osmocom-analog/src/common/sdr.c

743 lines
22 KiB
C

/* SDR processing
*
* (C) 2017 by Andreas Eversberg <jolly@eversberg.eu>
* All Rights Reserved
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <errno.h>
#include <math.h>
#include <pthread.h>
#include <unistd.h>
#include "sample.h"
#include "fm_modulation.h"
#include "sender.h"
#include "timer.h"
#ifdef HAVE_UHD
#include "uhd.h"
#endif
#ifdef HAVE_SOAPY
#include "soapy.h"
#endif
#include "debug.h"
/* enable to debug buffer handling */
//#define DEBUG_BUFFER
typedef struct sdr_chan {
double tx_frequency; /* frequency used */
double rx_frequency; /* frequency used */
fm_mod_t mod; /* modulator instance */
fm_demod_t demod; /* demodulator instance */
} sdr_chan_t;
typedef struct sdr {
sdr_chan_t *chan; /* settings for all channels */
int paging_channel; /* if set, points to paging channel */
sdr_chan_t paging_chan; /* settings for extra paging channel */
int channels; /* number of frequencies */
double amplitude; /* amplitude of each carrier */
int samplerate; /* sample rate of audio data */
wave_rec_t wave_rx_rec;
wave_rec_t wave_tx_rec;
wave_play_t wave_rx_play;
wave_play_t wave_tx_play;
} sdr_t;
typedef struct sdr_thread {
int use;
volatile int running, exit; /* flags to control exit of threads */
int buffer_size;
volatile float *buffer;
volatile int in, out; /* in and out pointers (atomic, so no locking required) */
int max_fill; /* measure maximum buffer fill */
double max_fill_timer; /* timer to display/reset maximum fill */
} sdr_thread_t;
/* preferences */
static int sdr_use_uhd, sdr_use_soapy;
static int sdr_channel;
static const char *sdr_device_args, *sdr_stream_args, *sdr_tune_args;
static const char *sdr_rx_antenna, *sdr_tx_antenna;
static double sdr_rx_gain, sdr_tx_gain;
static const char *sdr_write_iq_rx_wave, *sdr_write_iq_tx_wave, *sdr_read_iq_rx_wave, *sdr_read_iq_tx_wave;
static int sdr_samplerate; /* sample rate of IQ data */
static double sdr_bandwidth;
static int sdr_oversample;
static int sdr_latspl;
static int sdr_threads;
static sdr_thread_t sdr_thread_read, sdr_thread_write;
static int sdr_swap_links;
int sdr_init(int sdr_uhd, int sdr_soapy, int channel, const char *device_args, const char *stream_args, const char *tune_args, const char *tx_antenna, const char *rx_antenna, double tx_gain, double rx_gain, int samplerate, double bandwidth, const char *write_iq_tx_wave, const char *write_iq_rx_wave, const char *read_iq_tx_wave, const char *read_iq_rx_wave, int latspl, int swap_links)
{
PDEBUG(DSDR, DEBUG_DEBUG, "Init SDR\n");
sdr_threads = 0; /* only requried for oversampling */
sdr_use_uhd = sdr_uhd;
sdr_use_soapy = sdr_soapy;
sdr_channel = channel;
sdr_device_args = strdup(device_args);
sdr_stream_args = strdup(stream_args);
sdr_tune_args = strdup(tune_args);
sdr_tx_antenna = strdup(tx_antenna);
sdr_rx_antenna = strdup(rx_antenna);
sdr_tx_gain = tx_gain;
sdr_rx_gain = rx_gain;
sdr_bandwidth = bandwidth;
sdr_write_iq_tx_wave = write_iq_tx_wave;
sdr_write_iq_rx_wave = write_iq_rx_wave;
sdr_read_iq_tx_wave = read_iq_tx_wave;
sdr_read_iq_rx_wave = read_iq_rx_wave;
sdr_samplerate = samplerate;
sdr_oversample = 1;
sdr_latspl = latspl;
sdr_swap_links = swap_links;
return 0;
}
void *sdr_open(const char __attribute__((__unused__)) *audiodev, double *tx_frequency, double *rx_frequency, int channels, double paging_frequency, int samplerate, double max_deviation, double max_modulation)
{
sdr_t *sdr;
double bandwidth;
double tx_center_frequency = 0.0, rx_center_frequency = 0.0;
int rc;
int c;
