dect
/
libpcap
Archived
13
0
Fork 0
This repository has been archived on 2022-02-17. You can view files and clone it, but cannot push or open issues or pull requests.
libpcap/pcap-linux.c

2152 lines
59 KiB
C
Raw Normal View History

1999-10-07 23:46:40 +00:00
/*
* pcap-linux.c: Packet capture interface to the Linux kernel
*
* Copyright (c) 2000 Torsten Landschoff <torsten@debian.org>
* Sebastian Krahmer <krahmer@cs.uni-potsdam.de>
2002-06-11 17:04:44 +00:00
*
* License: BSD
2002-06-11 17:04:44 +00:00
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
2002-06-11 17:04:44 +00:00
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. The names of the authors may not be used to endorse or promote
* products derived from this software without specific prior
* written permission.
2002-06-11 17:04:44 +00:00
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
2000-09-20 07:52:04 +00:00
#ifndef lint
static const char rcsid[] _U_ =
"@(#) $Header: /tcpdump/master/libpcap/pcap-linux.c,v 1.112 2005-06-20 21:27:10 guy Exp $ (LBL)";
2000-09-20 07:52:04 +00:00
#endif
/*
* Known problems with 2.0[.x] kernels:
*
* - The loopback device gives every packet twice; on 2.2[.x] kernels,
* if we use PF_PACKET, we can filter out the transmitted version
* of the packet by using data in the "sockaddr_ll" returned by
* "recvfrom()", but, on 2.0[.x] kernels, we have to use
* PF_INET/SOCK_PACKET, which means "recvfrom()" supplies a
* "sockaddr_pkt" which doesn't give us enough information to let
* us do that.
*
* - We have to set the interface's IFF_PROMISC flag ourselves, if
* we're to run in promiscuous mode, which means we have to turn
* it off ourselves when we're done; the kernel doesn't keep track
* of how many sockets are listening promiscuously, which means
* it won't get turned off automatically when no sockets are
* listening promiscuously. We catch "pcap_close()" and, for
* interfaces we put into promiscuous mode, take them out of
* promiscuous mode - which isn't necessarily the right thing to
* do, if another socket also requested promiscuous mode between
* the time when we opened the socket and the time when we close
* the socket.
*
* - MSG_TRUNC isn't supported, so you can't specify that "recvfrom()"
* return the amount of data that you could have read, rather than
* the amount that was returned, so we can't just allocate a buffer
* whose size is the snapshot length and pass the snapshot length
* as the byte count, and also pass MSG_TRUNC, so that the return
* value tells us how long the packet was on the wire.
*
* This means that, if we want to get the actual size of the packet,
* so we can return it in the "len" field of the packet header,
* we have to read the entire packet, not just the part that fits
* within the snapshot length, and thus waste CPU time copying data
* from the kernel that our caller won't see.
*
* We have to get the actual size, and supply it in "len", because
* otherwise, the IP dissector in tcpdump, for example, will complain
* about "truncated-ip", as the packet will appear to have been
* shorter, on the wire, than the IP header said it should have been.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "pcap-int.h"
#include "sll.h"
1999-10-07 23:46:40 +00:00
#ifdef HAVE_DAG_API
#include "pcap-dag.h"
#endif /* HAVE_DAG_API */
#ifdef HAVE_SEPTEL_API
#include "pcap-septel.h"
#endif /* HAVE_SEPTEL_API */
1999-10-07 23:46:40 +00:00
#include <errno.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/utsname.h>
#include <net/if.h>
#include <netinet/in.h>
#include <linux/if_ether.h>
#include <net/if_arp.h>
1999-10-07 23:46:40 +00:00
/*
* If PF_PACKET is defined, we can use {SOCK_RAW,SOCK_DGRAM}/PF_PACKET
* sockets rather than SOCK_PACKET sockets.
*
* To use them, we include <linux/if_packet.h> rather than
* <netpacket/packet.h>; we do so because
*
* some Linux distributions (e.g., Slackware 4.0) have 2.2 or
* later kernels and libc5, and don't provide a <netpacket/packet.h>
* file;
*
* not all versions of glibc2 have a <netpacket/packet.h> file
* that defines stuff needed for some of the 2.4-or-later-kernel
* features, so if the system has a 2.4 or later kernel, we
* still can't use those features.
*
* We're already including a number of other <linux/XXX.h> headers, and
* this code is Linux-specific (no other OS has PF_PACKET sockets as
* a raw packet capture mechanism), so it's not as if you gain any
* useful portability by using <netpacket/packet.h>
*
* XXX - should we just include <linux/if_packet.h> even if PF_PACKET
* isn't defined? It only defines one data structure in 2.0.x, so
* it shouldn't cause any problems.
*/
2002-06-11 17:04:44 +00:00
#ifdef PF_PACKET
# include <linux/if_packet.h>
/*
* On at least some Linux distributions (for example, Red Hat 5.2),
* there's no <netpacket/packet.h> file, but PF_PACKET is defined if
* you include <sys/socket.h>, but <linux/if_packet.h> doesn't define
* any of the PF_PACKET stuff such as "struct sockaddr_ll" or any of
* the PACKET_xxx stuff.
*
* So we check whether PACKET_HOST is defined, and assume that we have
* PF_PACKET sockets only if it is defined.
*/
# ifdef PACKET_HOST
# define HAVE_PF_PACKET_SOCKETS
# endif /* PACKET_HOST */
#endif /* PF_PACKET */
#ifdef SO_ATTACH_FILTER
#include <linux/types.h>
#include <linux/filter.h>
#endif
1999-10-07 23:46:40 +00:00
#ifndef __GLIBC__
typedef int socklen_t;
#endif
#ifndef MSG_TRUNC
/*
* This is being compiled on a system that lacks MSG_TRUNC; define it
* with the value it has in the 2.2 and later kernels, so that, on
* those kernels, when we pass it in the flags argument to "recvfrom()"
* we're passing the right value and thus get the MSG_TRUNC behavior
* we want. (We don't get that behavior on 2.0[.x] kernels, because
* they didn't support MSG_TRUNC.)
*/
#define MSG_TRUNC 0x20
1999-10-07 23:46:40 +00:00
#endif
#ifndef SOL_PACKET
/*
* This is being compiled on a system that lacks SOL_PACKET; define it
* with the value it has in the 2.2 and later kernels, so that we can
* set promiscuous mode in the good modern way rather than the old
* 2.0-kernel crappy way.
*/
#define SOL_PACKET 263
#endif
#define MAX_LINKHEADER_SIZE 256
1999-10-07 23:46:40 +00:00
2002-06-11 17:04:44 +00:00
/*
* When capturing on all interfaces we use this as the buffer size.
* Should be bigger then all MTUs that occur in real life.
* 64kB should be enough for now.
*/
#define BIGGER_THAN_ALL_MTUS (64*1024)
/*
* Prototypes for internal functions
*/
static void map_arphrd_to_dlt(pcap_t *, int, int);
static int live_open_old(pcap_t *, const char *, int, int, char *);
static int live_open_new(pcap_t *, const char *, int, int, char *);
static int pcap_read_linux(pcap_t *, int, pcap_handler, u_char *);
static int pcap_read_packet(pcap_t *, pcap_handler, u_char *);
static int pcap_inject_linux(pcap_t *, const void *, size_t);
static int pcap_stats_linux(pcap_t *, struct pcap_stat *);
static int pcap_setfilter_linux(pcap_t *, struct bpf_program *);
static int pcap_setdirection_linux(pcap_t *, direction_t);
static void pcap_close_linux(pcap_t *);
/*
* Wrap some ioctl calls
*/
#ifdef HAVE_PF_PACKET_SOCKETS
static int iface_get_id(int fd, const char *device, char *ebuf);
#endif
static int iface_get_mtu(int fd, const char *device, char *ebuf);
static int iface_get_arptype(int fd, const char *device, char *ebuf);
#ifdef HAVE_PF_PACKET_SOCKETS
static int iface_bind(int fd, int ifindex, char *ebuf);
#endif
static int iface_bind_old(int fd, const char *device, char *ebuf);
#ifdef SO_ATTACH_FILTER
static int fix_program(pcap_t *handle, struct sock_fprog *fcode);
static int fix_offset(struct bpf_insn *p);
static int set_kernel_filter(pcap_t *handle, struct sock_fprog *fcode);
static int reset_kernel_filter(pcap_t *handle);
static struct sock_filter total_insn
= BPF_STMT(BPF_RET | BPF_K, 0);
static struct sock_fprog total_fcode
= { 1, &total_insn };
#endif
/*
2002-06-11 17:04:44 +00:00
* Get a handle for a live capture from the given device. You can
* pass NULL as device to get all packages (without link level
* information of course). If you pass 1 as promisc the interface
2002-06-11 17:04:44 +00:00
* will be set to promiscous mode (XXX: I think this usage should
* be deprecated and functions be added to select that later allow
* modification of that values -- Torsten).
