strongswan/src/charon/kernel/kernel_interface.c

1970 lines
50 KiB
C
Raw Normal View History

/**
* @file kernel_interface.c
*
* @brief Implementation of kernel_interface_t.
*
*/
/*
* Copyright (C) 2005-2007 Martin Willi
2007-02-28 14:04:36 +00:00
* Copyright (C) 2006-2007 Tobias Brunner
* Copyright (C) 2006-2007 Fabian Hartmann, Noah Heusser
2007-02-28 14:04:36 +00:00
* Copyright (C) 2006 Daniel Roethlisberger
2006-07-07 08:49:06 +00:00
* Copyright (C) 2005 Jan Hutter
* Hochschule fuer Technik Rapperswil
2005-12-13 11:19:48 +00:00
* Copyright (C) 2003 Herbert Xu.
*
* Based on xfrm code from pluto.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
#include <sys/types.h>
#include <sys/socket.h>
#include <linux/netlink.h>
2006-06-22 06:36:28 +00:00
#include <linux/rtnetlink.h>
#include <linux/xfrm.h>
#include <linux/udp.h>
#include <pthread.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <string.h>
2007-02-28 14:04:36 +00:00
#include <net/if.h>
#include <sys/ioctl.h>
#include "kernel_interface.h"
#include <daemon.h>
#include <utils/linked_list.h>
#include <processing/jobs/delete_child_sa_job.h>
#include <processing/jobs/rekey_child_sa_job.h>
#include <processing/jobs/acquire_job.h>
#include <processing/jobs/callback_job.h>
/** kernel level protocol identifiers */
#define KERNEL_ESP 50
#define KERNEL_AH 51
/** default priority of installed policies */
#define PRIO_LOW 3000
#define PRIO_HIGH 2000
2006-02-22 16:14:40 +00:00
2006-06-22 06:36:28 +00:00
#define BUFFER_SIZE 1024
2006-03-02 09:56:30 +00:00
/**
* returns a pointer to the first rtattr following the nlmsghdr *nlh and the
* 'usual' netlink data x like 'struct xfrm_usersa_info'
*/
2006-06-22 06:36:28 +00:00
#define XFRM_RTA(nlh, x) ((struct rtattr*)(NLMSG_DATA(nlh) + NLMSG_ALIGN(sizeof(x))))
/**
* returns a pointer to the next rtattr following rta.
* !!! do not use this to parse messages. use RTA_NEXT and RTA_OK instead !!!
*/
#define XFRM_RTA_NEXT(rta) ((struct rtattr*)(((char*)(rta)) + RTA_ALIGN((rta)->rta_len)))
/**
* returns the total size of attached rta data
* (after 'usual' netlink data x like 'struct xfrm_usersa_info')
*/
2006-06-22 06:36:28 +00:00
#define XFRM_PAYLOAD(nlh, x) NLMSG_PAYLOAD(nlh, sizeof(x))
typedef struct kernel_algorithm_t kernel_algorithm_t;
/**
* Mapping from the algorithms defined in IKEv2 to
* kernel level algorithm names and their key length
*/
struct kernel_algorithm_t {
/**
* Identifier specified in IKEv2
*/
int ikev2_id;
/**
* Name of the algorithm, as used as kernel identifier
*/
char *name;
/**
* Key length in bits, if fixed size
*/
u_int key_size;
};
#define END_OF_LIST -1
/**
* Algorithms for encryption
*/
kernel_algorithm_t encryption_algs[] = {
/* {ENCR_DES_IV64, "***", 0}, */
{ENCR_DES, "des", 64},
{ENCR_3DES, "des3_ede", 192},
/* {ENCR_RC5, "***", 0}, */
/* {ENCR_IDEA, "***", 0}, */
{ENCR_CAST, "cast128", 0},
{ENCR_BLOWFISH, "blowfish", 0},
/* {ENCR_3IDEA, "***", 0}, */
/* {ENCR_DES_IV32, "***", 0}, */
{ENCR_NULL, "cipher_null", 0},
{ENCR_AES_CBC, "aes", 0},
/* {ENCR_AES_CTR, "***", 0}, */
{END_OF_LIST, NULL, 0},
};
/**
* Algorithms for integrity protection
*/
kernel_algorithm_t integrity_algs[] = {
{AUTH_HMAC_MD5_96, "md5", 128},
{AUTH_HMAC_SHA1_96, "sha1", 160},
{AUTH_HMAC_SHA2_256_128, "sha256", 256},
{AUTH_HMAC_SHA2_384_192, "sha384", 384},
{AUTH_HMAC_SHA2_512_256, "sha512", 512},
/* {AUTH_DES_MAC, "***", 0}, */
/* {AUTH_KPDK_MD5, "***", 0}, */
{AUTH_AES_XCBC_96, "xcbc(aes)", 128},
{END_OF_LIST, NULL, 0},
};
/**
* Look up a kernel algorithm name and its key size
*/
char* lookup_algorithm(kernel_algorithm_t *kernel_algo,
algorithm_t *ikev2_algo, u_int *key_size)
{
while (kernel_algo->ikev2_id != END_OF_LIST)
{
if (ikev2_algo->algorithm == kernel_algo->ikev2_id)
{
/* match, evaluate key length */
if (ikev2_algo->key_size)
{ /* variable length */
*key_size = ikev2_algo->key_size;
}
else
{ /* fixed length */
*key_size = kernel_algo->key_size;
}
return kernel_algo->name;
}
kernel_algo++;
}
return NULL;
}
typedef struct route_entry_t route_entry_t;
/**
* installed routing entry
*/
struct route_entry_t {
2007-02-28 14:04:36 +00:00
/** Index of the interface the route is bound to */
int if_index;
/** Source ip of the route */
host_t *src_ip;
/** gateway for this route */
host_t *gateway;
2007-02-28 14:04:36 +00:00
/** Destination net */
chunk_t dst_net;
/** Destination net prefixlen */
u_int8_t prefixlen;
};
/**
* destroy an route_entry_t object
*/
static void route_entry_destroy(route_entry_t *this)
{
this->src_ip->destroy(this->src_ip);
this->gateway->destroy(this->gateway);
chunk_free(&this->dst_net);
free(this);
}
typedef struct policy_entry_t policy_entry_t;
/**
* installed kernel policy.
*/
struct policy_entry_t {
/** direction of this policy: in, out, forward */
u_int8_t direction;
/** reqid of the policy */
u_int32_t reqid;
/** parameters of installed policy */
struct xfrm_selector sel;
2007-02-28 14:04:36 +00:00
/** associated route installed for this policy */
route_entry_t *route;
2007-02-28 14:04:36 +00:00
/** by how many CHILD_SA's this policy is used */
u_int refcount;
};
typedef struct vip_entry_t vip_entry_t;
2007-02-28 14:04:36 +00:00
/**
* Installed virtual ip
2007-02-28 14:04:36 +00:00
*/
struct vip_entry_t {
2007-02-28 14:04:36 +00:00
/** Index of the interface the ip is bound to */
u_int8_t if_index;
/** The ip address */
host_t *ip;
/** Number of times this IP is used */
2007-02-28 14:04:36 +00:00
u_int refcount;
};
/**
* destroy a vip_entry_t object
*/
static void vip_entry_destroy(vip_entry_t *this)
{
this->ip->destroy(this->ip);
free(this);
}
typedef struct address_entry_t address_entry_t;
/**
* an address found on the system, containg address and interface info
*/
struct address_entry_t {
/** address of this entry */
host_t *host;
/** interface index */
int ifindex;
/** name of the index */
char ifname[IFNAMSIZ];
};
/**
* destroy an address entry
*/
static void address_entry_destroy(address_entry_t *this)
{
this->host->destroy(this->host);
free(this);
}
typedef struct private_kernel_interface_t private_kernel_interface_t;
/**
2007-02-28 14:04:36 +00:00
* Private variables and functions of kernel_interface class.
*/
struct private_kernel_interface_t {
/**
2005-12-06 16:36:42 +00:00
* Public part of the kernel_interface_t object.
*/
kernel_interface_t public;
/**
* List of installed policies (kernel_entry_t)
*/
linked_list_t *policies;
/**
* Mutex locks access to policies
2007-02-28 14:04:36 +00:00
*/
pthread_mutex_t policies_mutex;
/**
* List of installed virtual IPs. (vip_entry_t)
*/
linked_list_t *vips;
/**
* Mutex to lock access to vips.
