dect
/
linux-2.6
Archived
13
0
Fork 0
This repository has been archived on 2022-02-17. You can view files and clone it, but cannot push or open issues or pull requests.
linux-2.6/arch/x86/include/asm/cpufeature.h

405 lines
19 KiB
C
Raw Normal View History

/*
* Defines x86 CPU feature bits
*/
#ifndef _ASM_X86_CPUFEATURE_H
#define _ASM_X86_CPUFEATURE_H
#ifndef _ASM_X86_REQUIRED_FEATURES_H
#include <asm/required-features.h>
#endif
#define NCAPINTS 10 /* N 32-bit words worth of info */
/*
* Note: If the comment begins with a quoted string, that string is used
* in /proc/cpuinfo instead of the macro name. If the string is "",
* this feature bit is not displayed in /proc/cpuinfo at all.
*/
/* Intel-defined CPU features, CPUID level 0x00000001 (edx), word 0 */
#define X86_FEATURE_FPU (0*32+ 0) /* Onboard FPU */
#define X86_FEATURE_VME (0*32+ 1) /* Virtual Mode Extensions */
#define X86_FEATURE_DE (0*32+ 2) /* Debugging Extensions */
#define X86_FEATURE_PSE (0*32+ 3) /* Page Size Extensions */
#define X86_FEATURE_TSC (0*32+ 4) /* Time Stamp Counter */
#define X86_FEATURE_MSR (0*32+ 5) /* Model-Specific Registers */
#define X86_FEATURE_PAE (0*32+ 6) /* Physical Address Extensions */
#define X86_FEATURE_MCE (0*32+ 7) /* Machine Check Exception */
#define X86_FEATURE_CX8 (0*32+ 8) /* CMPXCHG8 instruction */
#define X86_FEATURE_APIC (0*32+ 9) /* Onboard APIC */
#define X86_FEATURE_SEP (0*32+11) /* SYSENTER/SYSEXIT */
#define X86_FEATURE_MTRR (0*32+12) /* Memory Type Range Registers */
#define X86_FEATURE_PGE (0*32+13) /* Page Global Enable */
#define X86_FEATURE_MCA (0*32+14) /* Machine Check Architecture */
#define X86_FEATURE_CMOV (0*32+15) /* CMOV instructions */
/* (plus FCMOVcc, FCOMI with FPU) */
#define X86_FEATURE_PAT (0*32+16) /* Page Attribute Table */
#define X86_FEATURE_PSE36 (0*32+17) /* 36-bit PSEs */
#define X86_FEATURE_PN (0*32+18) /* Processor serial number */
#define X86_FEATURE_CLFLSH (0*32+19) /* "clflush" CLFLUSH instruction */
#define X86_FEATURE_DS (0*32+21) /* "dts" Debug Store */
#define X86_FEATURE_ACPI (0*32+22) /* ACPI via MSR */
#define X86_FEATURE_MMX (0*32+23) /* Multimedia Extensions */
#define X86_FEATURE_FXSR (0*32+24) /* FXSAVE/FXRSTOR, CR4.OSFXSR */
#define X86_FEATURE_XMM (0*32+25) /* "sse" */
#define X86_FEATURE_XMM2 (0*32+26) /* "sse2" */
#define X86_FEATURE_SELFSNOOP (0*32+27) /* "ss" CPU self snoop */
#define X86_FEATURE_HT (0*32+28) /* Hyper-Threading */
#define X86_FEATURE_ACC (0*32+29) /* "tm" Automatic clock control */
#define X86_FEATURE_IA64 (0*32+30) /* IA-64 processor */
#define X86_FEATURE_PBE (0*32+31) /* Pending Break Enable */
/* AMD-defined CPU features, CPUID level 0x80000001, word 1 */
/* Don't duplicate feature flags which are redundant with Intel! */
#define X86_FEATURE_SYSCALL (1*32+11) /* SYSCALL/SYSRET */
#define X86_FEATURE_MP (1*32+19) /* MP Capable. */
#define X86_FEATURE_NX (1*32+20) /* Execute Disable */
#define X86_FEATURE_MMXEXT (1*32+22) /* AMD MMX extensions */
#define X86_FEATURE_FXSR_OPT (1*32+25) /* FXSAVE/FXRSTOR optimizations */
#define X86_FEATURE_GBPAGES (1*32+26) /* "pdpe1gb" GB pages */
#define X86_FEATURE_RDTSCP (1*32+27) /* RDTSCP */
#define X86_FEATURE_LM (1*32+29) /* Long Mode (x86-64) */
#define X86_FEATURE_3DNOWEXT (1*32+30) /* AMD 3DNow! extensions */
#define X86_FEATURE_3DNOW (1*32+31) /* 3DNow! */
/* Transmeta-defined CPU features, CPUID level 0x80860001, word 2 */
#define X86_FEATURE_RECOVERY (2*32+ 0) /* CPU in recovery mode */