2002-06-11 17:04:44 +00:00
*
* See also pcap(3).
*/
pcap_t *
pcap_open_live(const char *device, int snaplen, int promisc, int to_ms,
char *ebuf)
1999-10-07 23:46:40 +00:00
{
pcap_t *handle;
int mtu;
int err;
int live_open_ok = 0;
struct utsname utsname;
#ifdef HAVE_DAG_API
if (strstr(device, "dag")) {
return dag_open_live(device, snaplen, promisc, to_ms, ebuf);
}
#endif /* HAVE_DAG_API */
#ifdef HAVE_SEPTEL_API
if (strstr(device, "septel")) {
return septel_open_live(device, snaplen, promisc, to_ms, ebuf);
}
#endif /* HAVE_SEPTEL_API */
/* Allocate a handle for this session. */
handle = malloc(sizeof(*handle));
if (handle == NULL) {
snprintf(ebuf, PCAP_ERRBUF_SIZE, "malloc: %s",
pcap_strerror(errno));
return NULL;
}
/* Initialize some components of the pcap structure. */
memset(handle, 0, sizeof(*handle));
handle->snapshot = snaplen;
handle->md.timeout = to_ms;
/*
2002-06-11 17:04:44 +00:00
* NULL and "any" are special devices which give us the hint to
* monitor all devices.
*/
if (!device || strcmp(device, "any") == 0) {
device = NULL;
handle->md.device = strdup("any");
if (promisc) {
promisc = 0;
/* Just a warning. */
snprintf(ebuf, PCAP_ERRBUF_SIZE,
"Promiscuous mode not supported on the \"any\" device");
}
2002-06-11 17:04:44 +00:00
} else
handle->md.device = strdup(device);
if (handle->md.device == NULL) {
snprintf(ebuf, PCAP_ERRBUF_SIZE, "strdup: %s",
pcap_strerror(errno) );
free(handle);
return NULL;
}
2002-06-11 17:04:44 +00:00
/*
* Current Linux kernels use the protocol family PF_PACKET to
* allow direct access to all packets on the network while
* older kernels had a special socket type SOCK_PACKET to
* implement this feature.
* While this old implementation is kind of obsolete we need
2002-06-11 17:04:44 +00:00
* to be compatible with older kernels for a while so we are
* trying both methods with the newer method preferred.
*/
if ((err = live_open_new(handle, device, promisc, to_ms, ebuf)) == 1)
live_open_ok = 1;
else if (err == 0) {
/* Non-fatal error; try old way */
if (live_open_old(handle, device, promisc, to_ms, ebuf))
live_open_ok = 1;
}
if (!live_open_ok) {
2002-06-11 17:04:44 +00:00
/*
* Both methods to open the packet socket failed. Tidy
* up and report our failure (ebuf is expected to be
2002-06-11 17:04:44 +00:00
* set by the functions above).
*/
if (handle->md.device != NULL)
free(handle->md.device);
free(handle);
return NULL;
}
/*
* Compute the buffer size.
*
* If we're using SOCK_PACKET, this might be a 2.0[.x] kernel,
* and might require special handling - check.
*/
if (handle->md.sock_packet && (uname(&utsname) < 0 ||
strncmp(utsname.release, "2.0", 3) == 0)) {
/*
* We're using a SOCK_PACKET structure, and either
* we couldn't find out what kernel release this is,
* or it's a 2.0[.x] kernel.
*
* In the 2.0[.x] kernel, a "recvfrom()" on
* a SOCK_PACKET socket, with MSG_TRUNC set, will
* return the number of bytes read, so if we pass
* a length based on the snapshot length, it'll
* return the number of bytes from the packet
* copied to userland, not the actual length
* of the packet.
*
* This means that, for example, the IP dissector
* in tcpdump will get handed a packet length less
* than the length in the IP header, and will
* complain about "truncated-ip".
*
* So we don't bother trying to copy from the
* kernel only the bytes in which we're interested,
* but instead copy them all, just as the older
* versions of libpcap for Linux did.
*
* The buffer therefore needs to be big enough to
* hold the largest packet we can get from this
* device. Unfortunately, we can't get the MRU
* of the network; we can only get the MTU. The
* MTU may be too small, in which case a packet larger
* than the buffer size will be truncated *and* we
* won't get the actual packet size.
*
* However, if the snapshot length is larger than
* the buffer size based on the MTU, we use the
* snapshot length as the buffer size, instead;
* this means that with a sufficiently large snapshot
* length we won't artificially truncate packets
* to the MTU-based size.
*
* This mess just one of many problems with packet
* capture on 2.0[.x] kernels; you really want a
* 2.2[.x] or later kernel if you want packet capture
* to work well.
*/
mtu = iface_get_mtu(handle->fd, device, ebuf);
if (mtu == -1) {
pcap_close_linux(handle);
free(handle);
return NULL;
}
handle->bufsize = MAX_LINKHEADER_SIZE + mtu;
if (handle->bufsize < handle->snapshot)
handle->bufsize = handle->snapshot;
} else {
/*
* This is a 2.2[.x] or later kernel (we know that
* either because we're not using a SOCK_PACKET
* socket - PF_PACKET is supported only in 2.2
* and later kernels - or because we checked the
* kernel version).
*
* We can safely pass "recvfrom()" a byte count
* based on the snapshot length.
*/
handle->bufsize = handle->snapshot;
}
/* Allocate the buffer */
handle->buffer = malloc(handle->bufsize + handle->offset);
if (!handle->buffer) {
snprintf(ebuf, PCAP_ERRBUF_SIZE,
"malloc: %s", pcap_strerror(errno));
pcap_close_linux(handle);
free(handle);
return NULL;
}
/*
* "handle->fd" is a socket, so "select()" and "poll()"
* should work on it.
*/
handle->selectable_fd = handle->fd;
handle->read_op = pcap_read_linux;
handle->inject_op = pcap_inject_linux;
handle->setfilter_op = pcap_setfilter_linux;
handle->setdirection_op = pcap_setdirection_linux;
handle->set_datalink_op = NULL; /* can't change data link type */
handle->getnonblock_op = pcap_getnonblock_fd;
handle->setnonblock_op = pcap_setnonblock_fd;
handle->stats_op = pcap_stats_linux;
handle->close_op = pcap_close_linux;
return handle;
1999-10-07 23:46:40 +00:00
}
/*
* Read at most max_packets from the capture stream and call the callback
* for each of them. Returns the number of packets handled or -1 if an
2002-06-11 17:04:44 +00:00
* error occured.
*/
static int
pcap_read_linux(pcap_t *handle, int max_packets, pcap_handler callback, u_char *user)
1999-10-07 23:46:40 +00:00
{
/*
* Currently, on Linux only one packet is delivered per read,
* so we don't loop.
*/
return pcap_read_packet(handle, callback, user);
}
/*
2002-06-11 17:04:44 +00:00
* Read a packet from the socket calling the handler provided by
* the user. Returns the number of packets received or -1 if an
* error occured.
*/
static int
pcap_read_packet(pcap_t *handle, pcap_handler callback, u_char *userdata)
{
u_char *bp;
int offset;
#ifdef HAVE_PF_PACKET_SOCKETS
struct sockaddr_ll from;
struct sll_header *hdrp;
#else
struct sockaddr from;
#endif
socklen_t fromlen;
int packet_len, caplen;
struct pcap_pkthdr pcap_header;
#ifdef HAVE_PF_PACKET_SOCKETS
/*
* If this is a cooked device, leave extra room for a
* fake packet header.
*/
if (handle->md.cooked)
offset = SLL_HDR_LEN;
else
offset = 0;
#else
/*
* This system doesn't have PF_PACKET sockets, so it doesn't
* support cooked devices.
*/
offset = 0;
#endif
/* Receive a single packet from the kernel */
bp = handle->buffer + handle->offset;
1999-10-07 23:46:40 +00:00
do {
/*
* Has "pcap_breakloop()" been called?
*/
if (handle->break_loop) {
/*
* Yes - clear the flag that indicates that it
* has, and return -2 as an indication that we
* were told to break out of the loop.