*/
pthread_mutex_t vips_mutex;
/**
* job receiving xfrm events
*/
callback_job_t *job;
/**
* netlink xfrm socket to receive acquire and expire events
*/
int socket_xfrm_events;
/**
* Netlink xfrm socket (IPsec)
*/
int socket_xfrm;
/**
* Netlink rt socket (routing)
*/
int socket_rt;
2007-02-28 14:04:36 +00:00
};
/**
* convert a host_t to a struct xfrm_address
*/
static void host2xfrm(host_t *host, xfrm_address_t *xfrm)
{
chunk_t chunk = host->get_address(host);
memcpy(xfrm, chunk.ptr, min(chunk.len, sizeof(xfrm_address_t)));
}
2007-02-28 14:04:36 +00:00
/**
* convert a traffic selector address range to subnet and its mask.
*/
static void ts2subnet(traffic_selector_t* ts,
xfrm_address_t *net, u_int8_t *mask)
{
/* there is no way to do this cleanly, as the address range may
* be anything else but a subnet. We use from_addr as subnet
* and try to calculate a usable subnet mask.
*/
int byte, bit;
bool found = FALSE;
chunk_t from, to;
size_t size = (ts->get_type(ts) == TS_IPV4_ADDR_RANGE) ? 4 : 16;
from = ts->get_from_address(ts);
to = ts->get_to_address(ts);
*mask = (size * 8);
/* go trough all bits of the addresses, beginning in the front.
* as long as they are equal, the subnet gets larger
*/
for (byte = 0; byte < size; byte++)
{
for (bit = 7; bit >= 0; bit--)
{
if ((1<<bit & from.ptr[byte]) != (1<<bit & to.ptr[byte]))
{
*mask = ((7 - bit) + (byte * 8));
found = TRUE;
break;
}
}
if (found)
{
break;
}
}
memcpy(net, from.ptr, from.len);
chunk_free(&from);
chunk_free(&to);
}
/**
* convert a traffic selector port range to port/portmask
*/
static void ts2ports(traffic_selector_t* ts,
u_int16_t *port, u_int16_t *mask)
{
/* linux does not seem to accept complex portmasks. Only
* any or a specific port is allowed. We set to any, if we have
* a port range, or to a specific, if we have one port only.
*/
u_int16_t from, to;
from = ts->get_from_port(ts);
to = ts->get_to_port(ts);
if (from == to)
{
*port = htons(from);
*mask = ~0;
}
else
{
*port = 0;
*mask = 0;
}
}
/**
* convert a pair of traffic_selectors to a xfrm_selector
*/
static struct xfrm_selector ts2selector(traffic_selector_t *src,
traffic_selector_t *dst)
{
struct xfrm_selector sel;
memset(&sel, 0, sizeof(sel));
sel.family = src->get_type(src) == TS_IPV4_ADDR_RANGE ? AF_INET : AF_INET6;
/* src or dest proto may be "any" (0), use more restrictive one */
sel.proto = max(src->get_protocol(src), dst->get_protocol(dst));
ts2subnet(dst, &sel.daddr, &sel.prefixlen_d);
ts2subnet(src, &sel.saddr, &sel.prefixlen_s);
ts2ports(dst, &sel.dport, &sel.dport_mask);
ts2ports(src, &sel.sport, &sel.sport_mask);
sel.ifindex = 0;
sel.user = 0;
return sel;
}
/**
* Creates an rtattr and adds it to the netlink message
*/
static void add_attribute(struct nlmsghdr *hdr, int rta_type, chunk_t data,
size_t buflen)
{
struct rtattr *rta;
if (NLMSG_ALIGN(hdr->nlmsg_len) + RTA_ALIGN(data.len) > buflen)
{
DBG1(DBG_KNL, "unable to add attribute, buffer too small");
return;
}
rta = (struct rtattr*)(((char*)hdr) + NLMSG_ALIGN(hdr->nlmsg_len));
rta->rta_type = rta_type;
rta->rta_len = RTA_LENGTH(data.len);
memcpy(RTA_DATA(rta), data.ptr, data.len);
hdr->nlmsg_len = NLMSG_ALIGN(hdr->nlmsg_len) + rta->rta_len;
}
/**
* Receives events from kernel
*/
static job_requeue_t receive_events(private_kernel_interface_t *this)
{
unsigned char response[512];
struct nlmsghdr *hdr;
struct sockaddr_nl addr;
socklen_t addr_len = sizeof(addr);
int len, oldstate;
hdr = (struct nlmsghdr*)response;
pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &oldstate);
len = recvfrom(this->socket_xfrm_events, response, sizeof(response), 0,
(struct sockaddr*)&addr, &addr_len);
pthread_setcancelstate(oldstate, NULL);
if (len < 0)
{
if (errno == EINTR)
{ /* interrupted, try again */
return JOB_REQUEUE_DIRECT;
}
charon->kill(charon, "unable to receive netlink events");
}
if (!NLMSG_OK(hdr, len))
{
/* bad netlink message */
return JOB_REQUEUE_DIRECT;
}
if (addr.nl_pid != 0)
{
/* not from kernel. not interested, try another one */
return JOB_REQUEUE_DIRECT;
}
/* we handle ACQUIRE and EXPIRE messages directly */
if (hdr->nlmsg_type == XFRM_MSG_ACQUIRE)
{
u_int32_t reqid = 0;
job_t *job;
struct rtattr *rtattr = XFRM_RTA(hdr, struct xfrm_user_acquire);
size_t rtsize = XFRM_PAYLOAD(hdr, struct xfrm_user_tmpl);
if (RTA_OK(rtattr, rtsize))
{
if (rtattr->rta_type == XFRMA_TMPL)
{
struct xfrm_user_tmpl* tmpl = (struct xfrm_user_tmpl*)RTA_DATA(rtattr);
reqid = tmpl->reqid;
}
}
if (reqid == 0)
2007-02-28 14:04:36 +00:00
{
DBG1(DBG_KNL, "received a XFRM_MSG_ACQUIRE, but no reqid found");
2007-02-28 14:04:36 +00:00
}
else
2007-02-28 14:04:36 +00:00
{
DBG2(DBG_KNL, "received a XFRM_MSG_ACQUIRE");
DBG1(DBG_KNL, "creating acquire job for CHILD_SA with reqid %d",
reqid);
job = (job_t*)acquire_job_create(reqid);
charon->processor->queue_job(charon->processor, job);
2007-02-28 14:04:36 +00:00
}
}
else if (hdr->nlmsg_type == XFRM_MSG_EXPIRE)
{
job_t *job;
protocol_id_t protocol;
u_int32_t spi, reqid;
struct xfrm_user_expire *expire;
expire = (struct xfrm_user_expire*)NLMSG_DATA(hdr);
protocol = expire->state.id.proto == KERNEL_ESP ?
