strongswan/src/libhydra/kernel/kernel_interface.c

803 lines
20 KiB
C
Raw Normal View History

/*
* Copyright (C) 2008-2012 Tobias Brunner
* Hochschule fuer Technik Rapperswil
* Copyright (C) 2010 Martin Willi
* Copyright (C) 2010 revosec AG
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
/*
* Copyright (c) 2012 Nanoteq Pty Ltd
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "kernel_interface.h"
#include <hydra.h>
2012-10-16 14:03:21 +00:00
#include <utils/debug.h>
#include <threading/mutex.h>
#include <collections/linked_list.h>
typedef struct private_kernel_interface_t private_kernel_interface_t;
2006-03-02 09:56:30 +00:00
typedef struct kernel_algorithm_t kernel_algorithm_t;
/**
* Mapping of IKE algorithms to kernel-specific algorithm identifiers
*/
struct kernel_algorithm_t {
/**
* Transform type of the algorithm
*/
transform_type_t type;
/**
* Identifier specified in IKE
*/
u_int16_t ike;
/**
* Identifier as defined in pfkeyv2.h
*/
u_int16_t kernel;
/**
* Name of the algorithm in linux crypto API
*/
char *name;
};
/**
* Private data of a kernel_interface_t object.
*/
struct private_kernel_interface_t {
/**
* Public part of kernel_interface_t object.
*/
kernel_interface_t public;
/**
* Registered IPsec constructor
*/
kernel_ipsec_constructor_t ipsec_constructor;
/**
* Registered net constructor
*/
kernel_net_constructor_t net_constructor;
/**
* ipsec interface
*/
kernel_ipsec_t *ipsec;
/**
* network interface
*/
kernel_net_t *net;
/**
* mutex for listeners
*/
mutex_t *mutex;
/**
* list of registered listeners
*/
linked_list_t *listeners;
/**
* mutex for algorithm mappings
*/
mutex_t *mutex_algs;
/**
* List of algorithm mappings (kernel_algorithm_t*)
*/
linked_list_t *algorithms;
/**
* List of interface names to include or exclude (char*), NULL if interfaces
* are not filtered
*/
linked_list_t *ifaces_filter;
/**
* TRUE to exclude interfaces listed in ifaces_filter, FALSE to consider
* only those listed there
*/
bool ifaces_exclude;
2008-05-08 16:19:11 +00:00
};
METHOD(kernel_interface_t, get_features, kernel_feature_t,
private_kernel_interface_t *this)
{
kernel_feature_t features = 0;
if (this->ipsec && this->ipsec->get_features)
{
features |= this->ipsec->get_features(this->ipsec);
}
if (this->net && this->net->get_features)
{
features |= this->net->get_features(this->net);
}
return features;
}
METHOD(kernel_interface_t, get_spi, status_t,
private_kernel_interface_t *this, host_t *src, host_t *dst,
u_int8_t protocol, u_int32_t reqid, u_int32_t *spi)
{
if (!this->ipsec)
{
return NOT_SUPPORTED;
}
return this->ipsec->get_spi(this->ipsec, src, dst, protocol, reqid, spi);
}
METHOD(kernel_interface_t, get_cpi, status_t,
private_kernel_interface_t *this, host_t *src, host_t *dst,
u_int32_t reqid, u_int16_t *cpi)
{
if (!this->ipsec)
{
return NOT_SUPPORTED;
}
return this->ipsec->get_cpi(this->ipsec, src, dst, reqid, cpi);
}
METHOD(kernel_interface_t, add_sa, status_t,
private_kernel_interface_t *this, host_t *src, host_t *dst,
u_int32_t spi, u_int8_t protocol, u_int32_t reqid, mark_t mark,
u_int32_t tfc, lifetime_cfg_t *lifetime, u_int16_t enc_alg, chunk_t enc_key,
2010-07-02 21:45:57 +00:00
u_int16_t int_alg, chunk_t int_key, ipsec_mode_t mode, u_int16_t ipcomp,
kernel-interface: add an exchange initiator parameter to add_sa() This new flag gives the kernel-interface a hint how it should priorize the use of newly installed SAs during rekeying. Consider the following rekey procedure in IKEv2: Initiator --- Responder I1 -------CREATE-------> R1 I2 <------CREATE-------- -------DELETE-------> R2 I3 <------DELETE-------- SAs are always handled as pairs, the following happens at the SA level: * Initiator starts the exchange at I1 * Responder installs new SA pair at R1 * Initiator installs new SA pair at I2 * Responder removes old SA pair at R2 * Initiator removes old SA pair at I3 This makes sure SAs get installed/removed overlapping during rekeying. However, to avoid any packet loss, it is crucial that the new outbound SA gets activated at the correct position: * as exchange initiator, in I2 * as exchange responder, in R2 This should guarantee that we don't use the new outbound SA before the peer could install its corresponding inbound SA. The new parameter allows the kernel backend to install the new SA with appropriate priorities, i.e. it should: * as exchange inititator, have the new outbound SA installed with higher priority than the old SA * as exchange responder, have the new outbound SA installed with lower priority than the old SA While we could split up the SA installation at the responder, this approach has another advantage: it allows the kernel backend to switch SAs based on other criteria, for example when receiving traffic on the new inbound SA.