*/
handle->break_loop = 0;
return -2;
}
1999-10-07 23:46:40 +00:00
fromlen = sizeof(from);
2002-06-11 17:04:44 +00:00
packet_len = recvfrom(
handle->fd, bp + offset,
2002-06-11 17:04:44 +00:00
handle->bufsize - offset, MSG_TRUNC,
(struct sockaddr *) &from, &fromlen);
} while (packet_len == -1 && errno == EINTR);
/* Check if an error occured */
if (packet_len == -1) {
if (errno == EAGAIN)
return 0; /* no packet there */
else {
snprintf(handle->errbuf, sizeof(handle->errbuf),
"recvfrom: %s", pcap_strerror(errno));
return -1;
1999-10-07 23:46:40 +00:00
}
}
#ifdef HAVE_PF_PACKET_SOCKETS
if (!handle->md.sock_packet) {
/*
* Do checks based on packet direction.
* We can only do this if we're using PF_PACKET; the
* address returned for SOCK_PACKET is a "sockaddr_pkt"
* which lacks the relevant packet type information.
*/
if (from.sll_pkttype == PACKET_OUTGOING) {
/*
* Outgoing packet.
* If this is from the loopback device, reject it;
* we'll see the packet as an incoming packet as well,
* and we don't want to see it twice.
*/
if (from.sll_ifindex == handle->md.lo_ifindex)
return 0;
/*
* If the user only wants incoming packets, reject it.
*/
if (handle->direction == D_IN)
return 0;
} else {
/*
* Incoming packet.
* If the user only wants outgoing packets, reject it.
*/
if (handle->direction == D_OUT)
return 0;
}
}
#endif
#ifdef HAVE_PF_PACKET_SOCKETS
/*
* If this is a cooked device, fill in the fake packet header.
*/
if (handle->md.cooked) {
/*
* Add the length of the fake header to the length
* of packet data we read.
*/
packet_len += SLL_HDR_LEN;
hdrp = (struct sll_header *)bp;
/*
* Map the PACKET_ value to a LINUX_SLL_ value; we
* want the same numerical value to be used in
* the link-layer header even if the numerical values
* for the PACKET_ #defines change, so that programs
* that look at the packet type field will always be
* able to handle DLT_LINUX_SLL captures.
*/
2000-12-23 03:04:06 +00:00
switch (from.sll_pkttype) {
case PACKET_HOST:
hdrp->sll_pkttype = htons(LINUX_SLL_HOST);
break;
case PACKET_BROADCAST:
hdrp->sll_pkttype = htons(LINUX_SLL_BROADCAST);
break;
case PACKET_MULTICAST:
hdrp->sll_pkttype = htons(LINUX_SLL_MULTICAST);
break;
case PACKET_OTHERHOST:
hdrp->sll_pkttype = htons(LINUX_SLL_OTHERHOST);
break;
case PACKET_OUTGOING:
hdrp->sll_pkttype = htons(LINUX_SLL_OUTGOING);
break;
default:
hdrp->sll_pkttype = -1;
break;
}
hdrp->sll_hatype = htons(from.sll_hatype);
hdrp->sll_halen = htons(from.sll_halen);
memcpy(hdrp->sll_addr, from.sll_addr,
(from.sll_halen > SLL_ADDRLEN) ?
SLL_ADDRLEN :
from.sll_halen);
hdrp->sll_protocol = from.sll_protocol;
}
#endif
/*
2002-06-11 17:04:44 +00:00
* XXX: According to the kernel source we should get the real
* packet len if calling recvfrom with MSG_TRUNC set. It does
* not seem to work here :(, but it is supported by this code
2002-06-11 17:04:44 +00:00
* anyway.
* To be honest the code RELIES on that feature so this is really
* broken with 2.2.x kernels.
* I spend a day to figure out what's going on and I found out
2002-06-11 17:04:44 +00:00
* that the following is happening:
*
2002-06-11 17:04:44 +00:00
* The packet comes from a random interface and the packet_rcv
* hook is called with a clone of the packet. That code inserts
* the packet into the receive queue of the packet socket.
* If a filter is attached to that socket that filter is run
* first - and there lies the problem. The default filter always
* cuts the packet at the snaplen:
*
* # tcpdump -d
* (000) ret #68
*
2002-06-11 17:04:44 +00:00
* So the packet filter cuts down the packet. The recvfrom call
* says "hey, it's only 68 bytes, it fits into the buffer" with
2002-06-11 17:04:44 +00:00
* the result that we don't get the real packet length. This
* is valid at least until kernel 2.2.17pre6.
*
* We currently handle this by making a copy of the filter
* program, fixing all "ret" instructions with non-zero
* operands to have an operand of 65535 so that the filter
* doesn't truncate the packet, and supplying that modified
* filter to the kernel.
*/
caplen = packet_len;
if (caplen > handle->snapshot)
caplen = handle->snapshot;
/* Run the packet filter if not using kernel filter */
if (!handle->md.use_bpf && handle->fcode.bf_insns) {
if (bpf_filter(handle->fcode.bf_insns, bp,
packet_len, caplen) == 0)
{
/* rejected by filter */
return 0;
1999-10-07 23:46:40 +00:00
}
}
/* Fill in our own header data */
if (ioctl(handle->fd, SIOCGSTAMP, &pcap_header.ts) == -1) {
snprintf(handle->errbuf, sizeof(handle->errbuf),
"ioctl: %s", pcap_strerror(errno));
return -1;
}
pcap_header.caplen = caplen;
pcap_header.len = packet_len;
/*
* Count the packet.
*
* Arguably, we should count them before we check the filter,
* as on many other platforms "ps_recv" counts packets
* handed to the filter rather than packets that passed
* the filter, but if filtering is done in the kernel, we
* can't get a count of packets that passed the filter,
* and that would mean the meaning of "ps_recv" wouldn't
* be the same on all Linux systems.
*
* XXX - it's not the same on all systems in any case;
* ideally, we should have a "get the statistics" call
* that supplies more counts and indicates which of them
* it supplies, so that we supply a count of packets
* handed to the filter only on platforms where that
* information is available.
*
* We count them here even if we can get the packet count
* from the kernel, as we can only determine at run time
* whether we'll be able to get it from the kernel (if
* HAVE_TPACKET_STATS isn't defined, we can't get it from
* the kernel, but if it is defined, the library might
* have been built with a 2.4 or later kernel, but we
* might be running on a 2.2[.x] kernel without Alexey
* Kuznetzov's turbopacket patches, and thus the kernel
* might not be able to supply those statistics). We
* could, I guess, try, when opening the socket, to get
* the statistics, and if we can not increment the count
* here, but it's not clear that always incrementing
* the count is more expensive than always testing a flag
* in memory.
*/
handle->md.stat.ps_recv++;
/* Call the user supplied callback function */
callback(userdata, &pcap_header, bp);
return 1;
1999-10-07 23:46:40 +00:00
}
static int
pcap_inject_linux(pcap_t *handle, const void *buf, size_t size)
{
int ret;
#ifdef HAVE_PF_PACKET_SOCKETS
2004-03-24 06:49:16 +00:00
if (!handle->md.sock_packet) {
/* PF_PACKET socket */
if (handle->md.ifindex == -1) {
/*
* We don't support sending on the "any" device.
*/
strlcpy(handle->errbuf,
"Sending packets isn't supported on the \"any\" device",
PCAP_ERRBUF_SIZE);
return (-1);
}
if (handle->md.cooked) {
/*
* We don't support sending on the "any" device.
*
* XXX - how do you send on a bound cooked-mode
* socket?
* Is a "sendto()" required there?
*/
strlcpy(handle->errbuf,
"Sending packets isn't supported in cooked mode",
PCAP_ERRBUF_SIZE);
return (-1);
}
}
#endif
ret = send(handle->fd, buf, size, 0);
if (ret == -1) {
snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, "send: %s",
pcap_strerror(errno));
return (-1);
}
return (ret);
}
/*
* Get the statistics for the given packet capture handle.
* Reports the number of dropped packets iff the kernel supports
* the PACKET_STATISTICS "getsockopt()" argument (2.4 and later
* kernels, and 2.2[.x] kernels with Alexey Kuznetzov's turbopacket
* patches); otherwise, that information isn't available, and we lie
* and report 0 as the count of dropped packets.
*/
static int
pcap_stats_linux(pcap_t *handle, struct pcap_stat *stats)
1999-10-07 23:46:40 +00:00
{
#ifdef HAVE_TPACKET_STATS
struct tpacket_stats kstats;
socklen_t len = sizeof (struct tpacket_stats);
#endif
#ifdef HAVE_TPACKET_STATS
/*
* Try to get the packet counts from the kernel.
*/
if (getsockopt(handle->fd, SOL_PACKET, PACKET_STATISTICS,
&kstats, &len) > -1) {
/*
* In "linux/net/packet/af_packet.c", at least in the
* 2.4.9 kernel, "tp_packets" is incremented for every
* packet that passes the packet filter *and* is
* successfully queued on the socket; "tp_drops" is
* incremented for every packet dropped because there's
* not enough free space in the socket buffer.
