osmo-trx/Transceiver52M/grgsm_vitac/viterbi_detector.cc

393 lines
18 KiB
C++

/* -*- c++ -*- */
/*
* @file
* @author (C) 2009 by Piotr Krysik <ptrkrysik@gmail.com>
* @section LICENSE
*
* Gr-gsm is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* Gr-gsm is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with gr-gsm; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
/*
* viterbi_detector:
* This part does the detection of received sequnece.
* Employed algorithm is viterbi Maximum Likehood Sequence Estimation.
* At this moment it gives hard decisions on the output, but
* it was designed with soft decisions in mind.
*
* SYNTAX: void viterbi_detector(
* const gr_complex * input,
* unsigned int samples_num,
* gr_complex * rhh,
* unsigned int start_state,
* const unsigned int * stop_states,
* unsigned int stops_num,
* float * output)
*
* INPUT: input: Complex received signal afted matched filtering.
* samples_num: Number of samples in the input table.
* rhh: The autocorrelation of the estimated channel
* impulse response.
* start_state: Number of the start point. In GSM each burst
* starts with sequence of three bits (0,0,0) which
* indicates start point of the algorithm.
* stop_states: Table with numbers of possible stop states.
* stops_num: Number of possible stop states
*
*
* OUTPUT: output: Differentially decoded hard output of the algorithm:
* -1 for logical "0" and 1 for logical "1"
*
* SUB_FUNC: none
*
* TEST(S): Tested with real world normal burst.
*/
#include "constants.h"
#include <cmath>
#define PATHS_NUM (1 << (CHAN_IMP_RESP_LENGTH-1))
void viterbi_detector(const gr_complex * input, unsigned int samples_num, gr_complex * rhh, unsigned int start_state, const unsigned int * stop_states, unsigned int stops_num, float * output)
{
float increment[8];
float path_metrics1[16];
float path_metrics2[16];
float paths_difference;
float * new_path_metrics;
float * old_path_metrics;
float * tmp;
float trans_table[BURST_SIZE][16];
float pm_candidate1, pm_candidate2;
bool real_imag;
float input_symbol_real, input_symbol_imag;
unsigned int i, sample_nr;
/*
* Setup first path metrics, so only state pointed by start_state is possible.
* Start_state metric is equal to zero, the rest is written with some very low value,
* which makes them practically impossible to occur.
*/
for(i=0; i<PATHS_NUM; i++){
path_metrics1[i]=(-10e30);
}
path_metrics1[start_state]=0;
/*
* Compute Increment - a table of values which does not change for subsequent input samples.
* Increment is table of reference levels for computation of branch metrics:
* branch metric = (+/-)received_sample (+/-) reference_level
*/
increment[0] = -rhh[1].imag() -rhh[2].real() -rhh[3].imag() +rhh[4].real();
increment[1] = rhh[1].imag() -rhh[2].real() -rhh[3].imag() +rhh[4].real();
increment[2] = -rhh[1].imag() +rhh[2].real() -rhh[3].imag() +rhh[4].real();
increment[3] = rhh[1].imag() +rhh[2].real() -rhh[3].imag() +rhh[4].real();
increment[4] = -rhh[1].imag() -rhh[2].real() +rhh[3].imag() +rhh[4].real();
increment[5] = rhh[1].imag() -rhh[2].real() +rhh[3].imag() +rhh[4].real();
increment[6] = -rhh[1].imag() +rhh[2].real() +rhh[3].imag() +rhh[4].real();
increment[7] = rhh[1].imag() +rhh[2].real() +rhh[3].imag() +rhh[4].real();
/*
* Computation of path metrics and decisions (Add-Compare-Select).
* It's composed of two parts: one for odd input samples (imaginary numbers)
* and one for even samples (real numbers).
* Each part is composed of independent (parallelisable) statements like
* this one:
* pm_candidate1 = old_path_metrics[0] -input_symbol_imag +increment[2];
* pm_candidate2 = old_path_metrics[8] -input_symbol_imag -increment[5];
* paths_difference=pm_candidate2-pm_candidate1;
* new_path_metrics[1]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
* trans_table[sample_nr][1] = paths_difference;
* This is very good point for optimisations (SIMD or OpenMP) as it's most time
* consuming part of this function.