#define X86_FEATURE_LONGRUN (2*32+ 1) /* Longrun power control */
#define X86_FEATURE_LRTI (2*32+ 3) /* LongRun table interface */
/* Other features, Linux-defined mapping, word 3 */
/* This range is used for feature bits which conflict or are synthesized */
#define X86_FEATURE_CXMMX (3*32+ 0) /* Cyrix MMX extensions */
#define X86_FEATURE_K6_MTRR (3*32+ 1) /* AMD K6 nonstandard MTRRs */
#define X86_FEATURE_CYRIX_ARR (3*32+ 2) /* Cyrix ARRs (= MTRRs) */
#define X86_FEATURE_CENTAUR_MCR (3*32+ 3) /* Centaur MCRs (= MTRRs) */
/* cpu types for specific tunings: */
#define X86_FEATURE_K8 (3*32+ 4) /* "" Opteron, Athlon64 */
#define X86_FEATURE_K7 (3*32+ 5) /* "" Athlon */
#define X86_FEATURE_P3 (3*32+ 6) /* "" P3 */
#define X86_FEATURE_P4 (3*32+ 7) /* "" P4 */
#define X86_FEATURE_CONSTANT_TSC (3*32+ 8) /* TSC ticks at a constant rate */
#define X86_FEATURE_UP (3*32+ 9) /* smp kernel running on up */
#define X86_FEATURE_FXSAVE_LEAK (3*32+10) /* "" FXSAVE leaks FOP/FIP/FOP */
#define X86_FEATURE_ARCH_PERFMON (3*32+11) /* Intel Architectural PerfMon */
#define X86_FEATURE_PEBS (3*32+12) /* Precise-Event Based Sampling */
#define X86_FEATURE_BTS (3*32+13) /* Branch Trace Store */
#define X86_FEATURE_SYSCALL32 (3*32+14) /* "" syscall in ia32 userspace */
#define X86_FEATURE_SYSENTER32 (3*32+15) /* "" sysenter in ia32 userspace */
#define X86_FEATURE_REP_GOOD (3*32+16) /* rep microcode works well */
#define X86_FEATURE_MFENCE_RDTSC (3*32+17) /* "" Mfence synchronizes RDTSC */
#define X86_FEATURE_LFENCE_RDTSC (3*32+18) /* "" Lfence synchronizes RDTSC */
#define X86_FEATURE_11AP (3*32+19) /* "" Bad local APIC aka 11AP */
#define X86_FEATURE_NOPL (3*32+20) /* The NOPL (0F 1F) instructions */
/* 21 available, was AMD_C1E */
#define X86_FEATURE_XTOPOLOGY (3*32+22) /* cpu topology enum extensions */
#define X86_FEATURE_TSC_RELIABLE (3*32+23) /* TSC is known to be reliable */
#define X86_FEATURE_NONSTOP_TSC (3*32+24) /* TSC does not stop in C states */
#define X86_FEATURE_CLFLUSH_MONITOR (3*32+25) /* "" clflush reqd with monitor */
#define X86_FEATURE_EXTD_APICID (3*32+26) /* has extended APICID (8 bits) */
#define X86_FEATURE_AMD_DCM (3*32+27) /* multi-node processor */
#define X86_FEATURE_APERFMPERF (3*32+28) /* APERFMPERF */
#define X86_FEATURE_EAGER_FPU (3*32+29) /* "eagerfpu" Non lazy FPU restore */
/* Intel-defined CPU features, CPUID level 0x00000001 (ecx), word 4 */
#define X86_FEATURE_XMM3 (4*32+ 0) /* "pni" SSE-3 */
#define X86_FEATURE_PCLMULQDQ (4*32+ 1) /* PCLMULQDQ instruction */
#define X86_FEATURE_DTES64 (4*32+ 2) /* 64-bit Debug Store */
#define X86_FEATURE_MWAIT (4*32+ 3) /* "monitor" Monitor/Mwait support */
#define X86_FEATURE_DSCPL (4*32+ 4) /* "ds_cpl" CPL Qual. Debug Store */
#define X86_FEATURE_VMX (4*32+ 5) /* Hardware virtualization */
#define X86_FEATURE_SMX (4*32+ 6) /* Safer mode */
#define X86_FEATURE_EST (4*32+ 7) /* Enhanced SpeedStep */
#define X86_FEATURE_TM2 (4*32+ 8) /* Thermal Monitor 2 */
#define X86_FEATURE_SSSE3 (4*32+ 9) /* Supplemental SSE-3 */
#define X86_FEATURE_CID (4*32+10) /* Context ID */
#define X86_FEATURE_FMA (4*32+12) /* Fused multiply-add */
#define X86_FEATURE_CX16 (4*32+13) /* CMPXCHG16B */
#define X86_FEATURE_XTPR (4*32+14) /* Send Task Priority Messages */
#define X86_FEATURE_PDCM (4*32+15) /* Performance Capabilities */
#define X86_FEATURE_PCID (4*32+17) /* Process Context Identifiers */
#define X86_FEATURE_DCA (4*32+18) /* Direct Cache Access */
#define X86_FEATURE_XMM4_1 (4*32+19) /* "sse4_1" SSE-4.1 */