*
* When the statistics are returned for a PACKET_STATISTICS
* "getsockopt()" call, "tp_drops" is added to "tp_packets",
* so that "tp_packets" counts all packets handed to
* the PF_PACKET socket, including packets dropped because
* there wasn't room on the socket buffer - but not
* including packets that didn't pass the filter.
*
* In the BSD BPF, the count of received packets is
* incremented for every packet handed to BPF, regardless
* of whether it passed the filter.
*
* We can't make "pcap_stats()" work the same on both
* platforms, but the best approximation is to return
* "tp_packets" as the count of packets and "tp_drops"
* as the count of drops.
*
* Keep a running total because each call to
* getsockopt(handle->fd, SOL_PACKET, PACKET_STATISTICS, ....
* resets the counters to zero.
*/
handle->md.stat.ps_recv += kstats.tp_packets;
handle->md.stat.ps_drop += kstats.tp_drops;
}
else
{
/*
* If the error was EOPNOTSUPP, fall through, so that
* if you build the library on a system with
* "struct tpacket_stats" and run it on a system
* that doesn't, it works as it does if the library
* is built on a system without "struct tpacket_stats".
*/
if (errno != EOPNOTSUPP) {
snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
"pcap_stats: %s", pcap_strerror(errno));
return -1;
}
}
#endif
/*
* On systems where the PACKET_STATISTICS "getsockopt()" argument
* is supported on PF_PACKET sockets:
*
* "ps_recv" counts only packets that *passed* the filter,
* not packets that didn't pass the filter. This includes
* packets later dropped because we ran out of buffer space.
*
* "ps_drop" counts packets dropped because we ran out of
* buffer space. It doesn't count packets dropped by the
* interface driver. It counts only packets that passed
* the filter.
*
* Both statistics include packets not yet read from the
* kernel by libpcap, and thus not yet seen by the application.
*
* On systems where the PACKET_STATISTICS "getsockopt()" argument
* is not supported on PF_PACKET sockets:
*
* "ps_recv" counts only packets that *passed* the filter,
* not packets that didn't pass the filter. It does not
* count packets dropped because we ran out of buffer
* space.
*
* "ps_drop" is not supported.
*
* "ps_recv" doesn't include packets not yet read from
* the kernel by libpcap.
*/
*stats = handle->md.stat;
return 0;
}
/*
* Description string for the "any" device.
*/
static const char any_descr[] = "Pseudo-device that captures on all interfaces";
int
pcap_platform_finddevs(pcap_if_t **alldevsp, char *errbuf)
{
if (pcap_add_if(alldevsp, "any", 0, any_descr, errbuf) < 0)
return (-1);
#ifdef HAVE_DAG_API
if (dag_platform_finddevs(alldevsp, errbuf) < 0)
return (-1);
#endif /* HAVE_DAG_API */
#ifdef HAVE_SEPTEL_API
if (septel_platform_finddevs(alldevsp, errbuf) < 0)
return (-1);
#endif /* HAVE_SEPTEL_API */
return (0);
}
/*
2002-06-11 17:04:44 +00:00
* Attach the given BPF code to the packet capture device.
*/
static int
pcap_setfilter_linux(pcap_t *handle, struct bpf_program *filter)
{
#ifdef SO_ATTACH_FILTER
struct sock_fprog fcode;
int can_filter_in_kernel;
int err = 0;
#endif
if (!handle)
return -1;
if (!filter) {
strncpy(handle->errbuf, "setfilter: No filter specified",
sizeof(handle->errbuf));
return -1;
1999-10-07 23:46:40 +00:00
}
/* Make our private copy of the filter */
if (install_bpf_program(handle, filter) < 0)
/* install_bpf_program() filled in errbuf */
return -1;
2002-06-11 17:04:44 +00:00
/*
* Run user level packet filter by default. Will be overriden if
* installing a kernel filter succeeds.
*/
handle->md.use_bpf = 0;
/* Install kernel level filter if possible */
#ifdef SO_ATTACH_FILTER
#ifdef USHRT_MAX
if (handle->fcode.bf_len > USHRT_MAX) {
/*
2002-06-11 17:04:44 +00:00
* fcode.len is an unsigned short for current kernel.
* I have yet to see BPF-Code with that much
* instructions but still it is possible. So for the
* sake of correctness I added this check.
*/
fprintf(stderr, "Warning: Filter too complex for kernel\n");
fcode.filter = NULL;
can_filter_in_kernel = 0;
} else
#endif /* USHRT_MAX */
{
/*
* Oh joy, the Linux kernel uses struct sock_fprog instead
* of struct bpf_program and of course the length field is
* of different size. Pointed out by Sebastian
*
* Oh, and we also need to fix it up so that all "ret"
* instructions with non-zero operands have 65535 as the
* operand, and so that, if we're in cooked mode, all
* memory-reference instructions use special magic offsets
* in references to the link-layer header and assume that
* the link-layer payload begins at 0; "fix_program()"
* will do that.
*/
switch (fix_program(handle, &fcode)) {
case -1:
default:
/*
* Fatal error; just quit.
* (The "default" case shouldn't happen; we
* return -1 for that reason.)
*/
return -1;
case 0:
/*
* The program performed checks that we can't make
* work in the kernel.
*/
can_filter_in_kernel = 0;
break;
case 1:
/*
* We have a filter that'll work in the kernel.
*/
can_filter_in_kernel = 1;
break;
}
}
if (can_filter_in_kernel) {
if ((err = set_kernel_filter(handle, &fcode)) == 0)
{
/* Installation succeded - using kernel filter. */
handle->md.use_bpf = 1;
}
else if (err == -1) /* Non-fatal error */
{
2002-06-11 17:04:44 +00:00
/*
* Print a warning if we weren't able to install
* the filter for a reason other than "this kernel
* isn't configured to support socket filters.
*/
if (errno != ENOPROTOOPT && errno != EOPNOTSUPP) {
fprintf(stderr,
2002-06-11 17:04:44 +00:00
"Warning: Kernel filter failed: %s\n",
pcap_strerror(errno));
}
}
1999-10-07 23:46:40 +00:00
}
/*
* If we're not using the kernel filter, get rid of any kernel
* filter that might've been there before, e.g. because the
* previous filter could work in the kernel, or because some other
* code attached a filter to the socket by some means other than
* calling "pcap_setfilter()". Otherwise, the kernel filter may
* filter out packets that would pass the new userland filter.
*/
if (!handle->md.use_bpf)
reset_kernel_filter(handle);
/*
* Free up the copy of the filter that was made by "fix_program()".
*/
if (fcode.filter != NULL)
free(fcode.filter);
if (err == -2)
/* Fatal error */
return -1;
#endif /* SO_ATTACH_FILTER */
return 0;
}
1999-10-07 23:46:40 +00:00
/*
* Set direction flag: Which packets do we accept on a forwarding
* single device? IN, OUT or both?
*/
static int
pcap_setdirection_linux(pcap_t *handle, direction_t d)
{
#ifdef HAVE_PF_PACKET_SOCKETS
if (!handle->md.sock_packet) {
handle->direction = d;
return 0;
}
#endif
/*
* We're not using PF_PACKET sockets, so we can't determine
* the direction of the packet.
*/
snprintf(handle->errbuf, sizeof(handle->errbuf),
"Setting direction is not supported on SOCK_PACKET sockets");
return -1;
}
/*
2002-06-11 17:04:44 +00:00
* Linux uses the ARP hardware type to identify the type of an
* interface. pcap uses the DLT_xxx constants for this. This
* function takes a pointer to a "pcap_t", and an ARPHRD_xxx
* constant, as arguments, and sets "handle->linktype" to the
* appropriate DLT_XXX constant and sets "handle->offset" to
* the appropriate value (to make "handle->offset" plus link-layer
* header length be a multiple of 4, so that the link-layer payload
* will be aligned on a 4-byte boundary when capturing packets).
* (If the offset isn't set here, it'll be 0; add code as appropriate
* for cases where it shouldn't be 0.)
*
* If "cooked_ok" is non-zero, we can use DLT_LINUX_SLL and capture
* in cooked mode; otherwise, we can't use cooked mode, so we have
* to pick some type that works in raw mode, or fail.
2002-06-11 17:04:44 +00:00
*
* Sets the link type to -1 if unable to map the type.
*/
static void map_arphrd_to_dlt(pcap_t *handle, int arptype, int cooked_ok)
{
switch (arptype) {
1999-10-07 23:46:40 +00:00
case ARPHRD_ETHER:
/*
* This is (presumably) a real Ethernet capture; give it a
* link-layer-type list with DLT_EN10MB and DLT_DOCSIS, so
* that an application can let you choose it, in case you're
* capturing DOCSIS traffic that a Cisco Cable Modem
* Termination System is putting out onto an Ethernet (it
* doesn't put an Ethernet header onto the wire, it puts raw
* DOCSIS frames out on the wire inside the low-level
* Ethernet framing).
