osmo-trx/Transceiver52M/ms/ms_rx_upper.cpp

301 lines
7.9 KiB
C++

/*
* (C) 2022 by sysmocom s.f.m.c. GmbH <info@sysmocom.de>
* All Rights Reserved
*
* Author: Eric Wild <ewild@sysmocom.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "sigProcLib.h"
#include "syncthing.h"
#include <signalVector.h>
#include <radioVector.h>
#include <radioInterface.h>
#include "grgsm_vitac/grgsm_vitac.h"
#include "ms_rx_upper.h"
extern "C" {
#include <osmocom/core/select.h>
#include "sch.h"
#include "convolve.h"
#include "convert.h"
#include "proto_trxd.h"
void __lsan_do_recoverable_leak_check();
}
namespace trxcon
{
extern "C" {
#include <trxcon/trx_if.h>
}
trx_instance *trxcon_instance; // local handle
static tx_queue_t txq;
} // namespace trxcon
#ifdef LOG
#undef LOG
#define LOG(...) upper_trx::dummy_log()
#endif
void upper_trx::start_threads()
{
thr_control = std::thread([this] {
set_name_aff_sched("upper_ctrl", 1, SCHED_RR, sched_get_priority_max(SCHED_RR));
while (1) {
driveControl();
pthread_testcancel();
}
});
msleep(1);
thr_tx = std::thread([this] {
set_name_aff_sched("upper_tx", 1, SCHED_FIFO, sched_get_priority_max(SCHED_FIFO) - 1);
while (1) {
driveTx();
pthread_testcancel();
}
});
// atomic ensures data is not written to q until loop reads
start_ms();
set_name_aff_sched("upper_rx", 1, SCHED_FIFO, sched_get_priority_max(SCHED_RR) - 5);
while (1) {
// set_upper_ready(true);
driveReceiveFIFO();
pthread_testcancel();
osmo_select_main(1);
}
// std::thread([this] {
// set_name_aff_sched("leakcheck", 1, SCHED_FIFO, sched_get_priority_max(SCHED_FIFO) - 10);
// while (1) {
// std::this_thread::sleep_for(std::chrono::seconds{ 5 });
// __lsan_do_recoverable_leak_check();
// }
// }).detach();
}
void upper_trx::start_ms()
{
ms_trx::start();
}
SoftVector *upper_trx::pullRadioVector(GSM::Time &wTime, int &RSSI, int &timingOffset) __attribute__((optnone))
{
float pow, avg = 1.0;
static SoftVector bits(148);
static complex workbuf[40 + 625 + 40];
static signalVector sv(workbuf, 40, 625);
GSM::Time burst_time;
auto ss = reinterpret_cast<std::complex<float> *>(&workbuf[40]);
memset((void *)&workbuf[0], 0, sizeof(workbuf));
// assert(sv.begin() == &workbuf[40]);
one_burst e;
unsigned char outbin[148];
std::stringstream dbgout;
while (!rxqueue.spsc_pop(&e)) {
rxqueue.spsc_prep_pop();
}
burst_time = e.gsmts;
wTime = burst_time;
auto is_sch = (burst_time.TN() == 0 && gsm_sch_check_fn(burst_time.FN()));
auto is_fcch = (burst_time.TN() == 0 && gsm_fcch_check_fn(burst_time.FN()));
if (is_fcch) {
// return trash
// fprintf(stderr, "c %d\n",burst_time.FN());
return &bits;
}
if (is_sch) {
for (int i = 0; i < 148; i++)
(bits)[i] = (!e.sch_bits[i]) < 1 ? -1 : 1;
RSSI = 10;
timingOffset = 0;
// fprintf(stderr, "s %d\n", burst_time.FN());
return &bits;
}
auto ts = trxcon::trxcon_instance->ts_list[burst_time.TN()];
if (ts == NULL || ts->mf_layout == NULL)
return 0;
convert_and_scale<float, int16_t>(ss, e.burst, ONE_TS_BURST_LEN * 2, 1.f / float(rxFullScale));
pow = energyDetect(sv, 20 * rx_sps);
if (pow < -1) {
LOG(ALERT) << "Received empty burst";
return NULL;
}
avg = sqrt(pow);
{
float ncmax, dcmax;
std::complex<float> chan_imp_resp[CHAN_IMP_RESP_LENGTH * d_OSR];
std::complex<float> chan_imp_resp2[CHAN_IMP_RESP_LENGTH * d_OSR];
auto normal_burst_start = get_norm_chan_imp_resp(ss, &chan_imp_resp[0], &ncmax, mTSC);
auto dummy_burst_start = get_norm_chan_imp_resp(ss, &chan_imp_resp2[0], &dcmax, TS_DUMMY);
auto is_nb = ncmax > dcmax;
// std::cerr << " U " << (is_nb ? "NB" : "DB") << "@ o nb: " << normal_burst_start
// << " o db: " << dummy_burst_start << std::endl;
