added basic adc funktions

This commit is contained in:
Thomas Otto 2010-03-22 21:40:08 +01:00
parent a6342d4968
commit 561c9a1d3e
2 changed files with 235 additions and 0 deletions

View File

@ -339,6 +339,7 @@
/* --- Function prototypes ------------------------------------------------- */
/* TODO */
void adc_enable_analog_watchdog_regular(u32 adc);
void adc_disable_analog_watchdog_regular(u32 adc);
@ -360,5 +361,29 @@ void adc_enable_awd_interrupt(u32 adc);
void adc_disable_awd_interrupt(u32 adc);
void adc_enable_eoc_interrupt(u32 adc);
void adc_disable_eoc_interrupt(u32 adc);
void adc_enable_temperature_sensor(u32 adc);
void adc_disable_temperature_sensor(u32 adc);
void adc_start_conversion_regular(u32 adc);
void adc_start_conversion_injected(u32 adc);
void adc_enable_external_trigger_regular(u32 adc, u8 trigger);
void adc_disable_external_trigger_regular(u32 adc);
void adc_enable_external_trigger_injected(u32 adc, u8 trigger);
void adc_disable_external_trigger_injected(u32 adc);
void adc_set_left_aligned(u32 adc);
void adc_set_right_aligned(u32 adc);
void adc_enable_dma(u32 adc);
void adc_disable_dma(u32 adc);
void adc_reset_calibration(u32 adc);
void adc_calibration(u32 adc);
void adc_set_continous_conversion_mode(u32 adc);
void adc_set_single_conversion_mode(u32 adc);
void adc_on(u32 adc);
void adc_off(u32 adc);
void adc_set_conversion_time(u32 adc, u8 channel, u8 time);
void adc_set_conversion_time_on_all_channels(u32 adc, u8 time);
void adc_set_watchdog_high_threshold(u32 adc, u16 threshold);
void adc_set_watchdog_low_threshold(u32 adc, u16 threshold);
void adc_set_regular_sequence(u32 adc, u8 length, u8 channel[]);
void adc_set_injected_sequence(u32 adc, u8 length, u8 channel[]);
#endif