*
* XXX - are there any sorts of "fake Ethernet" that have
* ARPHRD_ETHER but that *shouldn't offer DLT_DOCSIS as
* a Cisco CMTS won't put traffic onto it or get traffic
* bridged onto it? ISDN is handled in "live_open_new()",
* as we fall back on cooked mode there; are there any
* others?
*/
handle->dlt_list = (u_int *) malloc(sizeof(u_int) * 2);
/*
* If that fails, just leave the list empty.
*/
if (handle->dlt_list != NULL) {
handle->dlt_list[0] = DLT_EN10MB;
handle->dlt_list[1] = DLT_DOCSIS;
handle->dlt_count = 2;
}
/* FALLTHROUGH */
1999-10-07 23:46:40 +00:00
case ARPHRD_METRICOM:
case ARPHRD_LOOPBACK:
handle->linktype = DLT_EN10MB;
handle->offset = 2;
break;
case ARPHRD_EETHER:
handle->linktype = DLT_EN3MB;
break;
case ARPHRD_AX25:
handle->linktype = DLT_AX25;
break;
case ARPHRD_PRONET:
handle->linktype = DLT_PRONET;
break;
case ARPHRD_CHAOS:
handle->linktype = DLT_CHAOS;
break;
#ifndef ARPHRD_IEEE802_TR
#define ARPHRD_IEEE802_TR 800 /* From Linux 2.4 */
#endif
case ARPHRD_IEEE802_TR:
case ARPHRD_IEEE802:
handle->linktype = DLT_IEEE802;
handle->offset = 2;
break;
case ARPHRD_ARCNET:
handle->linktype = DLT_ARCNET_LINUX;
break;
#ifndef ARPHRD_FDDI /* From Linux 2.2.13 */
#define ARPHRD_FDDI 774
#endif
case ARPHRD_FDDI:
handle->linktype = DLT_FDDI;
handle->offset = 3;
break;
Introduce a set of PCAP_ENCAP_ codes to specify packet encapsulations. For those PCAP_ENCAP_ codes corresponding to DLT_ codes that are (believed to be) the same in all BSDs, the PCAP_ENCAP_ codes have the same values as the corresponding DLT_ codes. For those PCAP_ENCAP_ codes corresponding to DLT_ codes that were added in libpcap 0.5 as "non-kernel" DLT_ codes, or had their values changed in libpcap 0.5 in order to cope with the fact that those DLT_ codes have different values in different systems, the PCAP_ENCAP_ codes have the same values as the corresponding DLT_ codes. We add some additional PCAP_ENCAP_ codes to handle IEEE 802.11 (which currently has its link-layer information turned into an Ethernet header by at least some of the BSDs, but John Hawkinson at MIT wants to add a DLT_ value for 802.11 and pass up the full link-layer header) and the Classical IP encapsulation for ATM on Linux (which isn't always the same as DLT_ATM_RFC1483, from what I can tell, alas). "pcap-bpf.c" maps DLT_ codes to PCAP_ENCAP_ codes, so as not to supply to libpcap's callers any DLT_ codes other than the ones that have the same values on all platforms; it supplies PCAP_ENCAP_ codes for all others. In libpcap's "bpf/net/bpf.h", we define the DLT_ values that aren't the same on all platforms with the new values starting at 100 (to keep them out of the way of the values various BSDs might assign to them), as we did in 0.5, but do so only if they're not already defined; platforms with <net/bpf.h> headers that come with the kernel (e.g., the BSDs) should define them with the values that they have always had on that platform, *not* with the values we used in 0.5. (Code using this version of libpcap should check for the new PCAP_ENCAP_ codes; those are given the values that the corresponding DLT_ values had in 0.5, so code that checks for them will handle 0.5 libpcap files correctly even if the platform defines DLT_RAW, say, as something other than 101. If that code also checks for DLT_RAW - which means it can't just use a switch statement, as DLT_RAW might be defined as 101 if the platform doesn't itself define DLT_RAW with some other value - then it will also handle old DLT_RAW captures, as long as they were made on the same platform or on another platform that used the same value for DLT_RAW. It can't handle captures from a platform that uses that value for another DLT_ code, but that's always been the case, and isn't easily fixable.) The intent here is to decouple the values that are returned by "pcap_datalink()" and put into the header of tcpdump/libpcap save files from the DLT_ values returned by BIOCGDLT in BSD kernels, allowing the BSDs to assign values to DLT_ codes, in their kernels, as they choose, without creating more incompatibilities between tcpdump/libpcap save files from different platforms.
2000-09-17 04:04:36 +00:00
#ifndef ARPHRD_ATM /* FIXME: How to #include this? */
#define ARPHRD_ATM 19
#endif
case ARPHRD_ATM:
/*
* The Classical IP implementation in ATM for Linux
* supports both what RFC 1483 calls "LLC Encapsulation",
* in which each packet has an LLC header, possibly
* with a SNAP header as well, prepended to it, and
* what RFC 1483 calls "VC Based Multiplexing", in which
* different virtual circuits carry different network
* layer protocols, and no header is prepended to packets.
*
* They both have an ARPHRD_ type of ARPHRD_ATM, so
* you can't use the ARPHRD_ type to find out whether
* captured packets will have an LLC header, and,
* while there's a socket ioctl to *set* the encapsulation
* type, there's no ioctl to *get* the encapsulation type.
*
* This means that
*
* programs that dissect Linux Classical IP frames
* would have to check for an LLC header and,
* depending on whether they see one or not, dissect
* the frame as LLC-encapsulated or as raw IP (I
* don't know whether there's any traffic other than
* IP that would show up on the socket, or whether
* there's any support for IPv6 in the Linux
* Classical IP code);
*
* filter expressions would have to compile into
* code that checks for an LLC header and does
* the right thing.
*
* Both of those are a nuisance - and, at least on systems
* that support PF_PACKET sockets, we don't have to put
* up with those nuisances; instead, we can just capture
* in cooked mode. That's what we'll do, if we can.
* Otherwise, we'll just fail.
*/
if (cooked_ok)
handle->linktype = DLT_LINUX_SLL;
else
handle->linktype = -1;
break;
#ifndef ARPHRD_IEEE80211 /* From Linux 2.4.6 */
#define ARPHRD_IEEE80211 801
#endif
case ARPHRD_IEEE80211:
handle->linktype = DLT_IEEE802_11;
break;
#ifndef ARPHRD_IEEE80211_PRISM /* From Linux 2.4.18 */
#define ARPHRD_IEEE80211_PRISM 802
#endif
case ARPHRD_IEEE80211_PRISM:
handle->linktype = DLT_PRISM_HEADER;
break;
case ARPHRD_PPP:
/*
* Some PPP code in the kernel supplies no link-layer
* header whatsoever to PF_PACKET sockets; other PPP
* code supplies PPP link-layer headers ("syncppp.c");
* some PPP code might supply random link-layer
* headers (PPP over ISDN - there's code in Ethereal,
* for example, to cope with PPP-over-ISDN captures
* with which the Ethereal developers have had to cope,
* heuristically trying to determine which of the
* oddball link-layer headers particular packets have).
*
* As such, we just punt, and run all PPP interfaces
* in cooked mode, if we can; otherwise, we just treat
* it as DLT_RAW, for now - if somebody needs to capture,
* on a 2.0[.x] kernel, on PPP devices that supply a
* link-layer header, they'll have to add code here to
* map to the appropriate DLT_ type (possibly adding a
* new DLT_ type, if necessary).
*/
if (cooked_ok)
handle->linktype = DLT_LINUX_SLL;
else {
/*
* XXX - handle ISDN types here? We can't fall
* back on cooked sockets, so we'd have to
* figure out from the device name what type of
* link-layer encapsulation it's using, and map
* that to an appropriate DLT_ value, meaning
* we'd map "isdnN" devices to DLT_RAW (they
* supply raw IP packets with no link-layer
* header) and "isdY" devices to a new DLT_I4L_IP
* type that has only an Ethernet packet type as
* a link-layer header.
*
* But sometimes we seem to get random crap
* in the link-layer header when capturing on
* ISDN devices....