PROTO_ESP : PROTO_AH;
spi = expire->state.id.spi;
reqid = expire->state.reqid;
2007-02-28 14:04:36 +00:00
DBG2(DBG_KNL, "received a XFRM_MSG_EXPIRE");
DBG1(DBG_KNL, "creating %s job for %N CHILD_SA 0x%x (reqid %d)",
expire->hard ? "delete" : "rekey", protocol_id_names,
protocol, ntohl(spi), reqid);
if (expire->hard)
{
job = (job_t*)delete_child_sa_job_create(reqid, protocol, spi);
}
else
{
job = (job_t*)rekey_child_sa_job_create(reqid, protocol, spi);
}
charon->processor->queue_job(charon->processor, job);
}
return JOB_REQUEUE_DIRECT;
}
/**
* send a netlink message and wait for a reply
2006-03-02 09:56:30 +00:00
*/
static status_t netlink_send(int socket, struct nlmsghdr *in,
struct nlmsghdr **out, size_t *out_len)
{
int len, addr_len;
struct sockaddr_nl addr;
chunk_t result = chunk_empty, tmp;
struct nlmsghdr *msg, peek;
static int seq = 200;
static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_lock(&mutex);
2006-06-22 06:36:28 +00:00
in->nlmsg_seq = ++seq;
in->nlmsg_pid = getpid();
memset(&addr, 0, sizeof(addr));
addr.nl_family = AF_NETLINK;
addr.nl_pid = 0;
addr.nl_groups = 0;
while (TRUE)
{
len = sendto(socket, in, in->nlmsg_len, 0,
(struct sockaddr*)&addr, sizeof(addr));
if (len != in->nlmsg_len)
{
if (errno == EINTR)
{
/* interrupted, try again */
continue;
}
pthread_mutex_unlock(&mutex);
DBG1(DBG_KNL, "error sending to netlink socket: %s", strerror(errno));
return FAILED;
}
break;
}
while (TRUE)
{
char buf[1024];
tmp.len = sizeof(buf);
tmp.ptr = buf;
msg = (struct nlmsghdr*)tmp.ptr;
2006-06-22 06:36:28 +00:00
memset(&addr, 0, sizeof(addr));
addr.nl_family = AF_NETLINK;
addr.nl_pid = getpid();
addr.nl_groups = 0;
addr_len = sizeof(addr);
len = recvfrom(socket, tmp.ptr, tmp.len, 0,
(struct sockaddr*)&addr, &addr_len);
if (len < 0)
2006-03-02 09:56:30 +00:00
{
if (errno == EINTR)
{
DBG1(DBG_IKE, "got interrupted");
/* interrupted, try again */
continue;
}
DBG1(DBG_IKE, "error reading from netlink socket: %s", strerror(errno));
pthread_mutex_unlock(&mutex);
2006-03-02 09:56:30 +00:00
return FAILED;
}
if (!NLMSG_OK(msg, len))
{
DBG1(DBG_IKE, "received corrupted netlink message");
pthread_mutex_unlock(&mutex);
return FAILED;
}
if (msg->nlmsg_seq != seq)
2006-03-02 09:56:30 +00:00
{
DBG1(DBG_IKE, "received invalid netlink sequence number");
if (msg->nlmsg_seq < seq)
{
continue;
}
pthread_mutex_unlock(&mutex);
2006-03-02 09:56:30 +00:00
return FAILED;
}
2006-06-22 06:36:28 +00:00
tmp.len = len;
result = chunk_cata("cc", result, tmp);
/* NLM_F_MULTI flag does not seem to be set correctly, we use sequence
* numbers to detect multi header messages */
len = recvfrom(socket, &peek, sizeof(peek), MSG_PEEK | MSG_DONTWAIT,
(struct sockaddr*)&addr, &addr_len);
if (len == sizeof(peek) && peek.nlmsg_seq == seq)
2006-06-22 06:36:28 +00:00
{
/* seems to be multipart */
continue;
2006-06-22 06:36:28 +00:00
}
break;
2006-06-22 06:36:28 +00:00
}
2007-01-03 09:25:57 +00:00
*out_len = result.len;
*out = (struct nlmsghdr*)clalloc(result.ptr, result.len);
pthread_mutex_unlock(&mutex);
return SUCCESS;
}
/**
* send a netlink message and wait for its acknowlegde
*/
static status_t netlink_send_ack(int socket, struct nlmsghdr *in)
{
struct nlmsghdr *out, *hdr;
size_t len;
2006-06-22 06:36:28 +00:00
if (netlink_send(socket, in, &out, &len) != SUCCESS)
2006-06-22 06:36:28 +00:00
{
return FAILED;
}
hdr = out;
while (NLMSG_OK(hdr, len))
2006-06-22 06:36:28 +00:00
{
switch (hdr->nlmsg_type)
{
case NLMSG_ERROR:
{
struct nlmsgerr* err = (struct nlmsgerr*)NLMSG_DATA(hdr);
if (err->error)
{
DBG1(DBG_KNL, "received netlink error: %s (%d)",
strerror(-err->error), -err->error);
free(out);
return FAILED;
}
free(out);
return SUCCESS;
}
default:
hdr = NLMSG_NEXT(hdr, len);
continue;
case NLMSG_DONE:
break;
}
break;
2006-06-22 06:36:28 +00:00
}
DBG1(DBG_KNL, "netlink request not acknowlegded");
free(out);
return FAILED;
}
/**
* Create a list of local addresses.
*/
static linked_list_t *create_address_list(private_kernel_interface_t *this)
{
char request[BUFFER_SIZE];
struct nlmsghdr *out, *hdr;
struct rtgenmsg *msg;
size_t len;
linked_list_t *list;
DBG2(DBG_IKE, "getting local address list");
list = linked_list_create();
memset(&request, 0, sizeof(request));
2006-06-22 06:36:28 +00:00
hdr = (struct nlmsghdr*)&request;
hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct rtgenmsg));
hdr->nlmsg_type = RTM_GETADDR;
hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_MATCH | NLM_F_ROOT;
msg = (struct rtgenmsg*)NLMSG_DATA(hdr);
msg->rtgen_family = AF_UNSPEC;
2006-06-22 06:36:28 +00:00
if (netlink_send(this->socket_rt, hdr, &out, &len) == SUCCESS)
2006-06-22 06:36:28 +00:00
{
hdr = out;
while (NLMSG_OK(hdr, len))
2006-06-22 06:36:28 +00:00
{
switch (hdr->nlmsg_type)
2006-06-22 06:36:28 +00:00
{
case RTM_NEWADDR:
{
struct ifaddrmsg* msg = (struct ifaddrmsg*)(NLMSG_DATA(hdr));
struct rtattr *rta = IFA_RTA(msg);
size_t rtasize = IFA_PAYLOAD (hdr);
host_t *host = NULL;
char *name = NULL;
chunk_t local = chunk_empty, address = chunk_empty;
while(RTA_OK(rta, rtasize))
{
switch (rta->rta_type)
{
case IFA_LOCAL:
local.ptr = RTA_DATA(rta);
local.len = RTA_PAYLOAD(rta);
break;
case IFA_ADDRESS:
address.ptr = RTA_DATA(rta);
address.len = RTA_PAYLOAD(rta);
break;
case IFA_LABEL:
name = RTA_DATA(rta);
break;
}
rta = RTA_NEXT(rta, rtasize);
}
/* For PPP interfaces, we need the IFA_LOCAL address,
* IFA_ADDRESS is the peers address. But IFA_LOCAL is
* not included in all cases, so fallback to IFA_ADDRESS. */
if (local.ptr)
{
host = host_create_from_chunk(msg->ifa_family, local, 0);
}
else if (address.ptr)
{
host = host_create_from_chunk(msg->ifa_family, address, 0);
}
if (host)
{
address_entry_t *entry;
entry = malloc_thing(address_entry_t);
entry->host = host;
entry->ifindex = msg->ifa_index;
if (name)
{
memcpy(entry->ifname, name, IFNAMSIZ);
}
else
{
strcpy(entry->ifname, "(unknown)");
}
list->insert_last(list, entry);
}
hdr = NLMSG_NEXT(hdr, len);
continue;
}
default:
hdr = NLMSG_NEXT(hdr, len);
continue;
case NLMSG_DONE:
break;
2006-06-22 06:36:28 +00:00
}
break;
2006-06-22 06:36:28 +00:00
}
free(out);
2006-06-22 06:36:28 +00:00
}
else
2006-06-22 06:36:28 +00:00
{
DBG1(DBG_IKE, "unable to get local address list");
2006-06-22 06:36:28 +00:00
}
return list;
2006-06-22 06:36:28 +00:00
}
/**
* Implements kernel_interface_t.create_address_list.
*/
static linked_list_t *create_address_list_public(private_kernel_interface_t *this)
{
linked_list_t *result, *list;
address_entry_t *entry;
result = linked_list_create();
list = create_address_list(this);
while (list->remove_last(list, (void**)&entry) == SUCCESS)
{
result->insert_last(result, entry->host);
free(entry);
}
list->destroy(list);
return result;
}
/**
* implementation of kernel_interface_t.get_interface_name
*/
static char *get_interface_name(private_kernel_interface_t *this, host_t* ip)
{
linked_list_t *list;
address_entry_t *entry;
char *name = NULL;
DBG2(DBG_IKE, "getting interface name for %H", ip);
list = create_address_list(this);
while (!name && list->remove_last(list, (void**)&entry) == SUCCESS)
{
if (ip->ip_equals(ip, entry->host))
{
name = strdup(entry->ifname);
}
address_entry_destroy(entry);
}
list->destroy_function(list, (void*)address_entry_destroy);
if (name)
{
DBG2(DBG_IKE, "%H is on interface %s", ip, name);
}
else
{
DBG2(DBG_IKE, "%H is not a local address", ip);
}
return name;
}
/**
* Tries to find an ip address of a local interface that is included in the
* supplied traffic selector.