PDEBUG(DSDR, DEBUG_DEBUG, "Open SDR device\n");
if (sdr_samplerate != samplerate) {
if (samplerate > sdr_samplerate) {
PDEBUG(DSDR, DEBUG_ERROR, "SDR sample rate must be greater than audio sample rate!\n");
PDEBUG(DSDR, DEBUG_ERROR, "You selected an SDR rate of %d and an audio rate of %d.\n", sdr_samplerate, samplerate);
return NULL;
}
if ((sdr_samplerate % samplerate)) {
PDEBUG(DSDR, DEBUG_ERROR, "SDR sample rate must be a multiple of audio sample rate!\n");
PDEBUG(DSDR, DEBUG_ERROR, "You selected an SDR rate of %d and an audio rate of %d.\n", sdr_samplerate, samplerate);
return NULL;
}
sdr_oversample = sdr_samplerate / samplerate;
sdr_threads = 1;
}
if (sdr_threads) {
memset(&sdr_thread_read, 0, sizeof(sdr_thread_read));
sdr_thread_read.buffer_size = sdr_latspl * 2 * sdr_oversample + 2;
sdr_thread_read.buffer = calloc(sdr_thread_read.buffer_size, sizeof(*sdr_thread_read.buffer));
if (!sdr_thread_read.buffer) {
PDEBUG(DSDR, DEBUG_ERROR, "No mem!\n");
return NULL;
}
sdr_thread_read.in = sdr_thread_read.out = 0;
memset(&sdr_thread_write, 0, sizeof(sdr_thread_write));
sdr_thread_write.buffer_size = sdr_latspl * 2 + 2;
sdr_thread_write.buffer = calloc(sdr_thread_write.buffer_size, sizeof(*sdr_thread_write.buffer));
if (!sdr_thread_write.buffer) {
PDEBUG(DSDR, DEBUG_ERROR, "No mem!\n");
return NULL;
}
sdr_thread_write.in = sdr_thread_write.out = 0;
}
display_iq_init(samplerate);
display_spectrum_init(samplerate);
bandwidth = 2.0 * (max_deviation + max_modulation);
PDEBUG(DSDR, DEBUG_INFO, "Require bandwidth of 2 * (%.1f + %.1f) = %.1f\n", max_deviation / 1000, max_modulation / 1000, bandwidth / 1000);
if (channels < 1) {
PDEBUG(DSDR, DEBUG_ERROR, "No channel given, please fix!\n");
abort();
}
sdr = calloc(sizeof(*sdr), 1);
if (!sdr) {
PDEBUG(DSDR, DEBUG_ERROR, "NO MEM!\n");
goto error;
}
sdr->channels = channels;
sdr->amplitude = 1.0 / (double)channels;
sdr->samplerate = samplerate;
/* special case where we use a paging frequency */
if (paging_frequency) {
/* add extra paging channel */
sdr->paging_channel = channels;
}
/* create list of channel states */
sdr->chan = calloc(sizeof(*sdr->chan), channels + (sdr->paging_channel != 0));
if (!sdr->chan) {
PDEBUG(DSDR, DEBUG_ERROR, "NO MEM!\n");
goto error;
}
if (tx_frequency) {
/* calculate required bandwidth (IQ rate) */
for (c = 0; c < channels; c++) {
PDEBUG(DSDR, DEBUG_INFO, "Frequency #%d: TX = %.6f MHz\n", c, tx_frequency[c] / 1e6);
sdr->chan[c].tx_frequency = tx_frequency[c];
}
if (sdr->paging_channel) {
PDEBUG(DSDR, DEBUG_INFO, "Paging Frequency: TX = %.6f MHz\n", paging_frequency / 1e6);
sdr->chan[sdr->paging_channel].tx_frequency = paging_frequency;
}
double tx_low_frequency = sdr->chan[0].tx_frequency, tx_high_frequency = sdr->chan[0].tx_frequency;
for (c = 1; c < channels; c++) {
if (sdr->chan[c].tx_frequency < tx_low_frequency)
tx_low_frequency = sdr->chan[c].tx_frequency;
if (sdr->chan[c].tx_frequency > tx_high_frequency)
tx_high_frequency = sdr->chan[c].tx_frequency;
}
if (sdr->paging_channel) {
if (sdr->chan[sdr->paging_channel].tx_frequency < tx_low_frequency)
tx_low_frequency = sdr->chan[sdr->paging_channel].tx_frequency;
if (sdr->chan[sdr->paging_channel].tx_frequency > tx_high_frequency)
tx_high_frequency = sdr->chan[sdr->paging_channel].tx_frequency;
}
/* range of TX */
double range = tx_high_frequency - tx_low_frequency;
if (range)
PDEBUG(DSDR, DEBUG_DEBUG, "Range between all TX Frequencies: %.6f MHz\n", range / 1e6);
if (range * 2 > samplerate) {
// why that? actually i don't know. i just want to be safe....