2013-05-08 08:31:06 +00:00
u_int16_t cpi, bool initiator, bool encap, bool esn, bool inbound,
traffic_selector_t *src_ts, traffic_selector_t *dst_ts)
{
if (!this->ipsec)
{
return NOT_SUPPORTED;
}
return this->ipsec->add_sa(this->ipsec, src, dst, spi, protocol, reqid,
mark, tfc, lifetime, enc_alg, enc_key, int_alg, int_key, mode,
kernel-interface: add an exchange initiator parameter to add_sa() This new flag gives the kernel-interface a hint how it should priorize the use of newly installed SAs during rekeying. Consider the following rekey procedure in IKEv2: Initiator --- Responder I1 -------CREATE-------> R1 I2 <------CREATE-------- -------DELETE-------> R2 I3 <------DELETE-------- SAs are always handled as pairs, the following happens at the SA level: * Initiator starts the exchange at I1 * Responder installs new SA pair at R1 * Initiator installs new SA pair at I2 * Responder removes old SA pair at R2 * Initiator removes old SA pair at I3 This makes sure SAs get installed/removed overlapping during rekeying. However, to avoid any packet loss, it is crucial that the new outbound SA gets activated at the correct position: * as exchange initiator, in I2 * as exchange responder, in R2 This should guarantee that we don't use the new outbound SA before the peer could install its corresponding inbound SA. The new parameter allows the kernel backend to install the new SA with appropriate priorities, i.e. it should: * as exchange inititator, have the new outbound SA installed with higher priority than the old SA * as exchange responder, have the new outbound SA installed with lower priority than the old SA While we could split up the SA installation at the responder, this approach has another advantage: it allows the kernel backend to switch SAs based on other criteria, for example when receiving traffic on the new inbound SA.
2013-05-08 08:31:06 +00:00
ipcomp, cpi, initiator, encap, esn, inbound, src_ts, dst_ts);
}
METHOD(kernel_interface_t, update_sa, status_t,
private_kernel_interface_t *this, u_int32_t spi, u_int8_t protocol,
u_int16_t cpi, host_t *src, host_t *dst, host_t *new_src, host_t *new_dst,
2010-07-02 21:45:57 +00:00
bool encap, bool new_encap, mark_t mark)
{
if (!this->ipsec)
{
return NOT_SUPPORTED;
}
return this->ipsec->update_sa(this->ipsec, spi, protocol, cpi, src, dst,
2010-07-02 21:45:57 +00:00
new_src, new_dst, encap, new_encap, mark);
}
METHOD(kernel_interface_t, query_sa, status_t,
private_kernel_interface_t *this, host_t *src, host_t *dst,
u_int32_t spi, u_int8_t protocol, mark_t mark,
u_int64_t *bytes, u_int64_t *packets, u_int32_t *time)
2009-07-30 19:33:19 +00:00
{
if (!this->ipsec)
{
return NOT_SUPPORTED;
}
return this->ipsec->query_sa(this->ipsec, src, dst, spi, protocol, mark,
bytes, packets, time);
2009-07-30 19:33:19 +00:00
}
METHOD(kernel_interface_t, del_sa, status_t,
private_kernel_interface_t *this, host_t *src, host_t *dst, u_int32_t spi,
u_int8_t protocol, u_int16_t cpi, mark_t mark)
{
if (!this->ipsec)
{
return NOT_SUPPORTED;
}
2010-07-02 21:45:57 +00:00
return this->ipsec->del_sa(this->ipsec, src, dst, spi, protocol, cpi, mark);
}
METHOD(kernel_interface_t, flush_sas, status_t,
private_kernel_interface_t *this)
{
if (!this->ipsec)
{
return NOT_SUPPORTED;
}
return this->ipsec->flush_sas(this->ipsec);
}
METHOD(kernel_interface_t, add_policy, status_t,
