asn1c/libasn1fix/asn1fix_integer.c

161 lines
3.3 KiB
C

#include "asn1fix_internal.h"
static int _compare_value(asn1p_expr_t *expr1, asn1p_expr_t *expr2) {
if(expr2->value->type == ATV_INTEGER
&& expr1->value->type == ATV_INTEGER) {
return expr2->value->value.v_integer
- expr1->value->value.v_integer;
} else {
return -1;
}
}
/*
* Check the validity of an INTEGER type.
*/
int
asn1f_fix_integer(arg_t *arg) {
asn1p_expr_t *expr = arg->expr;
asn1p_expr_t *iv;
int rvalue = 0;
int ret;
if(expr->expr_type != ASN_BASIC_INTEGER)
return 0; /* Just ignore it */
DEBUG("(\"%s\", %x) for line %d",
expr->Identifier, expr->expr_type, expr->_lineno);
/*
* Scan the integer values in search for inconsistencies.
*/
TQ_FOR(iv, &(expr->members), next) {
DEBUG("\tItem %s(%s)", iv->Identifier,
asn1f_printable_value(iv->value));
/*
* Found "...", check correctness.
*/
if(iv->expr_type == A1TC_EXTENSIBLE) {
FATAL("INTEGER %s at line %d: "
"Extension marker is not allowed",
expr->Identifier,
iv->_lineno);
rvalue = -1;
continue;
}
if(iv->Identifier == NULL
|| iv->expr_type != A1TC_UNIVERVAL) {
FATAL("INTEGER %s at line %d: "
"Unsupported enumeration element %s",
expr->Identifier,
iv->_lineno,
iv->Identifier?iv->Identifier:"<Anonymous>"
);
rvalue = -1;
continue;
}
if(iv->value == NULL) {
FATAL("INTEGER %s at line %d: "
"Value for the identifier %s "
"must be set explicitly",
expr->Identifier,
iv->_lineno,
iv->Identifier
);
rvalue = -1;
continue;
} else if(iv->value->type == ATV_REFERENCED) {
/*
* Resolve the value, once and for all.
*/
if(asn1f_value_resolve(arg, iv, 0)) {
/* This function will emit messages */
rvalue = -1;
continue;
}
}
if(iv->value->type != ATV_INTEGER) {
FATAL("INTEGER %s at line %d: "
"Value for the identifier %s "
"is not compatible with INTEGER type",
expr->Identifier,
iv->_lineno);
rvalue = -1;
continue;
}
/*
* Check that all identifiers are distinct.
*/
ret = asn1f_check_unique_expr_child(arg, iv, 0, "identifier");
RET2RVAL(ret, rvalue);
/*
* Check that all values are distinct.
*/
ret = asn1f_check_unique_expr_child(arg, iv,
_compare_value, "value");
RET2RVAL(ret, rvalue);
}
return rvalue;
}
#if 0
static int
_asn1f_make_sure_type_is(arg_t *arg, asn1p_expr_t *expr, asn1p_expr_type_e type) {
asn1p_expr_t *next_expr;
asn1p_expr_type_e expr_type;
int ret;
expr_type = expr->expr_type;
/*
* Here we're trying to make sure that the type of the given
* expression is really what is expected.
* This is ensured in two ways.
* First, if the immediate type matches the provided one,
* this is a clear hit.
*/
if(expr_type == type)
return 0;
/*
* Otherwise, it must be either a reference or a different type.
*/
if(expr_type != A1TC_REFERENCE) {
errno = EPERM;
return -1;
}
assert(expr_type == A1TC_REFERENCE);
assert(expr->reference);
/*
* Then, it is a reference. For a reference, try to resolve type
* and try again.
*/
next_expr = asn1f_lookup_symbol(arg, expr->module,
expr->rhs_pspecs, expr->reference);
if(next_expr == NULL) {
errno = ESRCH;
return -1;
}
/*
* If symbol is here, recursively check that it conforms to the type.
*/
WITH_MODULE(next_expr->module,
ret = _asn1f_make_sure_type_is(arg, next_expr, type));
return ret;
}
#endif