PDEBUG(DSDR, DEBUG_NOTICE, "The sample rate must be at least twice the range between frequencies.\n");
PDEBUG(DSDR, DEBUG_NOTICE, "The given rate is %.6f MHz, but required rate must be >= %.6f MHz\n", samplerate / 1e6, range * 2.0 / 1e6);
PDEBUG(DSDR, DEBUG_NOTICE, "Please increase samplerate!\n");
goto error;
}
tx_center_frequency = (tx_high_frequency + tx_low_frequency) / 2.0;
PDEBUG(DSDR, DEBUG_INFO, "Using center frequency: TX %.6f MHz\n", tx_center_frequency / 1e6);
/* set offsets to center frequency */
for (c = 0; c < channels; c++) {
double tx_offset;
tx_offset = sdr->chan[c].tx_frequency - tx_center_frequency;
PDEBUG(DSDR, DEBUG_DEBUG, "Frequency #%d: TX offset: %.6f MHz\n", c, tx_offset / 1e6);
rc = fm_mod_init(&sdr->chan[c].mod, samplerate, tx_offset, sdr->amplitude);
if (rc < 0)
goto error;
}
if (sdr->paging_channel) {
double tx_offset;
tx_offset = sdr->chan[sdr->paging_channel].tx_frequency - tx_center_frequency;
PDEBUG(DSDR, DEBUG_DEBUG, "Paging Frequency: TX offset: %.6f MHz\n", tx_offset / 1e6);
rc = fm_mod_init(&sdr->chan[sdr->paging_channel].mod, samplerate, tx_offset, sdr->amplitude);
if (rc < 0)
goto error;
}
/* show gain */
PDEBUG(DSDR, DEBUG_INFO, "Using gain: TX %.1f dB\n", sdr_tx_gain);
/* open wave */
if (sdr_write_iq_tx_wave) {
rc = wave_create_record(&sdr->wave_tx_rec, sdr_write_iq_tx_wave, samplerate, 2, 1.0);
if (rc < 0) {
PDEBUG(DSDR, DEBUG_ERROR, "Failed to create WAVE recoding instance!\n");
goto error;
}
}
if (sdr_read_iq_tx_wave) {
rc = wave_create_playback(&sdr->wave_tx_play, sdr_read_iq_tx_wave, samplerate, 2, 1.0);
if (rc < 0) {
PDEBUG(DSDR, DEBUG_ERROR, "Failed to create WAVE playback instance!\n");
goto error;
}
}
}
if (rx_frequency) {
for (c = 0; c < channels; c++) {
PDEBUG(DSDR, DEBUG_INFO, "Frequency #%d: RX = %.6f MHz\n", c, rx_frequency[c] / 1e6);
sdr->chan[c].rx_frequency = rx_frequency[c];
}
/* calculate required bandwidth (IQ rate) */
double rx_low_frequency = sdr->chan[0].rx_frequency, rx_high_frequency = sdr->chan[0].rx_frequency;
for (c = 1; c < channels; c++) {
if (sdr->chan[c].rx_frequency < rx_low_frequency)
rx_low_frequency = sdr->chan[c].rx_frequency;
if (sdr->chan[c].rx_frequency > rx_high_frequency)
rx_high_frequency = sdr->chan[c].rx_frequency;
}
/* range of RX */
double range = rx_high_frequency - rx_low_frequency;
if (range)
PDEBUG(DSDR, DEBUG_DEBUG, "Range between all RX Frequencies: %.6f MHz\n", range / 1e6);
if (range * 2.0 > samplerate) {
// why that? actually i don't know. i just want to be safe....