private_kernel_interface_t *this, host_t *src, host_t *dst,
traffic_selector_t *src_ts, traffic_selector_t *dst_ts,
policy_dir_t direction, policy_type_t type, ipsec_sa_cfg_t *sa,
mark_t mark, policy_priority_t priority)
{
if (!this->ipsec)
{
return NOT_SUPPORTED;
}
return this->ipsec->add_policy(this->ipsec, src, dst, src_ts, dst_ts,
direction, type, sa, mark, priority);
}
METHOD(kernel_interface_t, query_policy, status_t,
private_kernel_interface_t *this, traffic_selector_t *src_ts,
2010-07-02 21:45:57 +00:00
traffic_selector_t *dst_ts, policy_dir_t direction, mark_t mark,
u_int32_t *use_time)
{
if (!this->ipsec)
{
return NOT_SUPPORTED;
}
return this->ipsec->query_policy(this->ipsec, src_ts, dst_ts,
2010-07-02 21:45:57 +00:00
direction, mark, use_time);
}
METHOD(kernel_interface_t, del_policy, status_t,
private_kernel_interface_t *this, traffic_selector_t *src_ts,
traffic_selector_t *dst_ts, policy_dir_t direction, u_int32_t reqid,
mark_t mark, policy_priority_t priority)
{
if (!this->ipsec)
{
return NOT_SUPPORTED;
}
return this->ipsec->del_policy(this->ipsec, src_ts, dst_ts,
direction, reqid, mark, priority);
}
METHOD(kernel_interface_t, flush_policies, status_t,
private_kernel_interface_t *this)
{
if (!this->ipsec)
{
return NOT_SUPPORTED;
}
return this->ipsec->flush_policies(this->ipsec);
}
METHOD(kernel_interface_t, get_source_addr, host_t*,
private_kernel_interface_t *this, host_t *dest, host_t *src)
{
if (!this->net)
{
return NULL;
}
return this->net->get_source_addr(this->net, dest, src);
}
2007-02-28 14:04:36 +00:00
METHOD(kernel_interface_t, get_nexthop, host_t*,
private_kernel_interface_t *this, host_t *dest, host_t *src)
{
if (!this->net)
{
return NULL;
}
return this->net->get_nexthop(this->net, dest, src);
}
METHOD(kernel_interface_t, get_interface, bool,
private_kernel_interface_t *this, host_t *host, char **name)
{
if (!this->net)
{
return NULL;
}
return this->net->get_interface(this->net, host, name);
}
METHOD(kernel_interface_t, create_address_enumerator, enumerator_t*,
private_kernel_interface_t *this, kernel_address_type_t which)
{
if (!this->net)
{
return enumerator_create_empty();
}
return this->net->create_address_enumerator(this->net, which);
}
METHOD(kernel_interface_t, add_ip, status_t,
private_kernel_interface_t *this, host_t *virtual_ip, int prefix,
char *iface)
{
if (!this->net)
{
return NOT_SUPPORTED;
}
return this->net->add_ip(this->net, virtual_ip, prefix, iface);
}
METHOD(kernel_interface_t, del_ip, status_t,
private_kernel_interface_t *this, host_t *virtual_ip, int prefix, bool wait)
{
if (!this->net)
{
return NOT_SUPPORTED;
}
return this->net->del_ip(this->net, virtual_ip, prefix, wait);
}
METHOD(kernel_interface_t, add_route, status_t,
private_kernel_interface_t *this, chunk_t dst_net,
u_int8_t prefixlen, host_t *gateway, host_t *src_ip, char *if_name)
{
if (!this->net)
{
return NOT_SUPPORTED;
}
return this->net->add_route(this->net, dst_net, prefixlen, gateway,
src_ip, if_name);
}
METHOD(kernel_interface_t, del_route, status_t,
private_kernel_interface_t *this, chunk_t dst_net,
u_int8_t prefixlen, host_t *gateway, host_t *src_ip, char *if_name)
{
if (!this->net)
{
return NOT_SUPPORTED;
}
return this->net->del_route(this->net, dst_net, prefixlen, gateway,
src_ip, if_name);
}
METHOD(kernel_interface_t, bypass_socket, bool,
private_kernel_interface_t *this, int fd, int family)