*/
static status_t get_address_by_ts(private_kernel_interface_t *this,
traffic_selector_t *ts, host_t **ip)
2006-06-22 06:36:28 +00:00
{
address_entry_t *entry;
host_t *host;
int family;
linked_list_t *list;
bool found = FALSE;
DBG2(DBG_IKE, "getting a local address in traffic selector %R", ts);
/* if we have a family which includes localhost, we do not
* search for an IP, we use the default */
family = ts->get_type(ts) == TS_IPV4_ADDR_RANGE ? AF_INET : AF_INET6;
2006-06-22 06:36:28 +00:00
if (family == AF_INET)
{
host = host_create_from_string("127.0.0.1", 0);
}
else
{
host = host_create_from_string("::1", 0);
}
if (ts->includes(ts, host))
{
*ip = host_create_any(family);
host->destroy(host);
DBG2(DBG_IKE, "using host %H", *ip);
return SUCCESS;
}
host->destroy(host);
list = create_address_list(this);
while (!found && list->remove_last(list, (void**)&entry) == SUCCESS)
{
if (ts->includes(ts, entry->host))
{
found = TRUE;
*ip = entry->host->clone(entry->host);
}
address_entry_destroy(entry);
}
list->destroy_function(list, (void*)address_entry_destroy);
if (!found)
{
DBG1(DBG_IKE, "no local address found in traffic selector %R", ts);
return FAILED;
}
DBG2(DBG_IKE, "using host %H", *ip);
return SUCCESS;
}
/**
* get the interface of a local address
*/
static int get_interface_index(private_kernel_interface_t *this, host_t* ip)
{
linked_list_t *list;
address_entry_t *entry;
int ifindex = 0;
DBG2(DBG_IKE, "getting iface for %H", ip);
list = create_address_list(this);
while (!ifindex && list->remove_last(list, (void**)&entry) == SUCCESS)
{
if (ip->ip_equals(ip, entry->host))
{
ifindex = entry->ifindex;
}
address_entry_destroy(entry);
}
list->destroy_function(list, (void*)address_entry_destroy);
if (ifindex == 0)
{
DBG1(DBG_IKE, "unable to get interface for %H", ip);
}
return ifindex;
}
/**
* Manages the creation and deletion of ip addresses on an interface.
* By setting the appropriate nlmsg_type, the ip will be set or unset.
*/
static status_t manage_ipaddr(private_kernel_interface_t *this, int nlmsg_type,
int flags, int if_index, host_t *ip)
{
unsigned char request[BUFFER_SIZE];
struct nlmsghdr *hdr;
struct ifaddrmsg *msg;
chunk_t chunk;
memset(&request, 0, sizeof(request));
chunk = ip->get_address(ip);
hdr = (struct nlmsghdr*)request;
hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK | flags;
hdr->nlmsg_type = nlmsg_type;
hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct ifaddrmsg));
msg = (struct ifaddrmsg*)NLMSG_DATA(hdr);
msg->ifa_family = ip->get_family(ip);
msg->ifa_flags = 0;
msg->ifa_prefixlen = 8 * chunk.len;
msg->ifa_scope = RT_SCOPE_UNIVERSE;
msg->ifa_index = if_index;
add_attribute(hdr, IFA_LOCAL, chunk, sizeof(request));
return netlink_send_ack(this->socket_rt, hdr);
}
/**
* Manages source routes in the routing table.
* By setting the appropriate nlmsg_type, the route added or r.
*/
static status_t manage_srcroute(private_kernel_interface_t *this, int nlmsg_type,
int flags, route_entry_t *route)
{
unsigned char request[BUFFER_SIZE];
struct nlmsghdr *hdr;
struct rtmsg *msg;
chunk_t chunk;
/* if route is 0.0.0.0/0, we can't install it, as it would
* overwrite the default route. Instead, we add two routes:
* 0.0.0.0/1 and 128.0.0.0/1
* TODO: use metrics instead */
if (route->prefixlen == 0)
{
route_entry_t half;
status_t status;
half.dst_net = chunk_alloca(route->dst_net.len);
memset(half.dst_net.ptr, 0, half.dst_net.len);
half.src_ip = route->src_ip;
half.gateway = route->gateway;
half.if_index = route->if_index;
half.prefixlen = 1;
status = manage_srcroute(this, nlmsg_type, flags, &half);
half.dst_net.ptr[0] |= 0x80;
status = manage_srcroute(this, nlmsg_type, flags, &half);
return status;
}
memset(&request, 0, sizeof(request));
hdr = (struct nlmsghdr*)request;
hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK | flags;
hdr->nlmsg_type = nlmsg_type;
hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct rtmsg));
msg = (struct rtmsg*)NLMSG_DATA(hdr);
msg->rtm_family = route->src_ip->get_family(route->src_ip);
msg->rtm_dst_len = route->prefixlen;
msg->rtm_table = RT_TABLE_MAIN;
msg->rtm_protocol = RTPROT_STATIC;
msg->rtm_type = RTN_UNICAST;
msg->rtm_scope = RT_SCOPE_UNIVERSE;
add_attribute(hdr, RTA_DST, route->dst_net, sizeof(request));
chunk = route->src_ip->get_address(route->src_ip);
add_attribute(hdr, RTA_PREFSRC, chunk, sizeof(request));
chunk = route->gateway->get_address(route->gateway);
add_attribute(hdr, RTA_GATEWAY, chunk, sizeof(request));
chunk.ptr = (char*)&route->if_index;
chunk.len = sizeof(route->if_index);
add_attribute(hdr, RTA_OIF, chunk, sizeof(request));
return netlink_send_ack(this->socket_rt, hdr);
}
2007-02-28 14:04:36 +00:00
/**
* Implementation of kernel_interface_t.add_ip.
2007-02-28 14:04:36 +00:00
*/
static status_t add_ip(private_kernel_interface_t *this,
host_t *virtual_ip, host_t *iface_ip)
2007-02-28 14:04:36 +00:00
{
int targetif;
vip_entry_t *listed;
iterator_t *iterator;
2007-02-28 14:04:36 +00:00
DBG2(DBG_KNL, "adding virtual IP %H", virtual_ip);
2007-02-28 14:04:36 +00:00
targetif = get_interface_index(this, iface_ip);
if (targetif == 0)
2007-02-28 14:04:36 +00:00
{
DBG1(DBG_KNL, "unable to add virtual IP %H, no iface found for %H",
virtual_ip, iface_ip);
2007-02-28 14:04:36 +00:00
return FAILED;
}
/* beware of deadlocks (e.g. send/receive packets while holding the lock) */
iterator = this->vips->create_iterator_locked(this->vips, &(this->vips_mutex));
while (iterator->iterate(iterator, (void**)&listed))
2007-02-28 14:04:36 +00:00
{
if (listed->if_index == targetif &&
virtual_ip->ip_equals(virtual_ip, listed->ip))
2007-02-28 14:04:36 +00:00
{
listed->refcount++;
iterator->destroy(iterator);
DBG2(DBG_KNL, "virtual IP %H already added to iface %d reusing it",
virtual_ip, targetif);
2007-02-28 14:04:36 +00:00
return SUCCESS;
}
}
iterator->destroy(iterator);
2007-02-28 14:04:36 +00:00
if (manage_ipaddr(this, RTM_NEWADDR, NLM_F_CREATE | NLM_F_EXCL,
targetif, virtual_ip) == SUCCESS)
2007-02-28 14:04:36 +00:00
{
listed = malloc_thing(vip_entry_t);
listed->ip = virtual_ip->clone(virtual_ip);
listed->if_index = targetif;
listed->refcount = 1;
this->vips->insert_last(this->vips, listed);
DBG2(DBG_KNL, "virtual IP %H added to iface %d",
virtual_ip, targetif);
return SUCCESS;
2007-02-28 14:04:36 +00:00
}
DBG2(DBG_KNL, "unable to add virtual IP %H to iface %d",
virtual_ip, targetif);
return FAILED;
}
2007-02-28 14:04:36 +00:00
/**
* Implementation of kernel_interface_t.del_ip.
*/
static status_t del_ip(private_kernel_interface_t *this,
host_t *virtual_ip, host_t *iface_ip)
{
int targetif;
vip_entry_t *listed;
iterator_t *iterator;
2007-02-28 14:04:36 +00:00
DBG2(DBG_KNL, "deleting virtual IP %H", virtual_ip);
2007-02-28 14:04:36 +00:00
targetif = get_interface_index(this, iface_ip);
if (targetif == 0)
2007-02-28 14:04:36 +00:00
{
DBG1(DBG_KNL, "unable to delete virtual IP %H, no iface found for %H",
virtual_ip, iface_ip);
2007-02-28 14:04:36 +00:00
return FAILED;
}
/* beware of deadlocks (e.g. send/receive packets while holding the lock) */
iterator = this->vips->create_iterator_locked(this->vips, &(this->vips_mutex));
while (iterator->iterate(iterator, (void**)&listed))
2007-02-28 14:04:36 +00:00
{
if (listed->if_index == targetif &&
virtual_ip->ip_equals(virtual_ip, listed->ip))
2007-02-28 14:04:36 +00:00
{
listed->refcount--;
if (listed->refcount == 0)
2007-02-28 14:04:36 +00:00
{
iterator->remove(iterator);
vip_entry_destroy(listed);
iterator->destroy(iterator);
return manage_ipaddr(this, RTM_DELADDR, 0, targetif, virtual_ip);
2007-02-28 14:04:36 +00:00
}
iterator->destroy(iterator);
DBG2(DBG_KNL, "virtual IP %H used by other SAs, not deleting",
virtual_ip);
2007-02-28 14:04:36 +00:00
return SUCCESS;
}
}
iterator->destroy(iterator);
DBG2(DBG_KNL, "virtual IP %H not cached, unable to delete", virtual_ip);
2007-02-28 14:04:36 +00:00
return FAILED;
}
/**
* Implementation of kernel_interface_t.get_spi.