#define X86_FEATURE_XMM4_2 (4*32+20) /* "sse4_2" SSE-4.2 */
#define X86_FEATURE_X2APIC (4*32+21) /* x2APIC */
#define X86_FEATURE_MOVBE (4*32+22) /* MOVBE instruction */
#define X86_FEATURE_POPCNT (4*32+23) /* POPCNT instruction */
#define X86_FEATURE_TSC_DEADLINE_TIMER (4*32+24) /* Tsc deadline timer */
#define X86_FEATURE_AES (4*32+25) /* AES instructions */
#define X86_FEATURE_XSAVE (4*32+26) /* XSAVE/XRSTOR/XSETBV/XGETBV */
#define X86_FEATURE_OSXSAVE (4*32+27) /* "" XSAVE enabled in the OS */
#define X86_FEATURE_AVX (4*32+28) /* Advanced Vector Extensions */
#define X86_FEATURE_F16C (4*32+29) /* 16-bit fp conversions */
#define X86_FEATURE_RDRAND (4*32+30) /* The RDRAND instruction */
#define X86_FEATURE_HYPERVISOR (4*32+31) /* Running on a hypervisor */
/* VIA/Cyrix/Centaur-defined CPU features, CPUID level 0xC0000001, word 5 */
#define X86_FEATURE_XSTORE (5*32+ 2) /* "rng" RNG present (xstore) */
#define X86_FEATURE_XSTORE_EN (5*32+ 3) /* "rng_en" RNG enabled */
#define X86_FEATURE_XCRYPT (5*32+ 6) /* "ace" on-CPU crypto (xcrypt) */
#define X86_FEATURE_XCRYPT_EN (5*32+ 7) /* "ace_en" on-CPU crypto enabled */
#define X86_FEATURE_ACE2 (5*32+ 8) /* Advanced Cryptography Engine v2 */
#define X86_FEATURE_ACE2_EN (5*32+ 9) /* ACE v2 enabled */
#define X86_FEATURE_PHE (5*32+10) /* PadLock Hash Engine */
#define X86_FEATURE_PHE_EN (5*32+11) /* PHE enabled */
#define X86_FEATURE_PMM (5*32+12) /* PadLock Montgomery Multiplier */
#define X86_FEATURE_PMM_EN (5*32+13) /* PMM enabled */
/* More extended AMD flags: CPUID level 0x80000001, ecx, word 6 */
#define X86_FEATURE_LAHF_LM (6*32+ 0) /* LAHF/SAHF in long mode */
#define X86_FEATURE_CMP_LEGACY (6*32+ 1) /* If yes HyperThreading not valid */
#define X86_FEATURE_SVM (6*32+ 2) /* Secure virtual machine */
#define X86_FEATURE_EXTAPIC (6*32+ 3) /* Extended APIC space */
#define X86_FEATURE_CR8_LEGACY (6*32+ 4) /* CR8 in 32-bit mode */
#define X86_FEATURE_ABM (6*32+ 5) /* Advanced bit manipulation */
#define X86_FEATURE_SSE4A (6*32+ 6) /* SSE-4A */
#define X86_FEATURE_MISALIGNSSE (6*32+ 7) /* Misaligned SSE mode */
#define X86_FEATURE_3DNOWPREFETCH (6*32+ 8) /* 3DNow prefetch instructions */
#define X86_FEATURE_OSVW (6*32+ 9) /* OS Visible Workaround */
#define X86_FEATURE_IBS (6*32+10) /* Instruction Based Sampling */
#define X86_FEATURE_XOP (6*32+11) /* extended AVX instructions */
#define X86_FEATURE_SKINIT (6*32+12) /* SKINIT/STGI instructions */
#define X86_FEATURE_WDT (6*32+13) /* Watchdog timer */
#define X86_FEATURE_LWP (6*32+15) /* Light Weight Profiling */
#define X86_FEATURE_FMA4 (6*32+16) /* 4 operands MAC instructions */
#define X86_FEATURE_TCE (6*32+17) /* translation cache extension */
#define X86_FEATURE_NODEID_MSR (6*32+19) /* NodeId MSR */
#define X86_FEATURE_TBM (6*32+21) /* trailing bit manipulations */
#define X86_FEATURE_TOPOEXT (6*32+22) /* topology extensions CPUID leafs */
#define X86_FEATURE_PERFCTR_CORE (6*32+23) /* core performance counter extensions */
/*
* Auxiliary flags: Linux defined - For features scattered in various
* CPUID levels like 0x6, 0xA etc, word 7
*/
#define X86_FEATURE_IDA (7*32+ 0) /* Intel Dynamic Acceleration */
#define X86_FEATURE_ARAT (7*32+ 1) /* Always Running APIC Timer */
#define X86_FEATURE_CPB (7*32+ 2) /* AMD Core Performance Boost */
#define X86_FEATURE_EPB (7*32+ 3) /* IA32_ENERGY_PERF_BIAS support */
#define X86_FEATURE_XSAVEOPT (7*32+ 4) /* Optimized Xsave */
#define X86_FEATURE_PLN (7*32+ 5) /* Intel Power Limit Notification */