{
if (!this->ipsec)
{
return FALSE;
}
return this->ipsec->bypass_socket(this->ipsec, fd, family);
}
METHOD(kernel_interface_t, enable_udp_decap, bool,
private_kernel_interface_t *this, int fd, int family, u_int16_t port)
{
if (!this->ipsec)
{
return FALSE;
}
return this->ipsec->enable_udp_decap(this->ipsec, fd, family, port);
}
METHOD(kernel_interface_t, is_interface_usable, bool,
private_kernel_interface_t *this, const char *iface)
{
status_t expected;
if (!this->ifaces_filter)
{
return TRUE;
}
expected = this->ifaces_exclude ? NOT_FOUND : SUCCESS;
return this->ifaces_filter->find_first(this->ifaces_filter, (void*)streq,
NULL, iface) == expected;
}
METHOD(kernel_interface_t, all_interfaces_usable, bool,
private_kernel_interface_t *this)
{
return this->ifaces_filter == NULL;
}
METHOD(kernel_interface_t, get_address_by_ts, status_t,
private_kernel_interface_t *this, traffic_selector_t *ts,
host_t **ip, bool *vip)
{
enumerator_t *addrs;
host_t *host;
int family;
bool found = FALSE;
DBG2(DBG_KNL, "getting a local address in traffic selector %R", ts);
/* if we have a family which includes localhost, we do not
* search for an IP, we use the default */
family = ts->get_type(ts) == TS_IPV4_ADDR_RANGE ? AF_INET : AF_INET6;
if (family == AF_INET)
{
host = host_create_from_string("127.0.0.1", 0);
}
else
{
host = host_create_from_string("::1", 0);
}
if (ts->includes(ts, host))
{
*ip = host_create_any(family);
host->destroy(host);
DBG2(DBG_KNL, "using host %H", *ip);
return SUCCESS;
}
host->destroy(host);
addrs = create_address_enumerator(this, ADDR_TYPE_VIRTUAL);
while (addrs->enumerate(addrs, (void**)&host))
{
if (ts->includes(ts, host))
{
found = TRUE;
*ip = host->clone(host);
if (vip)
{
*vip = TRUE;
}
break;
}
}
addrs->destroy(addrs);
if (!found)
{
addrs = create_address_enumerator(this, ADDR_TYPE_REGULAR);
while (addrs->enumerate(addrs, (void**)&host))
{
if (ts->includes(ts, host))
{
found = TRUE;
*ip = host->clone(host);
if (vip)
{
*vip = FALSE;
}
break;
}
}
addrs->destroy(addrs);
}
if (!found)
{
DBG2(DBG_KNL, "no local address found in traffic selector %R", ts);
return FAILED;
}
DBG2(DBG_KNL, "using host %H", *ip);
return SUCCESS;
}
METHOD(kernel_interface_t, add_ipsec_interface, void,
private_kernel_interface_t *this, kernel_ipsec_constructor_t constructor)
{
if (!this->ipsec)
{
this->ipsec_constructor = constructor;
this->ipsec = constructor();
}
}
METHOD(kernel_interface_t, remove_ipsec_interface, void,
private_kernel_interface_t *this, kernel_ipsec_constructor_t constructor)
{
if (constructor == this->ipsec_constructor && this->ipsec)
{
this->ipsec->destroy(this->ipsec);
this->ipsec = NULL;
}
}
METHOD(kernel_interface_t, add_net_interface, void,
private_kernel_interface_t *this, kernel_net_constructor_t constructor)
{
if (!this->net)
{
this->net_constructor = constructor;
this->net = constructor();
}
}
METHOD(kernel_interface_t, remove_net_interface, void,
private_kernel_interface_t *this, kernel_net_constructor_t constructor)
{
if (constructor == this->net_constructor && this->net)
{
this->net->destroy(this->net);
this->net = NULL;
}
}
METHOD(kernel_interface_t, add_listener, void,
private_kernel_interface_t *this, kernel_listener_t *listener)
{
this->mutex->lock(this->mutex);
this->listeners->insert_last(this->listeners, listener);
this->mutex->unlock(this->mutex);
}
