB(0x04);
byte ^= BPROB(0x02);
byte ^= BPROB(0x01);
}
if(byte != *ptr) {
DEBUG("Junk buf[%d] %02x -> %02x", ptr - buf, *ptr, byte);
*ptr = byte;
}
}
}
#endif /* JUNKTEST */