#define X86_FEATURE_PTS (7*32+ 6) /* Intel Package Thermal Status */
#define X86_FEATURE_DTHERM (7*32+ 7) /* Digital Thermal Sensor */
#define X86_FEATURE_HW_PSTATE (7*32+ 8) /* AMD HW-PState */
/* Virtualization flags: Linux defined, word 8 */
#define X86_FEATURE_TPR_SHADOW (8*32+ 0) /* Intel TPR Shadow */
#define X86_FEATURE_VNMI (8*32+ 1) /* Intel Virtual NMI */
#define X86_FEATURE_FLEXPRIORITY (8*32+ 2) /* Intel FlexPriority */
#define X86_FEATURE_EPT (8*32+ 3) /* Intel Extended Page Table */
#define X86_FEATURE_VPID (8*32+ 4) /* Intel Virtual Processor ID */
#define X86_FEATURE_NPT (8*32+ 5) /* AMD Nested Page Table support */
#define X86_FEATURE_LBRV (8*32+ 6) /* AMD LBR Virtualization support */
#define X86_FEATURE_SVML (8*32+ 7) /* "svm_lock" AMD SVM locking MSR */
#define X86_FEATURE_NRIPS (8*32+ 8) /* "nrip_save" AMD SVM next_rip save */
#define X86_FEATURE_TSCRATEMSR (8*32+ 9) /* "tsc_scale" AMD TSC scaling support */
#define X86_FEATURE_VMCBCLEAN (8*32+10) /* "vmcb_clean" AMD VMCB clean bits support */
#define X86_FEATURE_FLUSHBYASID (8*32+11) /* AMD flush-by-ASID support */
#define X86_FEATURE_DECODEASSISTS (8*32+12) /* AMD Decode Assists support */
#define X86_FEATURE_PAUSEFILTER (8*32+13) /* AMD filtered pause intercept */
#define X86_FEATURE_PFTHRESHOLD (8*32+14) /* AMD pause filter threshold */
/* Intel-defined CPU features, CPUID level 0x00000007:0 (ebx), word 9 */
#define X86_FEATURE_FSGSBASE (9*32+ 0) /* {RD/WR}{FS/GS}BASE instructions*/
KVM: x86: Emulate IA32_TSC_ADJUST MSR CPUID.7.0.EBX[1]=1 indicates IA32_TSC_ADJUST MSR 0x3b is supported Basic design is to emulate the MSR by allowing reads and writes to a guest vcpu specific location to store the value of the emulated MSR while adding the value to the vmcs tsc_offset. In this way the IA32_TSC_ADJUST value will be included in all reads to the TSC MSR whether through rdmsr or rdtsc. This is of course as long as the "use TSC counter offsetting" VM-execution control is enabled as well as the IA32_TSC_ADJUST control. However, because hardware will only return the TSC + IA32_TSC_ADJUST + vmsc tsc_offset for a guest process when it does and rdtsc (with the correct settings) the value of our virtualized IA32_TSC_ADJUST must be stored in one of these three locations. The argument against storing it in the actual MSR is performance. This is likely to be seldom used while the save/restore is required on every transition. IA32_TSC_ADJUST was created as a way to solve some issues with writing TSC itself so that is not an option either. The remaining option, defined above as our solution has the problem of returning incorrect vmcs tsc_offset values (unless we intercept and fix, not done here) as mentioned above. However, more problematic is that storing the data in vmcs tsc_offset will have a different semantic effect on the system than does using the actual MSR. This is illustrated in the following example: The hypervisor set the IA32_TSC_ADJUST, then the guest sets it and a guest process performs a rdtsc. In this case the guest process will get TSC + IA32_TSC_ADJUST_hyperviser + vmsc tsc_offset including IA32_TSC_ADJUST_guest. While the total system semantics changed the semantics as seen by the guest do not and hence this will not cause a problem. Signed-off-by: Will Auld <will.auld@intel.com> Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2012-11-29 20:42:50 +00:00
#define X86_FEATURE_TSC_ADJUST (9*32+ 1) /* TSC adjustment MSR 0x3b */