210
lib/adc.c
View File

@ -164,3 +164,213 @@ void adc_disable_eoc_interrupt(u32 adc)
{
ADC_CR1(adc) &= ~ADC_CR1_EOCIE;
}
void adc_enable_temperature_sensor(u32 adc)
{
ADC_CR2(adc) |= ADC_CR2_TSVREFE;
}
void adc_disable_temperature_sensor(u32 adc)
{
ADC_CR2(adc) &= ~ADC_CR2_TSVREFE;
}
void adc_start_conversion_regular(u32 adc)
{
/* start conversion on regular channels */
ADC_CR2(adc) |= ADC_CR2_SWSTART;
/* wait til the ADC starts the conversion */
while (ADC_CR2(adc) & ADC_CR2_SWSTART);
}
void adc_start_conversion_injected(u32 adc)
{
/* start conversion on injected channels */
ADC_CR2(adc) |= ADC_CR2_JSWSTART;
/* wait til the ADC starts the conversion */
while (ADC_CR2(adc) & ADC_CR2_JSWSTART);
}
void adc_enable_external_trigger_regular(u32 adc, u8 trigger)
{
u32 reg32;
reg32 = (ADC_CR2(adc) & 0xfff1ffff); /* Clear bits [19:17]. */
if (trigger < 8)
reg32 |= (trigger << ADC_CR2_EXTSEL_LSB);
ADC_CR2(adc) = reg32;
ADC_CR2(adc) |= ADC_CR2_EXTTRIG;
}
void adc_disable_external_trigger_regular(u32 adc)
{
ADC_CR2(adc) &= ~ADC_CR2_EXTTRIG;
}
void adc_enable_external_trigger_injected(u32 adc, u8 trigger)
{
u32 reg32;
reg32 = (ADC_CR2(adc) & 0xffff8fff); /* Clear bits [12:14]. */
if (trigger < 8)
reg32 |= (trigger << ADC_CR2_JEXTSEL_LSB);
ADC_CR2(adc) = reg32;
ADC_CR2(adc) |= ADC_CR2_JEXTTRIG;
}
void adc_disable_external_trigger_injected(u32 adc)
{
ADC_CR2(adc) &= ~ADC_CR2_JEXTTRIG;
}
void adc_set_left_aligned(u32 adc)
{
ADC_CR2(adc) |= ADC_CR2_ALIGN;
}
void adc_set_right_aligned(u32 adc)
{
ADC_CR2(adc) &= ~ADC_CR2_ALIGN;
}
void adc_enable_dma(u32 adc)
{
if ((adc == ADC1) | (adc==ADC3))
ADC_CR2(adc) |= ADC_CR2_DMA;
}
void adc_disable_dma(u32 adc)
{
if ((adc == ADC1) | (adc==ADC3))
ADC_CR2(adc) &= ~ADC_CR2_DMA;
}
void adc_reset_calibration(u32 adc)
{
ADC_CR2(adc) |= ADC_CR2_RSTCAL;
while (ADC_CR2(adc) & ADC_CR2_RSTCAL);
}
void adc_calibration(u32 adc)
{
ADC_CR2(adc) |= ADC_CR2_CAL;
while (ADC_CR2(adc) & ADC_CR2_CAL);
}
void adc_set_continous_conversion_mode(u32 adc)
{
ADC_CR2(adc) |= ADC_CR2_CONT;
}
void adc_set_single_conversion_mode(u32 adc)
{
ADC_CR2(adc) &= ~ADC_CR2_CONT;
}
void adc_on(u32 adc)
{
ADC_CR2(adc) |= ADC_CR2_ADON;
}
void adc_off(u32 adc)
{
ADC_CR2(adc) &= ~ADC_CR2_ADON;
}
void adc_set_conversion_time(u32 adc, u8 channel, u8 time)
{
u32 reg32;
if (channel < 10) {
reg32 = ADC_SMPR2(adc);
reg32 &= ~(0b111 << (channel * 3));
reg32 |= (time << (channel *3));
ADC_SMPR2(adc) = reg32;
}
else {
reg32 = ADC_SMPR1(adc);
reg32 &= ~(0b111 << ((channel-10) *3));
reg32 |= (time << ((channel-10) *3));
ADC_SMPR1(adc) = reg32;
}
}
void adc_set_conversion_time_on_all_channels(u32 adc, u8 time)
{
u32 reg32 = 0;
u8 i;
for (i=0; i<=9; i++) {
reg32 |= (time << (i * 3));
}
ADC_SMPR2(adc) = reg32;
for (i=10; i<=17; i++) {
reg32 |= (time << ((i-10) * 3));
}
ADC_SMPR1(adc) = reg32;
}
void adc_set_watchdog_high_threshold(u32 adc, u16 threshold)
{
u32 reg32 = 0;
reg32 = (u32)threshold;
reg32 &= ~0xfffff000; /* clear all bits above 11 */
ADC_HTR(adc) = reg32;
}
void adc_set_watchdog_low_threshold(u32 adc, u16 threshold)
{
u32 reg32 = 0;
reg32 = (u32)threshold;
reg32 &= ~0xfffff000; /* clear all bits above 11 */
ADC_LTR(adc) = reg32;
}
void adc_set_regular_sequence(u32 adc, u8 length, u8 channel[])
{
u32 reg32_1 = 0;
u32 reg32_2 = 0;
u32 reg32_3 = 0;
u8 i = 0;
/* maximum sequence length is 16 channels */
if (length > 16)
return;
for (i=1; i<=length; i++) {
if (i<=6)
reg32_3 |= (channel[i-1] << ((i-1) * 5));
if ((i>6) & (i<=12))
reg32_2 |= (channel[i-6-1] << ((i-6-1) * 5));
if ((i>12) & (i<=16))
reg32_1 |= (channel[i-12-1] << ((i-12-1) * 5));
}
reg32_1 |= (length << ADC_SQR1_L_LSB);
ADC_SQR1(adc) = reg32_1;
ADC_SQR2(adc) = reg32_2;
ADC_SQR3(adc) = reg32_3;
}
void adc_set_injected_sequence(u32 adc, u8 length, u8 channel[])
{
u32 reg32 = 0;
u8 i = 0;
/* maximum sequence length is 4 channels */
if (length > 4)
return;
for (i=1; i<=length; i++) {
reg32 |= (channel[i-1] << ((i-1) * 5));
}
reg32 |= (length << ADC_JSQR_JL_LSB);
ADC_JSQR(adc) = reg32;
}