PDEBUG(DSDR, DEBUG_NOTICE, "The sample rate must be at least twice the range between frequencies. Please increment samplerate!\n");
goto error;
}
rx_center_frequency = (rx_high_frequency + rx_low_frequency) / 2.0;
PDEBUG(DSDR, DEBUG_INFO, "Using center frequency: RX %.6f MHz\n", rx_center_frequency / 1e6);
/* set offsets to center frequency */
for (c = 0; c < channels; c++) {
double rx_offset;
rx_offset = sdr->chan[c].rx_frequency - rx_center_frequency;
PDEBUG(DSDR, DEBUG_DEBUG, "Frequency #%d: RX offset: %.6f MHz\n", c, rx_offset / 1e6);
rc = fm_demod_init(&sdr->chan[c].demod, samplerate, rx_offset, bandwidth);
if (rc < 0)
goto error;
}
/* show gain */
PDEBUG(DSDR, DEBUG_INFO, "Using gain: RX %.1f dB\n", sdr_rx_gain);
/* open wave */
if (sdr_write_iq_rx_wave) {
rc = wave_create_record(&sdr->wave_rx_rec, sdr_write_iq_rx_wave, samplerate, 2, 1.0);
if (rc < 0) {
PDEBUG(DSDR, DEBUG_ERROR, "Failed to create WAVE recoding instance!\n");
goto error;
}
}
if (sdr_read_iq_rx_wave) {
rc = wave_create_playback(&sdr->wave_rx_play, sdr_read_iq_rx_wave, samplerate, 2, 1.0);
if (rc < 0) {
PDEBUG(DSDR, DEBUG_ERROR, "Failed to create WAVE playback instance!\n");
goto error;
}
}
}
if (sdr_swap_links) {
double temp;
PDEBUG(DSDR, DEBUG_NOTICE, "Sapping RX and TX frequencies!\n");
temp = rx_center_frequency;
rx_center_frequency = tx_center_frequency;
tx_center_frequency = temp;
}
#ifdef HAVE_UHD
if (sdr_use_uhd) {
rc = uhd_open(sdr_channel, sdr_device_args, sdr_stream_args, sdr_tune_args, sdr_tx_antenna, sdr_rx_antenna, tx_center_frequency, rx_center_frequency, sdr_samplerate, sdr_tx_gain, sdr_rx_gain, sdr_bandwidth);
if (rc)
goto error;
}
#endif
#ifdef HAVE_SOAPY
if (sdr_use_soapy) {
rc = soapy_open(sdr_channel, sdr_device_args, sdr_stream_args, sdr_tune_args, sdr_tx_antenna, sdr_rx_antenna, tx_center_frequency, rx_center_frequency, sdr_samplerate, sdr_tx_gain, sdr_rx_gain, sdr_bandwidth);
if (rc)
goto error;
}
#endif
return sdr;
error:
sdr_close(sdr);
return NULL;
}
static void *sdr_write_child(void __attribute__((__unused__)) *arg)
{
sdr_t *sdr = (sdr_t *)arg;
int num;
int fill, out;
int s, ss, o;
while (sdr_thread_write.running) {
/* write to SDR */
fill = (sdr_thread_write.in - sdr_thread_write.out + sdr_thread_write.buffer_size) % sdr_thread_write.buffer_size;
if (fill > sdr_thread_write.max_fill)
sdr_thread_write.max_fill = fill;
if (sdr_thread_write.max_fill_timer == 0.0)
sdr_thread_write.max_fill_timer = get_time();
if (get_time() - sdr_thread_write.max_fill_timer > 1.0) {
double delay;
delay = (double)sdr_thread_write.max_fill / 2.0 / (double)sdr->samplerate;
sdr_thread_write.max_fill = 0;
sdr_thread_write.max_fill_timer += 1.0;
PDEBUG(DSDR, DEBUG_DEBUG, "write delay = %.3f ms\n", delay * 1000.0);
}
num = fill / 2;
if (num) {
float buff[num * 2 * sdr_oversample];
#ifdef DEBUG_BUFFER