*/
handle->linktype = DLT_RAW;
}
break;
#ifndef ARPHRD_CISCO
#define ARPHRD_CISCO 513 /* previously ARPHRD_HDLC */
#endif
case ARPHRD_CISCO:
handle->linktype = DLT_C_HDLC;
break;
/* Not sure if this is correct for all tunnels, but it
* works for CIPE */
case ARPHRD_TUNNEL:
#ifndef ARPHRD_SIT
#define ARPHRD_SIT 776 /* From Linux 2.2.13 */
#endif
case ARPHRD_SIT:
1999-10-07 23:46:40 +00:00
case ARPHRD_CSLIP:
case ARPHRD_SLIP6:
case ARPHRD_CSLIP6:
case ARPHRD_ADAPT:
case ARPHRD_SLIP:
#ifndef ARPHRD_RAWHDLC
#define ARPHRD_RAWHDLC 518
#endif
case ARPHRD_RAWHDLC:
#ifndef ARPHRD_DLCI
#define ARPHRD_DLCI 15
#endif
case ARPHRD_DLCI:
/*
* XXX - should some of those be mapped to DLT_LINUX_SLL
* instead? Should we just map all of them to DLT_LINUX_SLL?
*/
handle->linktype = DLT_RAW;
break;
1999-10-07 23:46:40 +00:00
#ifndef ARPHRD_FRAD
#define ARPHRD_FRAD 770
#endif
case ARPHRD_FRAD:
handle->linktype = DLT_FRELAY;
break;
case ARPHRD_LOCALTLK:
handle->linktype = DLT_LTALK;
break;
#ifndef ARPHRD_FCPP
#define ARPHRD_FCPP 784
#endif
case ARPHRD_FCPP:
#ifndef ARPHRD_FCAL
#define ARPHRD_FCAL 785
#endif
case ARPHRD_FCAL:
#ifndef ARPHRD_FCPL
#define ARPHRD_FCPL 786
#endif
case ARPHRD_FCPL:
#ifndef ARPHRD_FCFABRIC
#define ARPHRD_FCFABRIC 787
#endif
case ARPHRD_FCFABRIC:
/*
* We assume that those all mean RFC 2625 IP-over-
* Fibre Channel, with the RFC 2625 header at
* the beginning of the packet.
*/
handle->linktype = DLT_IP_OVER_FC;
break;
#ifndef ARPHRD_IRDA
#define ARPHRD_IRDA 783
#endif
case ARPHRD_IRDA:
/* Don't expect IP packet out of this interfaces... */
handle->linktype = DLT_LINUX_IRDA;
/* We need to save packet direction for IrDA decoding,
* so let's use "Linux-cooked" mode. Jean II */
//handle->md.cooked = 1;
break;
default:
handle->linktype = -1;
break;
}
}
/* ===== Functions to interface to the newer kernels ================== */
/*
* Try to open a packet socket using the new kernel interface.
* Returns 0 on failure.
* FIXME: 0 uses to mean success (Sebastian)
*/
static int
live_open_new(pcap_t *handle, const char *device, int promisc,
int to_ms, char *ebuf)
{
#ifdef HAVE_PF_PACKET_SOCKETS
int sock_fd = -1, arptype;
int err;
int fatal_err = 0;
struct packet_mreq mr;
/* One shot loop used for error handling - bail out with break */
do {
/*
* Open a socket with protocol family packet. If a device is
2002-06-11 17:04:44 +00:00
* given we try to open it in raw mode otherwise we use
* the cooked interface.
*/
2002-06-11 17:04:44 +00:00
sock_fd = device ?
socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL))
: socket(PF_PACKET, SOCK_DGRAM, htons(ETH_P_ALL));
if (sock_fd == -1) {
snprintf(ebuf, PCAP_ERRBUF_SIZE, "socket: %s",
pcap_strerror(errno) );
break;
}
/* It seems the kernel supports the new interface. */
handle->md.sock_packet = 0;
/*
* Get the interface index of the loopback device.
* If the attempt fails, don't fail, just set the
* "md.lo_ifindex" to -1.
*
* XXX - can there be more than one device that loops
* packets back, i.e. devices other than "lo"? If so,
* we'd need to find them all, and have an array of
* indices for them, and check all of them in
* "pcap_read_packet()".
*/
handle->md.lo_ifindex = iface_get_id(sock_fd, "lo", ebuf);
/*
* Default value for offset to align link-layer payload
* on a 4-byte boundary.
*/
handle->offset = 0;
/*
2002-06-11 17:04:44 +00:00
* What kind of frames do we have to deal with? Fall back
* to cooked mode if we have an unknown interface type.
*/
if (device) {
/* Assume for now we don't need cooked mode. */
handle->md.cooked = 0;
arptype = iface_get_arptype(sock_fd, device, ebuf);
if (arptype == -1) {
fatal_err = 1;
break;
}
map_arphrd_to_dlt(handle, arptype, 1);
if (handle->linktype == -1 ||
handle->linktype == DLT_LINUX_SLL ||
handle->linktype == DLT_LINUX_IRDA ||
(handle->linktype == DLT_EN10MB &&
(strncmp("isdn", device, 4) == 0 ||
strncmp("isdY", device, 4) == 0))) {
/*
* Unknown interface type (-1), or a
* device we explicitly chose to run
* in cooked mode (e.g., PPP devices),
* or an ISDN device (whose link-layer
* type we can only determine by using
* APIs that may be different on different
* kernels) - reopen in cooked mode.
*/
if (close(sock_fd) == -1) {
snprintf(ebuf, PCAP_ERRBUF_SIZE,
"close: %s", pcap_strerror(errno));
break;
}
2002-06-11 17:04:44 +00:00
sock_fd = socket(PF_PACKET, SOCK_DGRAM,
htons(ETH_P_ALL));
if (sock_fd == -1) {
snprintf(ebuf, PCAP_ERRBUF_SIZE,
"socket: %s", pcap_strerror(errno));
break;
}
handle->md.cooked = 1;
/*
* Get rid of any link-layer type list
* we allocated - this only supports cooked
* capture.
*/
if (handle->dlt_list != NULL) {
free(handle->dlt_list);
handle->dlt_list = NULL;
handle->dlt_count = 0;
}
if (handle->linktype == -1) {
/*
* Warn that we're falling back on
* cooked mode; we may want to
* update "map_arphrd_to_dlt()"
* to handle the new type.
*/
snprintf(ebuf, PCAP_ERRBUF_SIZE,
"arptype %d not "
"supported by libpcap - "
"falling back to cooked "
"socket",
arptype);
}
/* IrDA capture is not a real "cooked" capture,
* it's IrLAP frames, not IP packets. */
if (handle->linktype != DLT_LINUX_IRDA)
handle->linktype = DLT_LINUX_SLL;
}
handle->md.ifindex = iface_get_id(sock_fd, device, ebuf);
if (handle->md.ifindex == -1)
break;
if ((err = iface_bind(sock_fd, handle->md.ifindex,
ebuf)) < 0) {
if (err == -2)
fatal_err = 1;
break;
}
} else {
/*
* This is cooked mode.
*/
handle->md.cooked = 1;
handle->linktype = DLT_LINUX_SLL;
/*
* We're not bound to a device.
* XXX - true? Or true only if we're using
* the "any" device?
* For now, we're using this as an indication
* that we can't transmit; stop doing that only
* if we figure out how to transmit in cooked
* mode.
*/
handle->md.ifindex = -1;
}
/*
* Select promiscuous mode on if "promisc" is set.
*
* Do not turn allmulti mode on if we don't select
* promiscuous mode - on some devices (e.g., Orinoco
* wireless interfaces), allmulti mode isn't supported
* and the driver implements it by turning promiscuous
* mode on, and that screws up the operation of the
* card as a normal networking interface, and on no
* other platform I know of does starting a non-
* promiscuous capture affect which multicast packets
* are received by the interface.
*/
2002-06-11 17:04:44 +00:00
/*
* Hmm, how can we set promiscuous mode on all interfaces?
* I am not sure if that is possible at all.
*/
if (device && promisc) {
memset(&mr, 0, sizeof(mr));
mr.mr_ifindex = handle->md.ifindex;
mr.mr_type = PACKET_MR_PROMISC;
2002-06-11 17:04:44 +00:00
if (setsockopt(sock_fd, SOL_PACKET,
PACKET_ADD_MEMBERSHIP, &mr, sizeof(mr)) == -1)
{
2002-06-11 17:04:44 +00:00
snprintf(ebuf, PCAP_ERRBUF_SIZE,
"setsockopt: %s", pcap_strerror(errno));
break;
}
}
/* Save the socket FD in the pcap structure */
handle->fd = sock_fd;
return 1;
} while(0);
if (sock_fd != -1)
close(sock_fd);
if (fatal_err) {
/*
* Get rid of any link-layer type list we allocated.