#define X86_FEATURE_BMI1 (9*32+ 3) /* 1st group bit manipulation extensions */
#define X86_FEATURE_HLE (9*32+ 4) /* Hardware Lock Elision */
#define X86_FEATURE_AVX2 (9*32+ 5) /* AVX2 instructions */
#define X86_FEATURE_SMEP (9*32+ 7) /* Supervisor Mode Execution Protection */
#define X86_FEATURE_BMI2 (9*32+ 8) /* 2nd group bit manipulation extensions */
#define X86_FEATURE_ERMS (9*32+ 9) /* Enhanced REP MOVSB/STOSB */
#define X86_FEATURE_INVPCID (9*32+10) /* Invalidate Processor Context ID */
#define X86_FEATURE_RTM (9*32+11) /* Restricted Transactional Memory */
#define X86_FEATURE_RDSEED (9*32+18) /* The RDSEED instruction */
#define X86_FEATURE_ADX (9*32+19) /* The ADCX and ADOX instructions */
#define X86_FEATURE_SMAP (9*32+20) /* Supervisor Mode Access Prevention */
#if defined(__KERNEL__) && !defined(__ASSEMBLY__)
#include <asm/asm.h>
#include <linux/bitops.h>
extern const char * const x86_cap_flags[NCAPINTS*32];
extern const char * const x86_power_flags[32];
#define test_cpu_cap(c, bit) \
test_bit(bit, (unsigned long *)((c)->x86_capability))
#define REQUIRED_MASK_BIT_SET(bit) \
( (((bit)>>5)==0 && (1UL<<((bit)&31) & REQUIRED_MASK0)) || \
(((bit)>>5)==1 && (1UL<<((bit)&31) & REQUIRED_MASK1)) || \
(((bit)>>5)==2 && (1UL<<((bit)&31) & REQUIRED_MASK2)) || \
(((bit)>>5)==3 && (1UL<<((bit)&31) & REQUIRED_MASK3)) || \
(((bit)>>5)==4 && (1UL<<((bit)&31) & REQUIRED_MASK4)) || \
(((bit)>>5)==5 && (1UL<<((bit)&31) & REQUIRED_MASK5)) || \
(((bit)>>5)==6 && (1UL<<((bit)&31) & REQUIRED_MASK6)) || \
(((bit)>>5)==7 && (1UL<<((bit)&31) & REQUIRED_MASK7)) || \
(((bit)>>5)==8 && (1UL<<((bit)&31) & REQUIRED_MASK8)) || \
(((bit)>>5)==9 && (1UL<<((bit)&31) & REQUIRED_MASK9)) )
#define cpu_has(c, bit) \
(__builtin_constant_p(bit) && REQUIRED_MASK_BIT_SET(bit) ? 1 : \
test_cpu_cap(c, bit))
#define this_cpu_has(bit) \
(__builtin_constant_p(bit) && REQUIRED_MASK_BIT_SET(bit) ? 1 : \
x86_this_cpu_test_bit(bit, (unsigned long *)&cpu_info.x86_capability))
#define boot_cpu_has(bit) cpu_has(&boot_cpu_data, bit)
#define set_cpu_cap(c, bit) set_bit(bit, (unsigned long *)((c)->x86_capability))
#define clear_cpu_cap(c, bit) clear_bit(bit, (unsigned long *)((c)->x86_capability))
#define setup_clear_cpu_cap(bit) do { \
clear_cpu_cap(&boot_cpu_data, bit); \
set_bit(bit, (unsigned long *)cpu_caps_cleared); \
} while (0)
#define setup_force_cpu_cap(bit) do { \
set_cpu_cap(&boot_cpu_data, bit); \
set_bit(bit, (unsigned long *)cpu_caps_set); \
} while (0)
#define cpu_has_fpu boot_cpu_has(X86_FEATURE_FPU)
#define cpu_has_vme boot_cpu_has(X86_FEATURE_VME)
#define cpu_has_de boot_cpu_has(X86_FEATURE_DE)
#define cpu_has_pse boot_cpu_has(X86_FEATURE_PSE)
#define cpu_has_tsc boot_cpu_has(X86_FEATURE_TSC)
#define cpu_has_pae boot_cpu_has(X86_FEATURE_PAE)
#define cpu_has_pge boot_cpu_has(X86_FEATURE_PGE)
#define cpu_has_apic boot_cpu_has(X86_FEATURE_APIC)
#define cpu_has_sep boot_cpu_has(X86_FEATURE_SEP)
#define cpu_has_mtrr boot_cpu_has(X86_FEATURE_MTRR)
#define cpu_has_mmx boot_cpu_has(X86_FEATURE_MMX)
#define cpu_has_fxsr boot_cpu_has(X86_FEATURE_FXSR)
#define cpu_has_xmm boot_cpu_has(X86_FEATURE_XMM)
#define cpu_has_xmm2 boot_cpu_has(X86_FEATURE_XMM2)
#define cpu_has_xmm3 boot_cpu_has(X86_FEATURE_XMM3)