printf("Thread found %d samples in write buffer and forwards them to SDR.\n", num);
#endif
out = sdr_thread_write.out;
for (s = 0, ss = 0; s < num; s++) {
for (o = 0; o < sdr_oversample; o++) {
buff[ss++] = sdr_thread_write.buffer[out];
buff[ss++] = sdr_thread_write.buffer[out + 1];
}
out = (out + 2) % sdr_thread_write.buffer_size;
}
#ifdef HAVE_UHD
if (sdr_use_uhd)
uhd_send(buff, num * sdr_oversample);
#endif
#ifdef HAVE_SOAPY
if (sdr_use_soapy)
soapy_send(buff, num * sdr_oversample);
#endif
sdr_thread_write.out = out;
}
/* delay some time */
usleep(1000);
}
PDEBUG(DSDR, DEBUG_DEBUG, "Thread received exit!\n");
sdr_thread_write.exit = 1;
return NULL;
}
static void *sdr_read_child(void __attribute__((__unused__)) *arg)
{
// sdr_t *sdr = (sdr_t *)arg;
int num, count = 0;
int space, in;
int s, ss;
while (sdr_thread_read.running) {
/* read from SDR */
space = (sdr_thread_read.out - sdr_thread_read.in - 2 + sdr_thread_read.buffer_size) % sdr_thread_read.buffer_size;
num = space / 2;
if (num) {
float buff[num * 2];
#ifdef HAVE_UHD
if (sdr_use_uhd)
count = uhd_receive(buff, num);
#endif
#ifdef HAVE_SOAPY
if (sdr_use_soapy)
count = soapy_receive(buff, num);
#endif
if (count > 0) {
#ifdef DEBUG_BUFFER
printf("Thread read %d samples from SDR and writes them to read buffer.\n", count);
#endif
in = sdr_thread_read.in;
for (s = 0, ss = 0; s < count; s++) {
sdr_thread_read.buffer[in++] = buff[ss++];
sdr_thread_read.buffer[in++] = buff[ss++];
in %= sdr_thread_read.buffer_size;
}
sdr_thread_read.in = in;
}
}
/* delay some time */
usleep(1000);
}
PDEBUG(DSDR, DEBUG_DEBUG, "Thread received exit!\n");
sdr_thread_read.exit = 1;
return NULL;
}
/* start streaming */
int sdr_start(void __attribute__((__unused__)) *inst)
{
// sdr_t *sdr = (sdr_t *)inst;
int rc = -EINVAL;
#ifdef HAVE_UHD
if (sdr_use_uhd)
rc = uhd_start();
#endif
#ifdef HAVE_SOAPY
if (sdr_use_soapy)
rc = soapy_start();
#endif
if (rc < 0)
return rc;
if (sdr_threads) {
int rc;
pthread_t tid;
PDEBUG(DSDR, DEBUG_DEBUG, "Create threads!\n");
sdr_thread_write.running = 1;
sdr_thread_write.exit = 0;
rc = pthread_create(&tid, NULL, sdr_write_child, inst);
if (rc < 0) {
sdr_thread_write.running = 0;
PDEBUG(DSDR, DEBUG_ERROR, "Failed to create thread!\n");
return rc;
}
sdr_thread_read.running = 1;
sdr_thread_read.exit = 0;
rc = pthread_create(&tid, NULL, sdr_read_child, inst);
if (rc < 0) {
sdr_thread_read.running = 0;
PDEBUG(DSDR, DEBUG_ERROR, "Failed to create thread!\n");
return rc;
}
}
return 0;
}
void sdr_close(void *inst)
{
sdr_t *sdr = (sdr_t *)inst;
PDEBUG(DSDR, DEBUG_DEBUG, "Close SDR device\n");
if (sdr_threads) {
if (sdr_thread_write.running) {
PDEBUG(DSDR, DEBUG_DEBUG, "Thread sending exit!\n");
sdr_thread_write.running = 0;
while (sdr_thread_write.exit == 0)
usleep(1000);
}
if (sdr_thread_read.running) {
PDEBUG(DSDR, DEBUG_DEBUG, "Thread sending exit!\n");