*/
if (handle->dlt_list != NULL)
free(handle->dlt_list);
return -2;
} else
return 0;
#else
2002-06-11 17:04:44 +00:00
strncpy(ebuf,
"New packet capturing interface not supported by build "
"environment", PCAP_ERRBUF_SIZE);
return 0;
1999-10-07 23:46:40 +00:00
#endif
}
#ifdef HAVE_PF_PACKET_SOCKETS
/*
2002-06-11 17:04:44 +00:00
* Return the index of the given device name. Fill ebuf and return
* -1 on failure.
*/
static int
iface_get_id(int fd, const char *device, char *ebuf)
{
struct ifreq ifr;
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
1999-10-07 23:46:40 +00:00
if (ioctl(fd, SIOCGIFINDEX, &ifr) == -1) {
snprintf(ebuf, PCAP_ERRBUF_SIZE,
"ioctl: %s", pcap_strerror(errno));
return -1;
1999-10-07 23:46:40 +00:00
}
return ifr.ifr_ifindex;
}
/*
2002-06-11 17:04:44 +00:00
* Bind the socket associated with FD to the given device.
*/
static int
iface_bind(int fd, int ifindex, char *ebuf)
{
struct sockaddr_ll sll;
int err;
socklen_t errlen = sizeof(err);
memset(&sll, 0, sizeof(sll));
sll.sll_family = AF_PACKET;
sll.sll_ifindex = ifindex;
sll.sll_protocol = htons(ETH_P_ALL);
if (bind(fd, (struct sockaddr *) &sll, sizeof(sll)) == -1) {
snprintf(ebuf, PCAP_ERRBUF_SIZE,
"bind: %s", pcap_strerror(errno));
return -1;
1999-10-07 23:46:40 +00:00
}
/* Any pending errors, e.g., network is down? */
if (getsockopt(fd, SOL_SOCKET, SO_ERROR, &err, &errlen) == -1) {
snprintf(ebuf, PCAP_ERRBUF_SIZE,
"getsockopt: %s", pcap_strerror(errno));
return -2;
}
2002-06-11 17:04:44 +00:00
if (err > 0) {
snprintf(ebuf, PCAP_ERRBUF_SIZE,
2002-06-11 17:04:44 +00:00
"bind: %s", pcap_strerror(err));
return -2;
}
return 0;
}
#endif
1999-10-07 23:46:40 +00:00
/* ===== Functions to interface to the older kernels ================== */
/*
* With older kernels promiscuous mode is kind of interesting because we
* have to reset the interface before exiting. The problem can't really
2002-06-11 17:04:44 +00:00
* be solved without some daemon taking care of managing usage counts.
* If we put the interface into promiscuous mode, we set a flag indicating
* that we must take it out of that mode when the interface is closed,
* and, when closing the interface, if that flag is set we take it out
* of promiscuous mode.
*/
/*
* List of pcaps for which we turned promiscuous mode on by hand.
* If there are any such pcaps, we arrange to call "pcap_close_all()"
* when we exit, and have it close all of them to turn promiscuous mode
* off.
*/
static struct pcap *pcaps_to_close;
/*
* TRUE if we've already called "atexit()" to cause "pcap_close_all()" to
* be called on exit.
*/
static int did_atexit;
static void pcap_close_all(void)
{
struct pcap *handle;
while ((handle = pcaps_to_close) != NULL)
pcap_close(handle);
}
static void pcap_close_linux( pcap_t *handle )
{
struct pcap *p, *prevp;
struct ifreq ifr;
if (handle->md.clear_promisc) {
/*
* We put the interface into promiscuous mode; take
* it out of promiscuous mode.
*
* XXX - if somebody else wants it in promiscuous mode,
* this code cannot know that, so it'll take it out
* of promiscuous mode. That's not fixable in 2.0[.x]
* kernels.
*/
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_name, handle->md.device, sizeof(ifr.ifr_name));
if (ioctl(handle->fd, SIOCGIFFLAGS, &ifr) == -1) {
2002-06-11 17:04:44 +00:00
fprintf(stderr,
"Can't restore interface flags (SIOCGIFFLAGS failed: %s).\n"
"Please adjust manually.\n"
"Hint: This can't happen with Linux >= 2.2.0.\n",
strerror(errno));
} else {
if (ifr.ifr_flags & IFF_PROMISC) {
/*
* Promiscuous mode is currently on; turn it
* off.
*/
ifr.ifr_flags &= ~IFF_PROMISC;
if (ioctl(handle->fd, SIOCSIFFLAGS, &ifr) == -1) {
2002-06-11 17:04:44 +00:00
fprintf(stderr,
"Can't restore interface flags (SIOCSIFFLAGS failed: %s).\n"
"Please adjust manually.\n"
"Hint: This can't happen with Linux >= 2.2.0.\n",
strerror(errno));
}
}
}
/*
* Take this pcap out of the list of pcaps for which we
* have to take the interface out of promiscuous mode.
*/
for (p = pcaps_to_close, prevp = NULL; p != NULL;
prevp = p, p = p->md.next) {
if (p == handle) {
/*
* Found it. Remove it from the list.
*/
if (prevp == NULL) {
/*
* It was at the head of the list.
*/
pcaps_to_close = p->md.next;
} else {
/*
* It was in the middle of the list.
*/
prevp->md.next = p->md.next;
}
break;
}
}
1999-10-07 23:46:40 +00:00
}
if (handle->md.device != NULL)
free(handle->md.device);
2002-06-01 09:36:26 +00:00
handle->md.device = NULL;
pcap_close_common(handle);
}
/*
* Try to open a packet socket using the old kernel interface.
* Returns 0 on failure.
* FIXME: 0 uses to mean success (Sebastian)
*/
static int
live_open_old(pcap_t *handle, const char *device, int promisc,
int to_ms, char *ebuf)
{
int arptype;
struct ifreq ifr;
1999-10-07 23:46:40 +00:00
do {
/* Open the socket */
handle->fd = socket(PF_INET, SOCK_PACKET, htons(ETH_P_ALL));
if (handle->fd == -1) {
snprintf(ebuf, PCAP_ERRBUF_SIZE,
"socket: %s", pcap_strerror(errno));
break;
1999-10-07 23:46:40 +00:00
}
/* It worked - we are using the old interface */
handle->md.sock_packet = 1;
/* ...which means we get the link-layer header. */
handle->md.cooked = 0;
/* Bind to the given device */
if (!device) {
strncpy(ebuf, "pcap_open_live: The \"any\" device isn't supported on 2.0[.x]-kernel systems",
PCAP_ERRBUF_SIZE);
break;
}
if (iface_bind_old(handle->fd, device, ebuf) == -1)
break;
/*
* Try to get the link-layer type.
*/
arptype = iface_get_arptype(handle->fd, device, ebuf);
if (arptype == -1)
break;
/*
* Try to find the DLT_ type corresponding to that
* link-layer type.
*/
map_arphrd_to_dlt(handle, arptype, 0);
if (handle->linktype == -1) {
snprintf(ebuf, PCAP_ERRBUF_SIZE,
"unknown arptype %d", arptype);
break;
}
/* Go to promisc mode if requested */
if (promisc) {
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
if (ioctl(handle->fd, SIOCGIFFLAGS, &ifr) == -1) {
snprintf(ebuf, PCAP_ERRBUF_SIZE,
"ioctl: %s", pcap_strerror(errno));
break;
}
if ((ifr.ifr_flags & IFF_PROMISC) == 0) {
/*
* Promiscuous mode isn't currently on,
* so turn it on, and remember that
* we should turn it off when the
* pcap_t is closed.
*/
/*
* If we haven't already done so, arrange
* to have "pcap_close_all()" called when
* we exit.
*/
if (!did_atexit) {
if (atexit(pcap_close_all) == -1) {
/*
* "atexit()" failed; don't
* put the interface in
* promiscuous mode, just
* give up.
*/
strncpy(ebuf, "atexit failed",
PCAP_ERRBUF_SIZE);
break;
}
did_atexit = 1;
}
ifr.ifr_flags |= IFF_PROMISC;
if (ioctl(handle->fd, SIOCSIFFLAGS, &ifr) == -1) {
snprintf(ebuf, PCAP_ERRBUF_SIZE,
"ioctl: %s",
pcap_strerror(errno));
break;
}
handle->md.clear_promisc = 1;
/*
* Add this to the list of pcaps
* to close when we exit.
*/
handle->md.next = pcaps_to_close;
pcaps_to_close = handle;
}
}
/*
* Default value for offset to align link-layer payload
* on a 4-byte boundary.
*/
handle->offset = 0;
return 1;
} while (0);
pcap_close_linux(handle);
return 0;
}
/*
2002-06-11 17:04:44 +00:00
* Bind the socket associated with FD to the given device using the
* interface of the old kernels.