METHOD(kernel_interface_t, remove_listener, void,
private_kernel_interface_t *this, kernel_listener_t *listener)
{
this->mutex->lock(this->mutex);
this->listeners->remove(this->listeners, listener, NULL);
this->mutex->unlock(this->mutex);
}
METHOD(kernel_interface_t, acquire, void,
private_kernel_interface_t *this, u_int32_t reqid,
traffic_selector_t *src_ts, traffic_selector_t *dst_ts)
{
kernel_listener_t *listener;
enumerator_t *enumerator;
this->mutex->lock(this->mutex);
enumerator = this->listeners->create_enumerator(this->listeners);
while (enumerator->enumerate(enumerator, &listener))
{
if (listener->acquire &&
!listener->acquire(listener, reqid, src_ts, dst_ts))
{
this->listeners->remove_at(this->listeners, enumerator);
}
}
enumerator->destroy(enumerator);
this->mutex->unlock(this->mutex);
}
METHOD(kernel_interface_t, expire, void,
private_kernel_interface_t *this, u_int32_t reqid, u_int8_t protocol,
u_int32_t spi, bool hard)
{
kernel_listener_t *listener;
enumerator_t *enumerator;
this->mutex->lock(this->mutex);
enumerator = this->listeners->create_enumerator(this->listeners);
while (enumerator->enumerate(enumerator, &listener))
{
if (listener->expire &&
!listener->expire(listener, reqid, protocol, spi, hard))
{
this->listeners->remove_at(this->listeners, enumerator);
}
}
enumerator->destroy(enumerator);
this->mutex->unlock(this->mutex);
}
METHOD(kernel_interface_t, mapping, void,
private_kernel_interface_t *this, u_int32_t reqid, u_int32_t spi,
host_t *remote)
{
kernel_listener_t *listener;
enumerator_t *enumerator;
this->mutex->lock(this->mutex);
enumerator = this->listeners->create_enumerator(this->listeners);
while (enumerator->enumerate(enumerator, &listener))
{
if (listener->mapping &&
!listener->mapping(listener, reqid, spi, remote))
{
this->listeners->remove_at(this->listeners, enumerator);
}
}
enumerator->destroy(enumerator);
this->mutex->unlock(this->mutex);
}
METHOD(kernel_interface_t, migrate, void,
private_kernel_interface_t *this, u_int32_t reqid,
traffic_selector_t *src_ts, traffic_selector_t *dst_ts,
policy_dir_t direction, host_t *local, host_t *remote)
{
kernel_listener_t *listener;
enumerator_t *enumerator;
this->mutex->lock(this->mutex);
enumerator = this->listeners->create_enumerator(this->listeners);
while (enumerator->enumerate(enumerator, &listener))
{
if (listener->migrate &&
!listener->migrate(listener, reqid, src_ts, dst_ts, direction,
local, remote))
{
this->listeners->remove_at(this->listeners, enumerator);
}
}
enumerator->destroy(enumerator);
this->mutex->unlock(this->mutex);
}
static bool call_roam(kernel_listener_t *listener, bool *roam)
{
return listener->roam && !listener->roam(listener, *roam);
}
METHOD(kernel_interface_t, roam, void,
private_kernel_interface_t *this, bool address)
{
this->mutex->lock(this->mutex);
this->listeners->remove(this->listeners, &address, (void*)call_roam);
this->mutex->unlock(this->mutex);
}
METHOD(kernel_interface_t, register_algorithm, void,
private_kernel_interface_t *this, u_int16_t alg_id, transform_type_t type,
u_int16_t kernel_id, char *kernel_name)
{
kernel_algorithm_t *algorithm;
INIT(algorithm,
.type = type,
.ike = alg_id,
.kernel = kernel_id,
.name = strdup(kernel_name),
);
this->mutex_algs->lock(this->mutex_algs);
this->algorithms->insert_first(this->algorithms, algorithm);
this->mutex_algs->unlock(this->mutex_algs);