sdr_thread_read.running = 0;
while (sdr_thread_read.exit == 0)
usleep(1000);
}
}
if (sdr_thread_read.buffer)
free((void *)sdr_thread_read.buffer);
if (sdr_thread_write.buffer)
free((void *)sdr_thread_write.buffer);
#ifdef HAVE_UHD
if (sdr_use_uhd)
uhd_close();
#endif
#ifdef HAVE_SOAPY
if (sdr_use_soapy)
soapy_close();
#endif
if (sdr) {
wave_destroy_record(&sdr->wave_rx_rec);
wave_destroy_record(&sdr->wave_tx_rec);
wave_destroy_playback(&sdr->wave_rx_play);
wave_destroy_playback(&sdr->wave_tx_play);
if (sdr->chan) {
int c;
for (c = 0; c < sdr->channels; c++) {
fm_mod_exit(&sdr->chan[c].mod);
fm_demod_exit(&sdr->chan[c].demod);
}
if (sdr->paging_channel)
fm_mod_exit(&sdr->chan[sdr->paging_channel].mod);
free(sdr->chan);
}
free(sdr);
sdr = NULL;
}
}
int sdr_write(void *inst, sample_t **samples, int num, enum paging_signal __attribute__((unused)) *paging_signal, int *on, int channels)
{
sdr_t *sdr = (sdr_t *)inst;
float buffer[num * 2], *buff = NULL;
int c, s, ss;
int sent = 0;
if (channels != sdr->channels && channels != 0) {
PDEBUG(DSDR, DEBUG_ERROR, "Invalid number of channels, please fix!\n");
abort();
}
/* process all channels */
if (channels) {
memset(buffer, 0, sizeof(buffer));
buff = buffer;
for (c = 0; c < channels; c++) {
/* switch to paging channel, if requested */
if (on[c] && sdr->paging_channel)
fm_modulate_complex(&sdr->chan[sdr->paging_channel].mod, samples[c], num, buff);
else
fm_modulate_complex(&sdr->chan[c].mod, samples[c], num, buff);
}
} else {
buff = (float *)samples;
}
if (sdr->wave_tx_rec.fp) {
sample_t spl[2][num], *spl_list[2] = { spl[0], spl[1] };
for (s = 0, ss = 0; s < num; s++) {
spl[0][s] = buff[ss++];
spl[1][s] = buff[ss++];
}
wave_write(&sdr->wave_tx_rec, spl_list, num);
}
if (sdr->wave_tx_play.fp) {
sample_t spl[2][num], *spl_list[2] = { spl[0], spl[1] };
wave_read(&sdr->wave_tx_play, spl_list, num);
for (s = 0, ss = 0; s < num; s++) {
buff[ss++] = spl[0][s];
buff[ss++] = spl[1][s];
}
}
if (sdr_threads) {
/* store data towards SDR in ring buffer */
int space, in;
space = (sdr_thread_write.out - sdr_thread_write.in - 2 + sdr_thread_write.buffer_size) % sdr_thread_write.buffer_size;
if (space < num * 2) {
PDEBUG(DSDR, DEBUG_ERROR, "Write SDR buffer overflow!\n");
num = space / 2;
}
#ifdef DEBUG_BUFFER
printf("Writing %d samples to write buffer.\n", num);
#endif
in = sdr_thread_write.in;
for (s = 0, ss = 0; s < num; s++) {
sdr_thread_write.buffer[in++] = buff[ss++];
sdr_thread_write.buffer[in++] = buff[ss++];
in %= sdr_thread_write.buffer_size;
}
sdr_thread_write.in = in;
sent = num;
} else {
#ifdef HAVE_UHD
if (sdr_use_uhd)
sent = uhd_send(buff, num);
#endif
#ifdef HAVE_SOAPY
if (sdr_use_soapy)
sent = soapy_send(buff, num);
#endif
if (sent < 0)
return sent;
}
return sent;
}
int sdr_read(void *inst, sample_t **samples, int num, int channels)