crypto: sha1 - SSSE3 based SHA1 implementation for x86-64 This is an assembler implementation of the SHA1 algorithm using the Supplemental SSE3 (SSSE3) instructions or, when available, the Advanced Vector Extensions (AVX). Testing with the tcrypt module shows the raw hash performance is up to 2.3 times faster than the C implementation, using 8k data blocks on a Core 2 Duo T5500. For the smalest data set (16 byte) it is still 25% faster. Since this implementation uses SSE/YMM registers it cannot safely be used in every situation, e.g. while an IRQ interrupts a kernel thread. The implementation falls back to the generic SHA1 variant, if using the SSE/YMM registers is not possible. With this algorithm I was able to increase the throughput of a single IPsec link from 344 Mbit/s to 464 Mbit/s on a Core 2 Quad CPU using the SSSE3 variant -- a speedup of +34.8%. Saving and restoring SSE/YMM state might make the actual throughput fluctuate when there are FPU intensive userland applications running. For example, meassuring the performance using iperf2 directly on the machine under test gives wobbling numbers because iperf2 uses the FPU for each packet to check if the reporting interval has expired (in the above test I got min/max/avg: 402/484/464 MBit/s). Using this algorithm on a IPsec gateway gives much more reasonable and stable numbers, albeit not as high as in the directly connected case. Here is the result from an RFC 2544 test run with a EXFO Packet Blazer FTB-8510: frame size sha1-generic sha1-ssse3 delta 64 byte 37.5 MBit/s 37.5 MBit/s 0.0% 128 byte 56.3 MBit/s 62.5 MBit/s +11.0% 256 byte 87.5 MBit/s 100.0 MBit/s +14.3% 512 byte 131.3 MBit/s 150.0 MBit/s +14.2% 1024 byte 162.5 MBit/s 193.8 MBit/s +19.3% 1280 byte 175.0 MBit/s 212.5 MBit/s +21.4% 1420 byte 175.0 MBit/s 218.7 MBit/s +25.0% 1518 byte 150.0 MBit/s 181.2 MBit/s +20.8% The throughput for the largest frame size is lower than for the previous size because the IP packets need to be fragmented in this case to make there way through the IPsec tunnel. Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Maxim Locktyukhin <maxim.locktyukhin@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-08-04 18:19:25 +00:00
#define cpu_has_ssse3 boot_cpu_has(X86_FEATURE_SSSE3)
#define cpu_has_aes boot_cpu_has(X86_FEATURE_AES)
crypto: sha1 - SSSE3 based SHA1 implementation for x86-64 This is an assembler implementation of the SHA1 algorithm using the Supplemental SSE3 (SSSE3) instructions or, when available, the Advanced Vector Extensions (AVX). Testing with the tcrypt module shows the raw hash performance is up to 2.3 times faster than the C implementation, using 8k data blocks on a Core 2 Duo T5500. For the smalest data set (16 byte) it is still 25% faster. Since this implementation uses SSE/YMM registers it cannot safely be used in every situation, e.g. while an IRQ interrupts a kernel thread. The implementation falls back to the generic SHA1 variant, if using the SSE/YMM registers is not possible. With this algorithm I was able to increase the throughput of a single IPsec link from 344 Mbit/s to 464 Mbit/s on a Core 2 Quad CPU using the SSSE3 variant -- a speedup of +34.8%. Saving and restoring SSE/YMM state might make the actual throughput fluctuate when there are FPU intensive userland applications running. For example, meassuring the performance using iperf2 directly on the machine under test gives wobbling numbers because iperf2 uses the FPU for each packet to check if the reporting interval has expired (in the above test I got min/max/avg: 402/484/464 MBit/s). Using this algorithm on a IPsec gateway gives much more reasonable and stable numbers, albeit not as high as in the directly connected case. Here is the result from an RFC 2544 test run with a EXFO Packet Blazer FTB-8510: frame size sha1-generic sha1-ssse3 delta 64 byte 37.5 MBit/s 37.5 MBit/s 0.0% 128 byte 56.3 MBit/s 62.5 MBit/s +11.0% 256 byte 87.5 MBit/s 100.0 MBit/s +14.3% 512 byte 131.3 MBit/s 150.0 MBit/s +14.2% 1024 byte 162.5 MBit/s 193.8 MBit/s +19.3% 1280 byte 175.0 MBit/s 212.5 MBit/s +21.4% 1420 byte 175.0 MBit/s 218.7 MBit/s +25.0% 1518 byte 150.0 MBit/s 181.2 MBit/s +20.8% The throughput for the largest frame size is lower than for the previous size because the IP packets need to be fragmented in this case to make there way through the IPsec tunnel. Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Maxim Locktyukhin <maxim.locktyukhin@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-08-04 18:19:25 +00:00
#define cpu_has_avx boot_cpu_has(X86_FEATURE_AVX)
#define cpu_has_ht boot_cpu_has(X86_FEATURE_HT)
#define cpu_has_mp boot_cpu_has(X86_FEATURE_MP)
#define cpu_has_nx boot_cpu_has(X86_FEATURE_NX)
#define cpu_has_k6_mtrr boot_cpu_has(X86_FEATURE_K6_MTRR)
#define cpu_has_cyrix_arr boot_cpu_has(X86_FEATURE_CYRIX_ARR)
#define cpu_has_centaur_mcr boot_cpu_has(X86_FEATURE_CENTAUR_MCR)
#define cpu_has_xstore boot_cpu_has(X86_FEATURE_XSTORE)
#define cpu_has_xstore_enabled boot_cpu_has(X86_FEATURE_XSTORE_EN)
#define cpu_has_xcrypt boot_cpu_has(X86_FEATURE_XCRYPT)
#define cpu_has_xcrypt_enabled boot_cpu_has(X86_FEATURE_XCRYPT_EN)
#define cpu_has_ace2 boot_cpu_has(X86_FEATURE_ACE2)
#define cpu_has_ace2_enabled boot_cpu_has(X86_FEATURE_ACE2_EN)
#define cpu_has_phe boot_cpu_has(X86_FEATURE_PHE)
#define cpu_has_phe_enabled boot_cpu_has(X86_FEATURE_PHE_EN)
#define cpu_has_pmm boot_cpu_has(X86_FEATURE_PMM)
#define cpu_has_pmm_enabled boot_cpu_has(X86_FEATURE_PMM_EN)
#define cpu_has_ds boot_cpu_has(X86_FEATURE_DS)
#define cpu_has_pebs boot_cpu_has(X86_FEATURE_PEBS)
#define cpu_has_clflush boot_cpu_has(X86_FEATURE_CLFLSH)
#define cpu_has_bts boot_cpu_has(X86_FEATURE_BTS)
#define cpu_has_gbpages boot_cpu_has(X86_FEATURE_GBPAGES)
#define cpu_has_arch_perfmon boot_cpu_has(X86_FEATURE_ARCH_PERFMON)
#define cpu_has_pat boot_cpu_has(X86_FEATURE_PAT)
#define cpu_has_xmm4_1 boot_cpu_has(X86_FEATURE_XMM4_1)
#define cpu_has_xmm4_2 boot_cpu_has(X86_FEATURE_XMM4_2)
#define cpu_has_x2apic boot_cpu_has(X86_FEATURE_X2APIC)
#define cpu_has_xsave boot_cpu_has(X86_FEATURE_XSAVE)
#define cpu_has_xsaveopt boot_cpu_has(X86_FEATURE_XSAVEOPT)
crypto: sha1 - SSSE3 based SHA1 implementation for x86-64 This is an assembler implementation of the SHA1 algorithm using the Supplemental SSE3 (SSSE3) instructions or, when available, the Advanced Vector Extensions (AVX). Testing with the tcrypt module shows the raw hash performance is up to 2.3 times faster than the C implementation, using 8k data blocks on a Core 2 Duo T5500. For the smalest data set (16 byte) it is still 25% faster. Since this implementation uses SSE/YMM registers it cannot safely be used in every situation, e.g. while an IRQ interrupts a kernel thread. The implementation falls back to the generic SHA1 variant, if using the SSE/YMM registers is not possible. With this algorithm I was able to increase the throughput of a single IPsec link from 344 Mbit/s to 464 Mbit/s on a Core 2 Quad CPU using the SSSE3 variant -- a speedup of +34.8%. Saving and restoring SSE/YMM state might make the actual throughput fluctuate when there are FPU intensive userland applications running. For example, meassuring the performance using iperf2 directly on the machine under test gives wobbling numbers because iperf2 uses the FPU