normal_burst_start = normal_burst_start < 39 ? normal_burst_start : 39;
normal_burst_start = normal_burst_start > -39 ? normal_burst_start : -39;
// fprintf(stderr, "%s %d\n", (is_nb ? "N":"D"), burst_time.FN());
// if (is_nb)
detect_burst(ss, &chan_imp_resp[0], normal_burst_start, outbin);
// else
// detect_burst(ss, &chan_imp_resp2[0], dummy_burst_start, outbin);
for (int i = 0; i < 148; i++)
(bits)[i] = (outbin[i]) < 1 ? -1 : 1;
}
RSSI = (int)floor(20.0 * log10(rxFullScale / avg));
timingOffset = (int)round(0);
return &bits;
}
void upper_trx::driveReceiveFIFO()
{
int RSSI;
int TOA; // in 1/256 of a symbol
GSM::Time burstTime;
if (!mOn)
return;
SoftVector *rxBurst = pullRadioVector(burstTime, RSSI, TOA);
if (rxBurst) {
trxd_from_trx response;
response.ts = burstTime.TN();
response.fn = htonl(burstTime.FN());
response.rssi = RSSI;
response.toa = htons(TOA);
SoftVector::const_iterator burstItr = rxBurst->begin();
if (burstTime.TN() == 0 && gsm_sch_check_fn(burstTime.FN())) {
clamp_array(rxBurst->begin(), 148, 1.5f);
for (unsigned int i = 0; i < gSlotLen; i++) {
auto val = *burstItr++;
auto vval = isnan(val) ? 0 : val;
((int8_t *)response.symbols)[i] = round((vval - 0.5) * 64.0);
}
} else {
// invert and fix to +-127 sbits
for (int i = 0; i < 148; i++)
((int8_t *)response.symbols)[i] = *burstItr++ > 0.0f ? -127 : 127;
}
trxcon::trx_data_rx_handler(trxcon::trxcon_instance, (uint8_t *)&response);
}
}
void upper_trx::driveTx()
{
trxd_to_trx e;
while (!trxcon::txq.spsc_pop(&e)) {
trxcon::txq.spsc_prep_pop();
}
trxd_to_trx *burst = &e;
auto proper_fn = ntohl(burst->fn);
// std::cerr << "got burst!" << proper_fn << ":" << burst->ts
// << " current: " << timekeeper.gsmtime().FN()
// << " dff: " << (int64_t)((int64_t)timekeeper.gsmtime().FN() - (int64_t)proper_fn)
// << std::endl;
auto currTime = GSM::Time(proper_fn, burst->ts);
int RSSI = (int)burst->txlev;
static BitVector newBurst(gSlotLen);
BitVector::iterator itr = newBurst.begin();
auto *bufferItr = burst->symbols;
while (itr < newBurst.end())
*itr++ = *bufferItr++;
auto txburst = modulateBurst(newBurst, 8 + (currTime.TN() % 4 == 0), 4);
scaleVector(*txburst, txFullScale * 0.7 /* * pow(10, -RSSI / 10)*/);
// float -> int16
blade_sample_type burst_buf[txburst->size()];
convert_and_scale<int16_t, float>(burst_buf, txburst->begin(), txburst->size() * 2, 1);
// auto check = signalVector(txburst->size(), 40);
// convert_and_scale<float, int16_t, 1>(check.begin(), burst_buf, txburst->size() * 2);
// estim_burst_params ebp;
// auto d = detectAnyBurst(check, 2, 4, 4, CorrType::RACH, 40, &ebp);
// if(d)
// std::cerr << "RACH D! " << ebp.toa << std::endl;
// else
// std::cerr << "RACH NOOOOOOOOOO D! " << ebp.toa << std::endl;
// memory read --binary --outfile /tmp/mem.bin &burst_buf[0] --count 2500 --force
submit_burst(burst_buf, txburst->size(), currTime);
delete txburst;
}
int trxc_main(int argc, char *argv[])
{
pthread_setname_np(pthread_self(), "main_trxc");
convolve_init();
convert_init();
sigProcLibSetup();
initvita();
int status = 0;
auto trx = new upper_trx();
trx->do_auto_gain = true;
status = trx->init_dev_and_streams(0, 0);
trx->start_threads();
return status;
}
extern "C" {
void init_external_transceiver(struct trx_instance *trx, int argc, char **argv)
{
trxcon::trxcon_instance = (trxcon::trx_instance *)trx;
std::cout << "init?" << std::endl;
trxc_main(argc, argv);
}
void close_external_transceiver(int argc, char **argv)
{
std::cout << "Shutting down transceiver..." << std::endl;
}
void tx_external_transceiver(uint8_t *burst)
{
trxcon::txq.spsc_push((trxd_to_trx *)burst);
}
}