{
sdr_t *sdr = (sdr_t *)inst;
float buffer[num * 2], *buff = NULL;
sample_t I[num], Q[num];
int count = 0;
int c, s, ss;
if (channels) {
buff = buffer;
} else {
buff = (float *)samples;
}
if (sdr_threads) {
/* load data from SDR out of ring buffer */
int fill, out;
fill = (sdr_thread_read.in - sdr_thread_read.out + sdr_thread_read.buffer_size) % sdr_thread_read.buffer_size;
if (fill > sdr_thread_read.max_fill)
sdr_thread_read.max_fill = fill;
if (sdr_thread_read.max_fill_timer == 0.0)
sdr_thread_read.max_fill_timer = get_time();
if (get_time() - sdr_thread_read.max_fill_timer > 1.0) {
double delay;
delay = (double)sdr_thread_read.max_fill / 2.0 / (double)sdr_samplerate;
sdr_thread_read.max_fill = 0;
sdr_thread_read.max_fill_timer += 1.0;
PDEBUG(DSDR, DEBUG_DEBUG, "read delay = %.3f ms\n", delay * 1000.0);
}
if (fill / 2 / sdr_oversample < num)
num = fill / 2 / sdr_oversample;
#ifdef DEBUG_BUFFER
printf("Reading %d samples from read buffer.\n", num);
#endif
out = sdr_thread_read.out;
for (s = 0, ss = 0; s < num; s++) {
buff[ss++] = sdr_thread_read.buffer[out];
buff[ss++] = sdr_thread_read.buffer[out + 1];
out = (out + 2 * sdr_oversample) % sdr_thread_read.buffer_size;
}
sdr_thread_read.out = out;
count = num;
} else {
#ifdef HAVE_UHD
if (sdr_use_uhd)
count = uhd_receive(buff, num);
#endif
#ifdef HAVE_SOAPY
if (sdr_use_soapy)
count = soapy_receive(buff, num);
#endif
if (count <= 0)
return count;
}
if (sdr->wave_rx_rec.fp) {
sample_t spl[2][count], *spl_list[2] = { spl[0], spl[1] };
for (s = 0, ss = 0; s < count; s++) {
spl[0][s] = buff[ss++];
spl[1][s] = buff[ss++];
}
wave_write(&sdr->wave_rx_rec, spl_list, count);
}
if (sdr->wave_rx_play.fp) {
sample_t spl[2][count], *spl_list[2] = { spl[0], spl[1] };
wave_read(&sdr->wave_rx_play, spl_list, count);
for (s = 0, ss = 0; s < count; s++) {
buff[ss++] = spl[0][s];
buff[ss++] = spl[1][s];
}
}
display_iq(buff, count);
display_spectrum(buff, count);
if (channels) {
for (c = 0; c < channels; c++)
fm_demodulate_complex(&sdr->chan[c].demod, samples[c], count, buff, I, Q);
}
return count;
}
/* how much do we need to send (in audio sample duration) to get the target delay (latspl) */
int sdr_get_tosend(void __attribute__((__unused__)) *inst, int latspl)
{
// sdr_t *sdr = (sdr_t *)inst;
int count = 0;
#ifdef HAVE_UHD
if (sdr_use_uhd)
count = uhd_get_tosend(latspl * sdr_oversample);
#endif
#ifdef HAVE_SOAPY
if (sdr_use_soapy)
count = soapy_get_tosend(latspl * sdr_oversample);
#endif
if (count < 0)
return count;
count /= sdr_oversample;
if (sdr_threads) {
/* substract what we have in write buffer, because this is not jent sent to the SDR */
int fill;
fill = (sdr_thread_write.in - sdr_thread_write.out + sdr_thread_write.buffer_size) % sdr_thread_write.buffer_size;
count -= fill / 2;
if (count < 0)
count = 0;
}
return count;
}