2006-03-02 09:56:30 +00:00
*/
static status_t get_spi(private_kernel_interface_t *this,
host_t *src, host_t *dst,
protocol_id_t protocol, u_int32_t reqid,
u_int32_t *spi)
2006-02-22 16:14:40 +00:00
{
2006-06-22 06:36:28 +00:00
unsigned char request[BUFFER_SIZE];
struct nlmsghdr *hdr, *out;
struct xfrm_userspi_info *userspi;
u_int32_t received_spi = 0;
size_t len;
memset(&request, 0, sizeof(request));
DBG2(DBG_KNL, "getting SPI for reqid %d", reqid);
2006-06-22 06:36:28 +00:00
hdr = (struct nlmsghdr*)request;
hdr->nlmsg_flags = NLM_F_REQUEST;
hdr->nlmsg_type = XFRM_MSG_ALLOCSPI;
hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_userspi_info));
2006-06-22 06:36:28 +00:00
userspi = (struct xfrm_userspi_info*)NLMSG_DATA(hdr);
host2xfrm(src, &userspi->info.saddr);
host2xfrm(dst, &userspi->info.id.daddr);
userspi->info.id.proto = (protocol == PROTO_ESP) ? KERNEL_ESP : KERNEL_AH;
userspi->info.mode = TRUE; /* tunnel mode */
userspi->info.reqid = reqid;
userspi->info.family = src->get_family(src);
userspi->min = 0xc0000000;
userspi->max = 0xcFFFFFFF;
2007-02-28 14:04:36 +00:00
if (netlink_send(this->socket_xfrm, hdr, &out, &len) == SUCCESS)
2007-02-28 14:04:36 +00:00
{
hdr = out;
while (NLMSG_OK(hdr, len))
2007-02-28 14:04:36 +00:00
{
switch (hdr->nlmsg_type)
2007-02-28 14:04:36 +00:00
{
case XFRM_MSG_NEWSA:
{
struct xfrm_usersa_info* usersa = NLMSG_DATA(hdr);
received_spi = usersa->id.spi;
break;
}
case NLMSG_ERROR:
{
struct nlmsgerr *err = NLMSG_DATA(hdr);
DBG1(DBG_KNL, "allocating SPI failed: %s (%d)",
strerror(-err->error), -err->error);
break;
}
default:
hdr = NLMSG_NEXT(hdr, len);
continue;
case NLMSG_DONE:
break;
2007-02-28 14:04:36 +00:00
}
break;
2007-02-28 14:04:36 +00:00
}
free(out);
2007-02-28 14:04:36 +00:00
}
if (received_spi == 0)
{
DBG1(DBG_KNL, "unable to get SPI for reqid %d", reqid);
return FAILED;
}
DBG2(DBG_KNL, "got SPI 0x%x for reqid %d", received_spi, reqid);
*spi = received_spi;
2007-02-28 14:04:36 +00:00
return SUCCESS;
2006-02-22 16:14:40 +00:00
}
/**
* Implementation of kernel_interface_t.add_sa.
*/
static status_t add_sa(private_kernel_interface_t *this,
host_t *src, host_t *dst, u_int32_t spi,
protocol_id_t protocol, u_int32_t reqid,
u_int64_t expire_soft, u_int64_t expire_hard,
algorithm_t *enc_alg, algorithm_t *int_alg,
prf_plus_t *prf_plus, natt_conf_t *natt, mode_t mode,
bool replace)
{
unsigned char request[BUFFER_SIZE];
char *alg_name;
u_int key_size;
struct nlmsghdr *hdr;
struct xfrm_usersa_info *sa;
memset(&request, 0, sizeof(request));
DBG2(DBG_KNL, "adding SAD entry with SPI 0x%x", spi);
hdr = (struct nlmsghdr*)request;
hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK;
hdr->nlmsg_type = replace ? XFRM_MSG_UPDSA : XFRM_MSG_NEWSA;
hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_usersa_info));
sa = (struct xfrm_usersa_info*)NLMSG_DATA(hdr);
host2xfrm(src, &sa->saddr);
host2xfrm(dst, &sa->id.daddr);
sa->id.spi = spi;
sa->id.proto = (protocol == PROTO_ESP) ? KERNEL_ESP : KERNEL_AH;
sa->family = src->get_family(src);
sa->mode = mode;
sa->replay_window = 32;
sa->reqid = reqid;
/* we currently do not expire SAs by volume/packet count */
sa->lft.soft_byte_limit = XFRM_INF;
sa->lft.hard_byte_limit = XFRM_INF;
sa->lft.soft_packet_limit = XFRM_INF;
sa->lft.hard_packet_limit = XFRM_INF;
/* we use lifetimes since added, not since used */
sa->lft.soft_add_expires_seconds = expire_soft;
sa->lft.hard_add_expires_seconds = expire_hard;
sa->lft.soft_use_expires_seconds = 0;
sa->lft.hard_use_expires_seconds = 0;
struct rtattr *rthdr = XFRM_RTA(hdr, struct xfrm_usersa_info);
if (enc_alg->algorithm != ENCR_UNDEFINED)
{
rthdr->rta_type = XFRMA_ALG_CRYPT;
alg_name = lookup_algorithm(encryption_algs, enc_alg, &key_size);
if (alg_name == NULL)
{
DBG1(DBG_KNL, "algorithm %N not supported by kernel!",
encryption_algorithm_names, enc_alg->algorithm);
return FAILED;
}
DBG2(DBG_KNL, " using encryption algorithm %N with key size %d",
encryption_algorithm_names, enc_alg->algorithm, key_size);
rthdr->rta_len = RTA_LENGTH(sizeof(struct xfrm_algo) + key_size);
hdr->nlmsg_len += rthdr->rta_len;
if (hdr->nlmsg_len > sizeof(request))
{
return FAILED;
}
struct xfrm_algo* algo = (struct xfrm_algo*)RTA_DATA(rthdr);
algo->alg_key_len = key_size;
strcpy(algo->alg_name, alg_name);
prf_plus->get_bytes(prf_plus, key_size / 8, algo->alg_key);
rthdr = XFRM_RTA_NEXT(rthdr);
}
if (int_alg->algorithm != AUTH_UNDEFINED)
{
rthdr->rta_type = XFRMA_ALG_AUTH;
alg_name = lookup_algorithm(integrity_algs, int_alg, &key_size);
if (alg_name == NULL)
{
DBG1(DBG_KNL, "algorithm %N not supported by kernel!",
integrity_algorithm_names, int_alg->algorithm);
return FAILED;
}
DBG2(DBG_KNL, " using integrity algorithm %N with key size %d",
integrity_algorithm_names, int_alg->algorithm, key_size);
rthdr->rta_len = RTA_LENGTH(sizeof(struct xfrm_algo) + key_size);
hdr->nlmsg_len += rthdr->rta_len;
if (hdr->nlmsg_len > sizeof(request))
{
return FAILED;
}
struct xfrm_algo* algo = (struct xfrm_algo*)RTA_DATA(rthdr);
algo->alg_key_len = key_size;
strcpy(algo->alg_name, alg_name);
prf_plus->get_bytes(prf_plus, key_size / 8, algo->alg_key);
rthdr = XFRM_RTA_NEXT(rthdr);
}
/* TODO: add IPComp here */
if (natt)
{
rthdr->rta_type = XFRMA_ENCAP;
rthdr->rta_len = RTA_LENGTH(sizeof(struct xfrm_encap_tmpl));
hdr->nlmsg_len += rthdr->rta_len;
if (hdr->nlmsg_len > sizeof(request))
{
return FAILED;
}
struct xfrm_encap_tmpl* encap = (struct xfrm_encap_tmpl*)RTA_DATA(rthdr);
encap->encap_type = UDP_ENCAP_ESPINUDP;
encap->encap_sport = htons(natt->sport);
encap->encap_dport = htons(natt->dport);
memset(&encap->encap_oa, 0, sizeof (xfrm_address_t));
/* encap_oa could probably be derived from the
* traffic selectors [rfc4306, p39]. In the netlink kernel implementation
* pluto does the same as we do here but it uses encap_oa in the
* pfkey implementation. BUT as /usr/src/linux/net/key/af_key.c indicates
* the kernel ignores it anyway
* -> does that mean that NAT-T encap doesn't work in transport mode?