*/
sample_nr=0;
old_path_metrics=path_metrics1;
new_path_metrics=path_metrics2;
while(sample_nr<samples_num){
//Processing imag states
real_imag=1;
input_symbol_imag = input[sample_nr].imag();
pm_candidate1 = old_path_metrics[0] +input_symbol_imag -increment[2];
pm_candidate2 = old_path_metrics[8] +input_symbol_imag +increment[5];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[0]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][0] = paths_difference;
pm_candidate1 = old_path_metrics[0] -input_symbol_imag +increment[2];
pm_candidate2 = old_path_metrics[8] -input_symbol_imag -increment[5];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[1]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][1] = paths_difference;
pm_candidate1 = old_path_metrics[1] +input_symbol_imag -increment[3];
pm_candidate2 = old_path_metrics[9] +input_symbol_imag +increment[4];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[2]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][2] = paths_difference;
pm_candidate1 = old_path_metrics[1] -input_symbol_imag +increment[3];
pm_candidate2 = old_path_metrics[9] -input_symbol_imag -increment[4];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[3]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][3] = paths_difference;
pm_candidate1 = old_path_metrics[2] +input_symbol_imag -increment[0];
pm_candidate2 = old_path_metrics[10] +input_symbol_imag +increment[7];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[4]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][4] = paths_difference;
pm_candidate1 = old_path_metrics[2] -input_symbol_imag +increment[0];
pm_candidate2 = old_path_metrics[10] -input_symbol_imag -increment[7];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[5]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][5] = paths_difference;
pm_candidate1 = old_path_metrics[3] +input_symbol_imag -increment[1];
pm_candidate2 = old_path_metrics[11] +input_symbol_imag +increment[6];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[6]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][6] = paths_difference;
pm_candidate1 = old_path_metrics[3] -input_symbol_imag +increment[1];
pm_candidate2 = old_path_metrics[11] -input_symbol_imag -increment[6];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[7]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][7] = paths_difference;
pm_candidate1 = old_path_metrics[4] +input_symbol_imag -increment[6];
pm_candidate2 = old_path_metrics[12] +input_symbol_imag +increment[1];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[8]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][8] = paths_difference;
pm_candidate1 = old_path_metrics[4] -input_symbol_imag +increment[6];
pm_candidate2 = old_path_metrics[12] -input_symbol_imag -increment[1];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[9]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][9] = paths_difference;
pm_candidate1 = old_path_metrics[5] +input_symbol_imag -increment[7];
pm_candidate2 = old_path_metrics[13] +input_symbol_imag +increment[0];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[10]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][10] = paths_difference;
pm_candidate1 = old_path_metrics[5] -input_symbol_imag +increment[7];
pm_candidate2 = old_path_metrics[13] -input_symbol_imag -increment[0];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[11]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][11] = paths_difference;
pm_candidate1 = old_path_metrics[6] +input_symbol_imag -increment[4];
pm_candidate2 = old_path_metrics[14] +input_symbol_imag +increment[3];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[12]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][12] = paths_difference;
pm_candidate1 = old_path_metrics[6] -input_symbol_imag +increment[4];
pm_candidate2 = old_path_metrics[14] -input_symbol_imag -increment[3];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[13]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][13] = paths_difference;
pm_candidate1 = old_path_metrics[7] +input_symbol_imag -increment[5];
pm_candidate2 = old_path_metrics[15] +input_symbol_imag +increment[2];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[14]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][14] = paths_difference;
pm_candidate1 = old_path_metrics[7] -input_symbol_imag +increment[5];
pm_candidate2 = old_path_metrics[15] -input_symbol_imag -increment[2];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[15]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][15] = paths_difference;
tmp=old_path_metrics;
old_path_metrics=new_path_metrics;
new_path_metrics=tmp;
sample_nr++;
if(sample_nr==samples_num)
break;
//Processing real states
real_imag=0;
input_symbol_real = input[sample_nr].real();
pm_candidate1 = old_path_metrics[0] -input_symbol_real -increment[7];
pm_candidate2 = old_path_metrics[8] -input_symbol_real +increment[0];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[0]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][0] = paths_difference;
pm_candidate1 = old_path_metrics[0] +input_symbol_real +increment[7];
pm_candidate2 = old_path_metrics[8] +input_symbol_real -increment[0];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[1]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][1] = paths_difference;
pm_candidate1 = old_path_metrics[1] -input_symbol_real -increment[6];
pm_candidate2 = old_path_metrics[9] -input_symbol_real +increment[1];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[2]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][2] = paths_difference;