}
METHOD(kernel_interface_t, lookup_algorithm, bool,
private_kernel_interface_t *this, u_int16_t alg_id, transform_type_t type,
u_int16_t *kernel_id, char **kernel_name)
{
kernel_algorithm_t *algorithm;
enumerator_t *enumerator;
bool found = FALSE;
this->mutex_algs->lock(this->mutex_algs);
enumerator = this->algorithms->create_enumerator(this->algorithms);
while (enumerator->enumerate(enumerator, &algorithm))
{
if (algorithm->type == type && algorithm->ike == alg_id)
{
if (kernel_id)
{
*kernel_id = algorithm->kernel;
}
if (kernel_name)
{
*kernel_name = algorithm->name;
}
found = TRUE;
break;
}
}
enumerator->destroy(enumerator);
this->mutex_algs->unlock(this->mutex_algs);
return found;
}
METHOD(kernel_interface_t, destroy, void,
private_kernel_interface_t *this)
{
kernel_algorithm_t *algorithm;
while (this->algorithms->remove_first(this->algorithms,
(void**)&algorithm) == SUCCESS)
{
free(algorithm->name);
free(algorithm);
}
this->algorithms->destroy(this->algorithms);
this->mutex_algs->destroy(this->mutex_algs);
DESTROY_IF(this->ipsec);
DESTROY_IF(this->net);
DESTROY_FUNCTION_IF(this->ifaces_filter, (void*)free);
this->listeners->destroy(this->listeners);
this->mutex->destroy(this->mutex);
free(this);
}
/*
* Described in header-file
*/
kernel_interface_t *kernel_interface_create()
{
private_kernel_interface_t *this;
char *ifaces;
INIT(this,
.public = {
.get_features = _get_features,
.get_spi = _get_spi,
.get_cpi = _get_cpi,
.add_sa = _add_sa,
.update_sa = _update_sa,
.query_sa = _query_sa,
.del_sa = _del_sa,
.flush_sas = _flush_sas,
.add_policy = _add_policy,
.query_policy = _query_policy,
.del_policy = _del_policy,
.flush_policies = _flush_policies,
.get_source_addr = _get_source_addr,
.get_nexthop = _get_nexthop,
.get_interface = _get_interface,
.create_address_enumerator = _create_address_enumerator,
.add_ip = _add_ip,
.del_ip = _del_ip,
.add_route = _add_route,
.del_route = _del_route,
.bypass_socket = _bypass_socket,
.enable_udp_decap = _enable_udp_decap,
.is_interface_usable = _is_interface_usable,
.all_interfaces_usable = _all_interfaces_usable,
.get_address_by_ts = _get_address_by_ts,
.add_ipsec_interface = _add_ipsec_interface,
.remove_ipsec_interface = _remove_ipsec_interface,
.add_net_interface = _add_net_interface,
.remove_net_interface = _remove_net_interface,
.add_listener = _add_listener,
.remove_listener = _remove_listener,
.register_algorithm = _register_algorithm,
.lookup_algorithm = _lookup_algorithm,
.acquire = _acquire,
.expire = _expire,
.mapping = _mapping,
.migrate = _migrate,
.roam = _roam,
.destroy = _destroy,
},
.mutex = mutex_create(MUTEX_TYPE_DEFAULT),
.listeners = linked_list_create(),
.mutex_algs = mutex_create(MUTEX_TYPE_DEFAULT),
.algorithms = linked_list_create(),
);
ifaces = lib->settings->get_str(lib->settings,
"%s.interfaces_use", NULL, hydra->daemon);
if (!ifaces)
{
this->ifaces_exclude = TRUE;
ifaces = lib->settings->get_str(lib->settings,
"%s.interfaces_ignore", NULL, hydra->daemon);
}
if (ifaces)
{
enumerator_t *enumerator;
char *iface;
enumerator = enumerator_create_token(ifaces, ",", " ");
while (enumerator->enumerate(enumerator, &iface))
{
if (!this->ifaces_filter)
{
this->ifaces_filter = linked_list_create();
}
this->ifaces_filter->insert_last(this->ifaces_filter,
strdup(iface));
}
enumerator->destroy(enumerator);
}
return &this->public;
}