* No. The reason the kernel ignores NAT-OA is that it recomputes
* (or, rather, just ignores) the checksum. If packets pass
* the IPsec checks it marks them "checksum ok" so OA isn't needed. */
rthdr = XFRM_RTA_NEXT(rthdr);
}
if (netlink_send_ack(this->socket_xfrm, hdr) != SUCCESS)
{
DBG1(DBG_KNL, "unalbe to add SAD entry with SPI 0x%x", spi);
return FAILED;
}
return SUCCESS;
}
/**
* Implementation of kernel_interface_t.update_sa.
*/
static status_t update_sa(private_kernel_interface_t *this,
host_t *src, host_t *dst,
host_t *new_src, host_t *new_dst,
host_diff_t src_changes, host_diff_t dst_changes,
u_int32_t spi, protocol_id_t protocol)
{
unsigned char request[BUFFER_SIZE];
struct nlmsghdr *hdr, *out = NULL;
struct xfrm_usersa_id *sa_id;
struct xfrm_usersa_info *sa = NULL;
size_t len;
memset(&request, 0, sizeof(request));
DBG2(DBG_KNL, "querying SAD entry with SPI 0x%x", spi);
hdr = (struct nlmsghdr*)request;
hdr->nlmsg_flags = NLM_F_REQUEST;
hdr->nlmsg_type = XFRM_MSG_GETSA;
hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_usersa_id));
sa_id = (struct xfrm_usersa_id*)NLMSG_DATA(hdr);
host2xfrm(dst, &sa_id->daddr);
sa_id->spi = spi;
sa_id->proto = (protocol == PROTO_ESP) ? KERNEL_ESP : KERNEL_AH;
sa_id->family = dst->get_family(dst);
if (netlink_send(this->socket_xfrm, hdr, &out, &len) == SUCCESS)
{
hdr = out;
while (NLMSG_OK(hdr, len))
{
switch (hdr->nlmsg_type)
{
case XFRM_MSG_NEWSA:
{
sa = NLMSG_DATA(hdr);
break;
}
case NLMSG_ERROR:
{
struct nlmsgerr *err = NLMSG_DATA(hdr);
DBG1(DBG_KNL, "querying SAD entry failed: %s (%d)",
strerror(-err->error), -err->error);
break;
}
default:
hdr = NLMSG_NEXT(hdr, len);
continue;
case NLMSG_DONE:
break;
}
break;
}
}
if (sa == NULL)
{
DBG1(DBG_KNL, "unable to update SAD entry with SPI 0x%x", spi);
free(out);
return FAILED;
}
DBG2(DBG_KNL, "updating SAD entry with SPI 0x%x", spi);
2006-06-22 06:36:28 +00:00
hdr = out;
hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK;
hdr->nlmsg_type = XFRM_MSG_UPDSA;
2006-06-22 06:36:28 +00:00
if (src_changes & HOST_DIFF_ADDR)
{
host2xfrm(new_src, &sa->saddr);
}
if (dst_changes & HOST_DIFF_ADDR)
{
hdr->nlmsg_type = XFRM_MSG_NEWSA;
host2xfrm(new_dst, &sa->id.daddr);
2007-02-28 14:04:36 +00:00
}
if (src_changes & HOST_DIFF_PORT || dst_changes & HOST_DIFF_PORT)
2007-02-28 14:04:36 +00:00
{
struct rtattr *rtattr = XFRM_RTA(hdr, struct xfrm_usersa_info);
size_t rtsize = XFRM_PAYLOAD(hdr, struct xfrm_usersa_info);
while (RTA_OK(rtattr, rtsize))
2007-02-28 14:04:36 +00:00
{
if (rtattr->rta_type == XFRMA_ENCAP)
{
struct xfrm_encap_tmpl* encap;
encap = (struct xfrm_encap_tmpl*)RTA_DATA(rtattr);
encap->encap_sport = ntohs(new_src->get_port(new_src));
encap->encap_dport = ntohs(new_dst->get_port(new_dst));
break;
}
rtattr = RTA_NEXT(rtattr, rtsize);
}
}
if (netlink_send_ack(this->socket_xfrm, hdr) != SUCCESS)
2007-02-28 14:04:36 +00:00
{
DBG1(DBG_KNL, "unalbe to update SAD entry with SPI 0x%x", spi);
free(out);
2007-02-28 14:04:36 +00:00
return FAILED;
}
free(out);
if (dst_changes & HOST_DIFF_ADDR)
2007-02-28 14:04:36 +00:00
{
return this->public.del_sa(&this->public, dst, spi, protocol);
2007-02-28 14:04:36 +00:00
}
return SUCCESS;
}
/**
* Implementation of kernel_interface_t.query_sa.
2007-02-28 14:04:36 +00:00
*/
static status_t query_sa(private_kernel_interface_t *this, host_t *dst,
u_int32_t spi, protocol_id_t protocol,
u_int32_t *use_time)
2007-02-28 14:04:36 +00:00
{
unsigned char request[BUFFER_SIZE];
struct nlmsghdr *out = NULL, *hdr;
struct xfrm_usersa_id *sa_id;
struct xfrm_usersa_info *sa = NULL;
size_t len;
DBG2(DBG_KNL, "querying SAD entry with SPI 0x%x", spi);
memset(&request, 0, sizeof(request));
hdr = (struct nlmsghdr*)request;
hdr->nlmsg_flags = NLM_F_REQUEST;
hdr->nlmsg_type = XFRM_MSG_GETSA;
hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_usersa_info));
sa_id = (struct xfrm_usersa_id*)NLMSG_DATA(hdr);
host2xfrm(dst, &sa_id->daddr);
sa_id->spi = spi;
sa_id->proto = (protocol == PROTO_ESP) ? KERNEL_ESP : KERNEL_AH;
sa_id->family = dst->get_family(dst);
2007-02-28 14:04:36 +00:00
if (netlink_send(this->socket_xfrm, hdr, &out, &len) == SUCCESS)
2007-02-28 14:04:36 +00:00
{
hdr = out;
while (NLMSG_OK(hdr, len))
{
switch (hdr->nlmsg_type)
{
case XFRM_MSG_NEWSA:
{
sa = NLMSG_DATA(hdr);
break;
}
case NLMSG_ERROR:
{
struct nlmsgerr *err = NLMSG_DATA(hdr);
DBG1(DBG_KNL, "querying SAD entry failed: %s (%d)",
strerror(-err->error), -err->error);
break;
}
default:
hdr = NLMSG_NEXT(hdr, len);
continue;
case NLMSG_DONE:
break;
}
break;
}
2007-02-28 14:04:36 +00:00
}
if (sa == NULL)
{
DBG1(DBG_KNL, "unable to query SAD entry with SPI 0x%x", spi);
free(out);
return FAILED;
}
2007-02-28 14:04:36 +00:00
*use_time = sa->curlft.use_time;
free (out);
2007-02-28 14:04:36 +00:00
return SUCCESS;
}
/**
* Implementation of kernel_interface_t.del_sa.
2007-02-28 14:04:36 +00:00
*/
static status_t del_sa(private_kernel_interface_t *this, host_t *dst,
u_int32_t spi, protocol_id_t protocol)
2007-02-28 14:04:36 +00:00
{
unsigned char request[BUFFER_SIZE];
struct nlmsghdr *hdr;
struct xfrm_usersa_id *sa_id;
2007-02-28 14:04:36 +00:00
memset(&request, 0, sizeof(request));
DBG2(DBG_KNL, "deleting SAD entry with SPI 0x%x", spi);
2007-02-28 14:04:36 +00:00
hdr = (struct nlmsghdr*)request;
hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK;
hdr->nlmsg_type = XFRM_MSG_DELSA;
hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_usersa_id));
2007-02-28 14:04:36 +00:00
sa_id = (struct xfrm_usersa_id*)NLMSG_DATA(hdr);
host2xfrm(dst, &sa_id->daddr);
sa_id->spi = spi;
sa_id->proto = (protocol == PROTO_ESP) ? KERNEL_ESP : KERNEL_AH;
sa_id->family = dst->get_family(dst);
if (netlink_send_ack(this->socket_xfrm, hdr) != SUCCESS)
2007-02-28 14:04:36 +00:00
{
DBG1(DBG_KNL, "unalbe to delete SAD entry with SPI 0x%x", spi);
2007-02-28 14:04:36 +00:00
return FAILED;
}
DBG2(DBG_KNL, "deleted SAD entry with SPI 0x%x", spi);
return SUCCESS;
2007-02-28 14:04:36 +00:00
}
/**
* Implementation of kernel_interface_t.add_policy.