pm_candidate1 = old_path_metrics[1] +input_symbol_real +increment[6];
pm_candidate2 = old_path_metrics[9] +input_symbol_real -increment[1];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[3]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][3] = paths_difference;
pm_candidate1 = old_path_metrics[2] -input_symbol_real -increment[5];
pm_candidate2 = old_path_metrics[10] -input_symbol_real +increment[2];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[4]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][4] = paths_difference;
pm_candidate1 = old_path_metrics[2] +input_symbol_real +increment[5];
pm_candidate2 = old_path_metrics[10] +input_symbol_real -increment[2];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[5]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][5] = paths_difference;
pm_candidate1 = old_path_metrics[3] -input_symbol_real -increment[4];
pm_candidate2 = old_path_metrics[11] -input_symbol_real +increment[3];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[6]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][6] = paths_difference;
pm_candidate1 = old_path_metrics[3] +input_symbol_real +increment[4];
pm_candidate2 = old_path_metrics[11] +input_symbol_real -increment[3];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[7]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][7] = paths_difference;
pm_candidate1 = old_path_metrics[4] -input_symbol_real -increment[3];
pm_candidate2 = old_path_metrics[12] -input_symbol_real +increment[4];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[8]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][8] = paths_difference;
pm_candidate1 = old_path_metrics[4] +input_symbol_real +increment[3];
pm_candidate2 = old_path_metrics[12] +input_symbol_real -increment[4];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[9]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][9] = paths_difference;
pm_candidate1 = old_path_metrics[5] -input_symbol_real -increment[2];
pm_candidate2 = old_path_metrics[13] -input_symbol_real +increment[5];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[10]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][10] = paths_difference;
pm_candidate1 = old_path_metrics[5] +input_symbol_real +increment[2];
pm_candidate2 = old_path_metrics[13] +input_symbol_real -increment[5];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[11]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][11] = paths_difference;
pm_candidate1 = old_path_metrics[6] -input_symbol_real -increment[1];
pm_candidate2 = old_path_metrics[14] -input_symbol_real +increment[6];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[12]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][12] = paths_difference;
pm_candidate1 = old_path_metrics[6] +input_symbol_real +increment[1];
pm_candidate2 = old_path_metrics[14] +input_symbol_real -increment[6];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[13]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][13] = paths_difference;
pm_candidate1 = old_path_metrics[7] -input_symbol_real -increment[0];
pm_candidate2 = old_path_metrics[15] -input_symbol_real +increment[7];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[14]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][14] = paths_difference;
pm_candidate1 = old_path_metrics[7] +input_symbol_real +increment[0];
pm_candidate2 = old_path_metrics[15] +input_symbol_real -increment[7];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[15]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][15] = paths_difference;
tmp=old_path_metrics;
old_path_metrics=new_path_metrics;
new_path_metrics=tmp;
sample_nr++;
}
/*
* Find the best from the stop states by comparing their path metrics.
* Not every stop state is always possible, so we are searching in
* a subset of them.
*/
unsigned int best_stop_state;
float stop_state_metric, max_stop_state_metric;
best_stop_state = stop_states[0];
max_stop_state_metric = old_path_metrics[best_stop_state];
for(i=1; i< stops_num; i++){
stop_state_metric = old_path_metrics[stop_states[i]];
if(stop_state_metric > max_stop_state_metric){
max_stop_state_metric = stop_state_metric;
best_stop_state = stop_states[i];
}
}
/*
* This table was generated with hope that it gives a litle speedup during
* traceback stage.
* Received bit is related to the number of state in the trellis.
* I've numbered states so their parity (number of ones) is related
* to a received bit.
*/
static const unsigned int parity_table[PATHS_NUM] = { 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, };
/*
* Table of previous states in the trellis diagram.
* For GMSK modulation every state has two previous states.
* Example:
* previous_state_nr1 = prev_table[current_state_nr][0]
* previous_state_nr2 = prev_table[current_state_nr][1]
*/
static const unsigned int prev_table[PATHS_NUM][2] = { {0,8}, {0,8}, {1,9}, {1,9}, {2,10}, {2,10}, {3,11}, {3,11}, {4,12}, {4,12}, {5,13}, {5,13}, {6,14}, {6,14}, {7,15}, {7,15}, };
/*
* Traceback and differential decoding of received sequence.
* Decisions stored in trans_table are used to restore best path in the trellis.
*/
sample_nr=samples_num;
unsigned int state_nr=best_stop_state;
unsigned int decision;
bool out_bit=0;
while(sample_nr>0){
sample_nr--;
decision = (trans_table[sample_nr][state_nr]>0);
if(decision != out_bit)
output[sample_nr]=-trans_table[sample_nr][state_nr];
else
output[sample_nr]=trans_table[sample_nr][state_nr];
out_bit = out_bit ^ real_imag ^ parity_table[state_nr];
state_nr = prev_table[state_nr][decision];
real_imag = !real_imag;
}
}