*/
static int
iface_bind_old(int fd, const char *device, char *ebuf)
{
struct sockaddr saddr;
int err;
socklen_t errlen = sizeof(err);
memset(&saddr, 0, sizeof(saddr));
strncpy(saddr.sa_data, device, sizeof(saddr.sa_data));
if (bind(fd, &saddr, sizeof(saddr)) == -1) {
snprintf(ebuf, PCAP_ERRBUF_SIZE,
"bind: %s", pcap_strerror(errno));
return -1;
1999-10-07 23:46:40 +00:00
}
/* Any pending errors, e.g., network is down? */
if (getsockopt(fd, SOL_SOCKET, SO_ERROR, &err, &errlen) == -1) {
snprintf(ebuf, PCAP_ERRBUF_SIZE,
"getsockopt: %s", pcap_strerror(errno));
return -1;
}
2002-06-11 17:04:44 +00:00
if (err > 0) {
snprintf(ebuf, PCAP_ERRBUF_SIZE,
2002-06-11 17:04:44 +00:00
"bind: %s", pcap_strerror(err));
return -1;
}
return 0;
1999-10-07 23:46:40 +00:00
}
/* ===== System calls available on all supported kernels ============== */
/*
2002-06-11 17:04:44 +00:00
* Query the kernel for the MTU of the given interface.
*/
static int
iface_get_mtu(int fd, const char *device, char *ebuf)
1999-10-07 23:46:40 +00:00
{
struct ifreq ifr;
if (!device)
return BIGGER_THAN_ALL_MTUS;
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
1999-10-07 23:46:40 +00:00
if (ioctl(fd, SIOCGIFMTU, &ifr) == -1) {
snprintf(ebuf, PCAP_ERRBUF_SIZE,
"ioctl: %s", pcap_strerror(errno));
return -1;
}
return ifr.ifr_mtu;
1999-10-07 23:46:40 +00:00
}
/*
* Get the hardware type of the given interface as ARPHRD_xxx constant.
*/
static int
iface_get_arptype(int fd, const char *device, char *ebuf)
1999-10-07 23:46:40 +00:00
{
struct ifreq ifr;
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
1999-10-07 23:46:40 +00:00
if (ioctl(fd, SIOCGIFHWADDR, &ifr) == -1) {
snprintf(ebuf, PCAP_ERRBUF_SIZE,
"ioctl: %s", pcap_strerror(errno));
return -1;
}
return ifr.ifr_hwaddr.sa_family;
1999-10-07 23:46:40 +00:00
}
#ifdef SO_ATTACH_FILTER
static int
fix_program(pcap_t *handle, struct sock_fprog *fcode)
{
size_t prog_size;
register int i;
register struct bpf_insn *p;
struct bpf_insn *f;
int len;
/*
* Make a copy of the filter, and modify that copy if
* necessary.
*/
prog_size = sizeof(*handle->fcode.bf_insns) * handle->fcode.bf_len;
len = handle->fcode.bf_len;
f = (struct bpf_insn *)malloc(prog_size);
if (f == NULL) {
snprintf(handle->errbuf, sizeof(handle->errbuf),
"malloc: %s", pcap_strerror(errno));
return -1;
}
memcpy(f, handle->fcode.bf_insns, prog_size);
fcode->len = len;
fcode->filter = (struct sock_filter *) f;
for (i = 0; i < len; ++i) {
p = &f[i];
/*
* What type of instruction is this?
*/
switch (BPF_CLASS(p->code)) {
case BPF_RET:
/*
* It's a return instruction; is the snapshot
* length a constant, rather than the contents
* of the accumulator?
*/
if (BPF_MODE(p->code) == BPF_K) {
/*
* Yes - if the value to be returned,
* i.e. the snapshot length, is anything
* other than 0, make it 65535, so that
* the packet is truncated by "recvfrom()",
* not by the filter.
*
* XXX - there's nothing we can easily do
* if it's getting the value from the
* accumulator; we'd have to insert
* code to force non-zero values to be
* 65535.
*/
if (p->k != 0)
p->k = 65535;
}
break;
case BPF_LD:
case BPF_LDX:
/*
* It's a load instruction; is it loading
* from the packet?
*/
switch (BPF_MODE(p->code)) {
case BPF_ABS:
case BPF_IND:
case BPF_MSH:
/*
* Yes; are we in cooked mode?
*/
if (handle->md.cooked) {
/*
* Yes, so we need to fix this
* instruction.
*/
if (fix_offset(p) < 0) {
/*
* We failed to do so.
* Return 0, so our caller
* knows to punt to userland.
*/
return 0;
}
}
break;
}
break;
}
}
return 1; /* we succeeded */
}
static int
fix_offset(struct bpf_insn *p)
{
/*
* What's the offset?
*/
if (p->k >= SLL_HDR_LEN) {
/*
* It's within the link-layer payload; that starts at an
* offset of 0, as far as the kernel packet filter is
* concerned, so subtract the length of the link-layer
* header.
*/
p->k -= SLL_HDR_LEN;
} else if (p->k == 14) {
/*
* It's the protocol field; map it to the special magic
* kernel offset for that field.
*/
p->k = SKF_AD_OFF + SKF_AD_PROTOCOL;
} else {
/*
* It's within the header, but it's not one of those
* fields; we can't do that in the kernel, so punt
* to userland.
*/
return -1;
}
return 0;
}
static int
set_kernel_filter(pcap_t *handle, struct sock_fprog *fcode)
{
int total_filter_on = 0;
int save_mode;
int ret;
int save_errno;
/*
* The socket filter code doesn't discard all packets queued
* up on the socket when the filter is changed; this means
* that packets that don't match the new filter may show up
* after the new filter is put onto the socket, if those
* packets haven't yet been read.
*
* This means, for example, that if you do a tcpdump capture
* with a filter, the first few packets in the capture might
* be packets that wouldn't have passed the filter.
*
* We therefore discard all packets queued up on the socket
* when setting a kernel filter. (This isn't an issue for
* userland filters, as the userland filtering is done after
* packets are queued up.)
*
* To flush those packets, we put the socket in read-only mode,
* and read packets from the socket until there are no more to
* read.
*
* In order to keep that from being an infinite loop - i.e.,
* to keep more packets from arriving while we're draining
* the queue - we put the "total filter", which is a filter
* that rejects all packets, onto the socket before draining
* the queue.
*
* This code deliberately ignores any errors, so that you may
* get bogus packets if an error occurs, rather than having
* the filtering done in userland even if it could have been
* done in the kernel.
*/
2002-06-11 17:04:44 +00:00
if (setsockopt(handle->fd, SOL_SOCKET, SO_ATTACH_FILTER,
&total_fcode, sizeof(total_fcode)) == 0) {
char drain[1];
/*
* Note that we've put the total filter onto the socket.
*/
total_filter_on = 1;
/*
* Save the socket's current mode, and put it in
* non-blocking mode; we drain it by reading packets
* until we get an error (which is normally a
* "nothing more to be read" error).
*/
save_mode = fcntl(handle->fd, F_GETFL, 0);
if (save_mode != -1 &&
fcntl(handle->fd, F_SETFL, save_mode | O_NONBLOCK) >= 0) {
while (recv(handle->fd, &drain, sizeof drain,
MSG_TRUNC) >= 0)
;
save_errno = errno;
fcntl(handle->fd, F_SETFL, save_mode);
if (save_errno != EAGAIN) {
/* Fatal error */
reset_kernel_filter(handle);
snprintf(handle->errbuf, sizeof(handle->errbuf),
"recv: %s", pcap_strerror(save_errno));
return -2;
}
}
}
/*
* Now attach the new filter.
*/
2002-06-11 17:04:44 +00:00
ret = setsockopt(handle->fd, SOL_SOCKET, SO_ATTACH_FILTER,
fcode, sizeof(*fcode));
if (ret == -1 && total_filter_on) {
/*
* Well, we couldn't set that filter on the socket,
* but we could set the total filter on the socket.
*
* This could, for example, mean that the filter was
* too big to put into the kernel, so we'll have to
* filter in userland; in any case, we'll be doing
* filtering in userland, so we need to remove the
* total filter so we see packets.
*/
save_errno = errno;
/*
* XXX - if this fails, we're really screwed;
* we have the total filter on the socket,
* and it won't come off. What do we do then?
*/
reset_kernel_filter(handle);
errno = save_errno;
}
2002-06-11 17:04:44 +00:00
return ret;
}
static int
reset_kernel_filter(pcap_t *handle)
{
/* setsockopt() barfs unless it get a dummy parameter */
int dummy;
return setsockopt(handle->fd, SOL_SOCKET, SO_DETACH_FILTER,
&dummy, sizeof(dummy));
}
#endif