*/
static status_t add_policy(private_kernel_interface_t *this,
host_t *src, host_t *dst,
traffic_selector_t *src_ts,
traffic_selector_t *dst_ts,
policy_dir_t direction, protocol_id_t protocol,
u_int32_t reqid, bool high_prio, mode_t mode,
bool update)
2007-02-28 14:04:36 +00:00
{
iterator_t *iterator;
policy_entry_t *current, *policy;
bool found = FALSE;
unsigned char request[BUFFER_SIZE];
struct xfrm_userpolicy_info *policy_info;
struct nlmsghdr *hdr;
2007-02-28 14:04:36 +00:00
/* create a policy */
policy = malloc_thing(policy_entry_t);
memset(policy, 0, sizeof(policy_entry_t));
policy->sel = ts2selector(src_ts, dst_ts);
policy->direction = direction;
/* find the policy, which matches EXACTLY */
pthread_mutex_lock(&this->policies_mutex);
iterator = this->policies->create_iterator(this->policies, TRUE);
while (iterator->iterate(iterator, (void**)&current))
{
if (memcmp(&current->sel, &policy->sel, sizeof(struct xfrm_selector)) == 0 &&
policy->direction == current->direction)
{
/* use existing policy */
if (!update)
{
current->refcount++;
DBG2(DBG_KNL, "policy %R===%R already exists, increasing ",
"refcount", src_ts, dst_ts);
}
free(policy);
policy = current;
found = TRUE;
break;
}
}
iterator->destroy(iterator);
if (!found)
{ /* apply the new one, if we have no such policy */
this->policies->insert_last(this->policies, policy);
policy->refcount = 1;
}
2007-02-28 14:04:36 +00:00
DBG2(DBG_KNL, "adding policy %R===%R", src_ts, dst_ts);
2007-02-28 14:04:36 +00:00
memset(&request, 0, sizeof(request));
hdr = (struct nlmsghdr*)request;
hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK;
hdr->nlmsg_type = XFRM_MSG_UPDPOLICY;
hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_userpolicy_info));
policy_info = (struct xfrm_userpolicy_info*)NLMSG_DATA(hdr);
policy_info->sel = policy->sel;
policy_info->dir = policy->direction;
/* calculate priority based on source selector size, small size = high prio */
policy_info->priority = high_prio ? PRIO_HIGH : PRIO_LOW;
policy_info->priority -= policy->sel.prefixlen_s * 10;
policy_info->priority -= policy->sel.proto ? 2 : 0;
policy_info->priority -= policy->sel.sport_mask ? 1 : 0;
policy_info->action = XFRM_POLICY_ALLOW;
policy_info->share = XFRM_SHARE_ANY;
pthread_mutex_unlock(&this->policies_mutex);
/* policies don't expire */
policy_info->lft.soft_byte_limit = XFRM_INF;
policy_info->lft.soft_packet_limit = XFRM_INF;
policy_info->lft.hard_byte_limit = XFRM_INF;
policy_info->lft.hard_packet_limit = XFRM_INF;
policy_info->lft.soft_add_expires_seconds = 0;
policy_info->lft.hard_add_expires_seconds = 0;
policy_info->lft.soft_use_expires_seconds = 0;
policy_info->lft.hard_use_expires_seconds = 0;
struct rtattr *rthdr = XFRM_RTA(hdr, struct xfrm_userpolicy_info);
rthdr->rta_type = XFRMA_TMPL;
2007-02-28 14:04:36 +00:00
rthdr->rta_len = sizeof(struct xfrm_user_tmpl);
rthdr->rta_len = RTA_LENGTH(rthdr->rta_len);
hdr->nlmsg_len += rthdr->rta_len;
if (hdr->nlmsg_len > sizeof(request))
2007-02-28 14:04:36 +00:00
{
return FAILED;
2007-02-28 14:04:36 +00:00
}
struct xfrm_user_tmpl *tmpl = (struct xfrm_user_tmpl*)RTA_DATA(rthdr);
tmpl->reqid = reqid;
tmpl->id.proto = (protocol == PROTO_AH) ? KERNEL_AH : KERNEL_ESP;
tmpl->aalgos = tmpl->ealgos = tmpl->calgos = ~0;
tmpl->mode = mode;
tmpl->family = src->get_family(src);
host2xfrm(src, &tmpl->saddr);
host2xfrm(dst, &tmpl->id.daddr);
if (netlink_send_ack(this->socket_xfrm, hdr) != SUCCESS)
{
DBG1(DBG_KNL, "unable to add policy %R===%R", src_ts, dst_ts);
return FAILED;
}
/* install a route, if:
* - we are NOT updating a policy
* - this is a forward policy (to just get one for each child)
* - we are in tunnel mode
* - we are not using IPv6 (does not work correctly yet!)
*/
if (policy->route == NULL && direction == POLICY_FWD &&
mode != MODE_TRANSPORT && src->get_family(src) != AF_INET6)
{
policy->route = malloc_thing(route_entry_t);
if (get_address_by_ts(this, dst_ts, &policy->route->src_ip) == SUCCESS)
{
policy->route->gateway = dst->clone(dst);
policy->route->if_index = get_interface_index(this, dst);
policy->route->dst_net = chunk_alloc(policy->sel.family == AF_INET ? 4 : 16);
memcpy(policy->route->dst_net.ptr, &policy->sel.saddr, policy->route->dst_net.len);
policy->route->prefixlen = policy->sel.prefixlen_s;
if (manage_srcroute(this, RTM_NEWROUTE, NLM_F_CREATE | NLM_F_EXCL,
policy->route) != SUCCESS)
{
DBG1(DBG_KNL, "unable to install source route for %H",
policy->route->src_ip);
route_entry_destroy(policy->route);
policy->route = NULL;
}
}
else
{
free(policy->route);
policy->route = NULL;
}
2007-02-28 14:04:36 +00:00
}
return SUCCESS;
}
/**
* Implementation of kernel_interface_t.query_policy.
*/
static status_t query_policy(private_kernel_interface_t *this,
traffic_selector_t *src_ts,
traffic_selector_t *dst_ts,
policy_dir_t direction, u_int32_t *use_time)
{
unsigned char request[BUFFER_SIZE];
struct nlmsghdr *out = NULL, *hdr;
struct xfrm_userpolicy_id *policy_id;
struct xfrm_userpolicy_info *policy = NULL;
size_t len;
memset(&request, 0, sizeof(request));
DBG2(DBG_KNL, "querying policy %R===%R", src_ts, dst_ts);
hdr = (struct nlmsghdr*)request;
hdr->nlmsg_flags = NLM_F_REQUEST;
hdr->nlmsg_type = XFRM_MSG_GETPOLICY;
hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_userpolicy_id));
policy_id = (struct xfrm_userpolicy_id*)NLMSG_DATA(hdr);
policy_id->sel = ts2selector(src_ts, dst_ts);
policy_id->dir = direction;
if (netlink_send(this->socket_xfrm, hdr, &out, &len) == SUCCESS)
2007-02-28 14:04:36 +00:00
{
hdr = out;
while (NLMSG_OK(hdr, len))
2007-02-28 14:04:36 +00:00
{
switch (hdr->nlmsg_type)
{
case XFRM_MSG_NEWPOLICY:
{
policy = (struct xfrm_userpolicy_info*)NLMSG_DATA(hdr);
break;
}
case NLMSG_ERROR:
{
struct nlmsgerr *err = NLMSG_DATA(hdr);
DBG1(DBG_KNL, "querying policy failed: %s (%d)",
strerror(-err->error), -err->error);
break;
}
default:
hdr = NLMSG_NEXT(hdr, len);
continue;
case NLMSG_DONE:
break;
}
2007-02-28 14:04:36 +00:00
break;
}
}
if (policy == NULL)
2007-02-28 14:04:36 +00:00
{
DBG2(DBG_KNL, "unable to query policy %R===%R", src_ts, dst_ts);
free(out);
2007-02-28 14:04:36 +00:00
return FAILED;
}
*use_time = (time_t)policy->curlft.use_time;
free(out);
return SUCCESS;
2007-02-28 14:04:36 +00:00
}
/**
* Implementation of kernel_interface_t.del_policy.