for each packet to check if the reporting interval has expired (in the above test I got min/max/avg: 402/484/464 MBit/s). Using this algorithm on a IPsec gateway gives much more reasonable and stable numbers, albeit not as high as in the directly connected case. Here is the result from an RFC 2544 test run with a EXFO Packet Blazer FTB-8510: frame size sha1-generic sha1-ssse3 delta 64 byte 37.5 MBit/s 37.5 MBit/s 0.0% 128 byte 56.3 MBit/s 62.5 MBit/s +11.0% 256 byte 87.5 MBit/s 100.0 MBit/s +14.3% 512 byte 131.3 MBit/s 150.0 MBit/s +14.2% 1024 byte 162.5 MBit/s 193.8 MBit/s +19.3% 1280 byte 175.0 MBit/s 212.5 MBit/s +21.4% 1420 byte 175.0 MBit/s 218.7 MBit/s +25.0% 1518 byte 150.0 MBit/s 181.2 MBit/s +20.8% The throughput for the largest frame size is lower than for the previous size because the IP packets need to be fragmented in this case to make there way through the IPsec tunnel. Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Maxim Locktyukhin <maxim.locktyukhin@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-08-04 18:19:25 +00:00
#define cpu_has_osxsave boot_cpu_has(X86_FEATURE_OSXSAVE)
#define cpu_has_hypervisor boot_cpu_has(X86_FEATURE_HYPERVISOR)
#define cpu_has_pclmulqdq boot_cpu_has(X86_FEATURE_PCLMULQDQ)
#define cpu_has_perfctr_core boot_cpu_has(X86_FEATURE_PERFCTR_CORE)
#define cpu_has_cx8 boot_cpu_has(X86_FEATURE_CX8)
#define cpu_has_cx16 boot_cpu_has(X86_FEATURE_CX16)
#define cpu_has_eager_fpu boot_cpu_has(X86_FEATURE_EAGER_FPU)
#define cpu_has_topoext boot_cpu_has(X86_FEATURE_TOPOEXT)
#ifdef CONFIG_X86_64
#undef cpu_has_vme
#define cpu_has_vme 0
#undef cpu_has_pae
#define cpu_has_pae ___BUG___
#undef cpu_has_mp
#define cpu_has_mp 1
#undef cpu_has_k6_mtrr
#define cpu_has_k6_mtrr 0
#undef cpu_has_cyrix_arr
#define cpu_has_cyrix_arr 0
#undef cpu_has_centaur_mcr
#define cpu_has_centaur_mcr 0
#endif /* CONFIG_X86_64 */
#if __GNUC__ >= 4
/*
* Static testing of CPU features. Used the same as boot_cpu_has().
* These are only valid after alternatives have run, but will statically
* patch the target code for additional performance.
*
*/
static __always_inline __pure bool __static_cpu_has(u16 bit)
{
#if __GNUC__ > 4 || __GNUC_MINOR__ >= 5
asm goto("1: jmp %l[t_no]\n"
"2:\n"
".section .altinstructions,\"a\"\n"
" .long 1b - .\n"
" .long 0\n" /* no replacement */
" .word %P0\n" /* feature bit */
" .byte 2b - 1b\n" /* source len */
" .byte 0\n" /* replacement len */
".previous\n"
/* skipping size check since replacement size = 0 */
: : "i" (bit) : : t_no);
return true;
t_no:
return false;
#else
u8 flag;
/* Open-coded due to __stringify() in ALTERNATIVE() */
asm volatile("1: movb $0,%0\n"
"2:\n"
".section .altinstructions,\"a\"\n"
" .long 1b - .\n"
" .long 3f - .\n"
" .word %P1\n" /* feature bit */
" .byte 2b - 1b\n" /* source len */
" .byte 4f - 3f\n" /* replacement len */
".previous\n"
".section .discard,\"aw\",@progbits\n"
" .byte 0xff + (4f-3f) - (2b-1b)\n" /* size check */
".previous\n"
".section .altinstr_replacement,\"ax\"\n"
"3: movb $1,%0\n"
"4:\n"
".previous\n"
: "=qm" (flag) : "i" (bit));
return flag;
#endif
}
#define static_cpu_has(bit) \
( \
__builtin_constant_p(boot_cpu_has(bit)) ? \
boot_cpu_has(bit) : \
__builtin_constant_p(bit) ? \
__static_cpu_has(bit) : \
boot_cpu_has(bit) \
)
#else
/*
* gcc 3.x is too stupid to do the static test; fall back to dynamic.
*/
#define static_cpu_has(bit) boot_cpu_has(bit)
#endif
#endif /* defined(__KERNEL__) && !defined(__ASSEMBLY__) */
#endif /* _ASM_X86_CPUFEATURE_H */