2007-02-28 14:04:36 +00:00
*/
static status_t del_policy(private_kernel_interface_t *this,
traffic_selector_t *src_ts,
traffic_selector_t *dst_ts,
policy_dir_t direction)
2007-02-28 14:04:36 +00:00
{
policy_entry_t *current, policy, *to_delete = NULL;
route_entry_t *route;
unsigned char request[BUFFER_SIZE];
struct nlmsghdr *hdr;
struct xfrm_userpolicy_id *policy_id;
2007-02-28 14:04:36 +00:00
iterator_t *iterator;
DBG2(DBG_KNL, "deleting policy %R===%R", src_ts, dst_ts);
/* create a policy */
memset(&policy, 0, sizeof(policy_entry_t));
policy.sel = ts2selector(src_ts, dst_ts);
policy.direction = direction;
/* find the policy */
pthread_mutex_lock(&this->policies_mutex);
iterator = this->policies->create_iterator(this->policies, TRUE);
while (iterator->iterate(iterator, (void**)&current))
2007-02-28 14:04:36 +00:00
{
if (memcmp(&current->sel, &policy.sel, sizeof(struct xfrm_selector)) == 0 &&
policy.direction == current->direction)
2007-02-28 14:04:36 +00:00
{
to_delete = current;
if (--to_delete->refcount > 0)
{
/* is used by more SAs, keep in kernel */
DBG2(DBG_KNL, "policy still used by another CHILD_SA, not removed");
iterator->destroy(iterator);
pthread_mutex_unlock(&this->policies_mutex);
return SUCCESS;
}
/* remove if last reference */
iterator->remove(iterator);
break;
2007-02-28 14:04:36 +00:00
}
}
iterator->destroy(iterator);
pthread_mutex_unlock(&this->policies_mutex);
if (!to_delete)
2007-02-28 14:04:36 +00:00
{
DBG1(DBG_KNL, "deleting policy %R===%R failed, not found", src_ts, dst_ts);
return NOT_FOUND;
2007-02-28 14:04:36 +00:00
}
memset(&request, 0, sizeof(request));
hdr = (struct nlmsghdr*)request;
hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK;
hdr->nlmsg_type = XFRM_MSG_DELPOLICY;
hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_userpolicy_id));
2007-02-28 14:04:36 +00:00
policy_id = (struct xfrm_userpolicy_id*)NLMSG_DATA(hdr);
policy_id->sel = to_delete->sel;
policy_id->dir = direction;
route = to_delete->route;
free(to_delete);
if (netlink_send_ack(this->socket_xfrm, hdr) != SUCCESS)
2007-02-28 14:04:36 +00:00
{
DBG1(DBG_KNL, "unable to delete policy %R===%R", src_ts, dst_ts);
2007-02-28 14:04:36 +00:00
return FAILED;
}
if (route)
2007-02-28 14:04:36 +00:00
{
if (manage_srcroute(this, RTM_DELROUTE, 0, route) != SUCCESS)
2007-02-28 14:04:36 +00:00
{
DBG1(DBG_KNL, "error uninstalling route installed with "
"policy %R===%R", src_ts, dst_ts);
}
route_entry_destroy(route);
2007-02-28 14:04:36 +00:00
}
return SUCCESS;
}
/**
2005-12-06 16:36:42 +00:00
* Implementation of kernel_interface_t.destroy.
*/
static void destroy(private_kernel_interface_t *this)
2007-02-28 14:04:36 +00:00
{
this->job->cancel(this->job);
close(this->socket_xfrm_events);
close(this->socket_xfrm);
close(this->socket_rt);
this->vips->destroy(this->vips);
this->policies->destroy(this->policies);
free(this);
}
/*
2005-12-06 16:36:42 +00:00
* Described in header.
*/
kernel_interface_t *kernel_interface_create()
{
private_kernel_interface_t *this = malloc_thing(private_kernel_interface_t);
struct sockaddr_nl addr;
/* public functions */
2006-02-22 16:14:40 +00:00
this->public.get_spi = (status_t(*)(kernel_interface_t*,host_t*,host_t*,protocol_id_t,u_int32_t,u_int32_t*))get_spi;
this->public.add_sa = (status_t(*)(kernel_interface_t *,host_t*,host_t*,u_int32_t,protocol_id_t,u_int32_t,u_int64_t,u_int64_t,algorithm_t*,algorithm_t*,prf_plus_t*,natt_conf_t*,mode_t,bool))add_sa;
this->public.update_sa = (status_t(*)(kernel_interface_t*,host_t*,u_int32_t,protocol_id_t,host_t*,host_t*,host_diff_t,host_diff_t))update_sa;
this->public.query_sa = (status_t(*)(kernel_interface_t*,host_t*,u_int32_t,protocol_id_t,u_int32_t*))query_sa;
2006-03-02 09:56:30 +00:00
this->public.del_sa = (status_t(*)(kernel_interface_t*,host_t*,u_int32_t,protocol_id_t))del_sa;
this->public.add_policy = (status_t(*)(kernel_interface_t*,host_t*,host_t*,traffic_selector_t*,traffic_selector_t*,policy_dir_t,protocol_id_t,u_int32_t,bool,mode_t,bool))add_policy;
this->public.query_policy = (status_t(*)(kernel_interface_t*,traffic_selector_t*,traffic_selector_t*,policy_dir_t,u_int32_t*))query_policy;
this->public.del_policy = (status_t(*)(kernel_interface_t*,traffic_selector_t*,traffic_selector_t*,policy_dir_t))del_policy;
this->public.get_interface = (char*(*)(kernel_interface_t*,host_t*))get_interface_name;
this->public.create_address_list = (linked_list_t*(*)(kernel_interface_t*))create_address_list_public;
2007-02-28 14:04:36 +00:00
this->public.add_ip = (status_t(*)(kernel_interface_t*,host_t*,host_t*)) add_ip;
this->public.del_ip = (status_t(*)(kernel_interface_t*,host_t*,host_t*)) del_ip;
this->public.destroy = (void(*)(kernel_interface_t*)) destroy;
/* private members */
2007-02-28 14:04:36 +00:00
this->vips = linked_list_create();
this->policies = linked_list_create();
pthread_mutex_init(&this->policies_mutex,NULL);
pthread_mutex_init(&this->vips_mutex,NULL);
addr.nl_family = AF_NETLINK;
addr.nl_pid = 0;
addr.nl_groups = 0;
/* create and bind XFRM socket */
this->socket_xfrm = socket(AF_NETLINK, SOCK_RAW, NETLINK_XFRM);
if (this->socket_xfrm <= 0)
{
charon->kill(charon, "unable to create XFRM netlink socket");
}
2006-06-22 06:36:28 +00:00
if (bind(this->socket_xfrm, (struct sockaddr*)&addr, sizeof(addr)))
{
charon->kill(charon, "unable to bind XFRM netlink socket");
}
/* create and bind RT socket */
this->socket_rt = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
if (this->socket_rt <= 0)
2007-02-28 14:04:36 +00:00
{
charon->kill(charon, "unable to create RT netlink socket");
2007-02-28 14:04:36 +00:00
}
if (bind(this->socket_rt, (struct sockaddr*)&addr, sizeof(addr)))
2007-02-28 14:04:36 +00:00
{
charon->kill(charon, "unable to bind RT netlink socket");
2007-02-28 14:04:36 +00:00
}
/* create and bind XFRM socket for ACQUIRE & EXPIRE */
addr.nl_groups = XFRMGRP_ACQUIRE | XFRMGRP_EXPIRE;
this->socket_xfrm_events = socket(AF_NETLINK, SOCK_RAW, NETLINK_XFRM);
if (this->socket_xfrm_events <= 0)
{
charon->kill(charon, "unable to create XFRM event socket");
}
if (bind(this->socket_xfrm_events, (struct sockaddr*)&addr, sizeof(addr)))
2007-02-28 14:04:36 +00:00
{
charon->kill(charon, "unable to bind XFRM event socket");
2007-02-28 14:04:36 +00:00
}
this->job = callback_job_create((callback_job_cb_t)receive_events,
this, NULL, NULL);
charon->processor->queue_job(charon->processor, (job_t*)this->job);
return &this->public;
}
2007-02-28 14:04:36 +00:00